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Abstract: System on Chips (SoCs) are made up of many soft IPs, which are verified as standalone blocks, including the 

power management architecture. These IPs are shipped with their UPF containing the power intent in a technological 
independent form. These soft IPs are integrated into a larger block, which goes through the implementation (synthesis and 

place and route (PnR)) stage. The UPF for these IPs is supplemented with implementation details to synthesize power 
management architecture efficiently. To achieve a faster turnaround time, the users reuse the validation done for the IPs. 
However, the current successive refinement methodology defined in the UPF has various limitations concerning pre-verified 

IPs (PVIPs). The UPF defines soft macros, which are used for bottom-up implementation flows. The soft macros have 
several restrictions related to implementation control from SoC which creates challenges in using them for PVIPs. As a 
result, users are forced to adopt intrusive methods of changing the original power intent to make it go through 

implementation. This seriously affects the verification done at the IP level and forces users to either revalidate it or risk 
leaking silicon bugs. This paper details a new methodology to enable the successive refinement of PVIPs (Verification 
Macros). The proposal is under consideration to be included in the next UPF revision. 

I. INTRODUCTION 

Today’s SoCs are incredibly complex and contain various subsystems, soft IPs, hard IPs, and other logic. They are 

typically built in a bottom-up approach where the verification and implementation are done at different levels (Figure 

1). Often there are scenarios where the verification and implementation boundaries do not align. This poses challenges 

to applying UPF power intent with consistent semantics. 

Soft IPs require standalone exhaustive validation, including the power management architecture. These IPs are 

called pre-verified IPs (PVIPs). They have their own UPF, which describes the power management architecture used 

within the IP. This UPF contains a high-level power architecture independent of the target technology and gets reused 

for different implementations. These IPs are integrated into a larger block along with other logic. The implementation 

(synthesis and PnR) is performed at the larger block (APR) to achieve the best area and performance. During the 

implementation at the APR block, the UPF of the PVIP needs to be updated/refined to include additional details 

required to implement the power management architecture. This contains target technology details, power switches, 

and additional logic to help implement the power management. The changes done to the UPF during implementation 

should not affect the functionality and original power intent. The UPF is added with additional details to make the 

power architecture more efficient and conducive for implementation. The goal is to ensure that the power intent of the 

PVIP is not fundamentally altered, which would need to be revalidated using simulation. 

In this paper, we define a methodology based on the UPF’s Successive Refinement methodology that empowers 

tools to perform automatic checks and provide confidence to the users that the UPF changes to the PVIP are safe and 

will not require it to be re-verified. 

 
Figure 1 Bottom-up Verification and Implementation flow structure 
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II. PREVERIFIED SOFT IPS 

 A common IP integration method used in industry is for the IP to be pre-verified and then implemented in a larger, 

synthesized context to build an SoC. The soft IP will have a self-contained UPF for power-aware simulation and static 

checks. In this case, the IP is considered “soft” because it is not pre-hardened by the provider. The SoC will validate 

the full integration but does not revalidate the IP to what the provider did before delivery to the SoC. In other words, 

the IP is only revalidated in the context of the larger system and only in the context of the larger system’s power flows. 

For the SoC to optimize timing, power, and area utilization, it may be necessary to modify the UPF of the soft IP. 

Some aspects of the UPF are not modifiable today without using intrusive methods, such as manually editing the 

source UPF from the IP provider. When an SoC uses these intrusive methods to modify the IP, the power intent may 

be fundamentally changed. If the power intent is changed radically, the verification boundary of the IP will be 

compromised. It is, therefore, essential to allow for modifications to the soft IP UPF to support implementation needs 

and enable tools to verify that the power intent was not changed in such a way to have compromised the validation 

done by the IP provider. The next section introduces Successive Refinement, the UPF standard’s way of modifying 

soft IP UPF for implementation needs.   

III. SUCCESSIVE REFINEMENT METHODOLOGY 

The UPF standard defines an IP reuse methodology called Successive Refinement Methodology. This enables the 

reuse and progressive refinement of IP power intent when it goes through the design and verification flow. Figure 2 

summarizes the UPF successive refinement methodology. 

 
Figure 2 UPF Successive Refinement Methodology 

IV. BOTTOM-UP IMPLEMENTATION 

In a bottom-up implementation flow, the IP is implemented separately in a bottom-up manner and then assembled 

in a larger block to create a Subsystem or SoC. In this flow, the verification is typically done at a higher level when 

there is full system visibility. To achieve faster turnaround times, the verification is performed using the original RTL 

along with UPF. Since the availability of a larger context can affect the interpretation of UPF, the UPF language 

allows marking these separately implemented IPs as “Soft Macros”. Soft macros enforce specific requirements for the 

UPF to allow consistent semantics across different tools and verification. The semantics are “Self-contained UPF” 

and “Terminal Boundary” (Section 4.9.2.2 and 4.9.2.3 in IEEE 1801-2018 [1]). By marking these blocks as soft 

macros, verification tools can interpret the UPF in the same way as the separate implemented block because the 

external environment will not affect the power intent within the IP. In the term of UPF LRM, it becomes a terminal 

boundary. 

Figure 3 demonstrates the semantics of soft macros in a bottom-up implementation flow. In the figure, a soft macro 

IP has two supply pins on the interface. The UPF is written in a way that results in the insertion of isolation cells 

within the IP from a source powered by one supply to a sink powered by another supply. Since the IP is implemented 

separately, the isolation cells are present in the netlist. When the IP gets integrated in the larger APR block, there are 

two separate instances of the IP. For one instance, the two supplies at the interface are shorted together, making the 

isolation cells redundant. Since the IP is already implemented, verification tools need to ensure that the presence of 

redundant isolation cells will not affect the IP’s functionality. By marking the IPs as soft macro, verification tools can 

identify the IP boundaries and treat them as terminal boundaries to preserve the redundant isolation cells, even if the 

supplies are shorted. Note the example of redundant isolation cells is just one scenario. Many such UPF semantics are 

affected by the environment, so it is important to mark these blocks as soft macros. 



 
Figure 3 Bottom-up implementation using Soft Macros 

V. BOTTOM-UP VERIFICATION 

A bottom-up verification flow involves PVIPs. In this flow, the IPs are separately verified but implemented in a 

larger context. In this flow, implementation tools want a larger context to perform more optimized system 

implementation. To achieve best timing and area utilization, implementation tools need to add some refinement to the 

abstract power architecture used during IP validation. However, the refinement should not violate the power intent 

used during the IP standalone verification. It can optimize away some redundant logic if it is electrically safe to do so.  

Figure 4 demonstrates the semantics of bottom-up verification for PVIPs. In this case, the IP has similar power 

intent as Figure 3. The difference is that IP is validated as a standalone block without any implementation details for 

power intent. The IP verifies the isolation requirement and ensures that it functions correctly when different supplies 

power the two supplies of the IP. When the IP gets integrated into the larger system, i.e., APR block, the 

implementation tool will see that the two IP supplies are shorted. Hence, removing the isolation cells between the 

ports powered by the respective supplies is safe for better area utilization. It will optimize the redundant isolation cells 

for one instance but preserve the isolation cell for the instance powered by different supplies. The IP integrator will 

need to provide an additional UPF containing the details required for implementing the power intent. To preserve the 

validation already done for the IPs, the additions to UPF should be made in a way that doesn’t violate the original 

power intent of the PVIPs.  

 
Figure 4 Bottom-up verification using PVIPs 

 



VI. CHALLENGES AND LIMITATIONS OF THE BOTTOM-UP VERIFICATION FLOW 

One of the biggest challenges with bottom-up verification flow is ensuring the integrity of PVIPs’ power intent. 

This includes avoiding any accidental or unintentional modification of IP power intent. With the current capabilities 

of UPF, the user has two choices on how to capture the power intent of the PVIPs: 

A. No marking for PVIPs 

In this case, the UPF for PVIP is treated as any other block in the system. Users can choose to use the Successive 

Refinement methodology or capture the entire power intent in a single UPF. In either case, there is no mechanism to 

ensure the integrity of the IP power intent. In most cases, the IP integrator has to modify the PVIP UPFs to add 

implementation details. As a result, they have to revalidate the PVIP power intent or risk any functional issues related 

to power intent. The absence of any marking for PVIP limits the tool’s capabilities to perform any checks to catch 

unintentional modifications. 

B. Soft Macro marking for PVIPs 

An alternative approach is marking the PVIPs as soft macros defined in UPF. However, as soft macros are intended 

for bottom-up implementation flows. The restrictions imposed by the language severely limit the capabilities and 

make them unsuitable for marking PVIPs. 

Some of the soft macro’s restrictions create challenges with using them to represent PVIPs. Soft macros: 

- restrict optimal implementation at the APR level as they need standalone implementation. 

- restrict the integrator from making SoC-specific power architecture changes to IP UPF without violating the 

IP-defined power intent  

 

VII. VERIFICATION MACROS 

To address the challenges and limitations of bottom-up verification flows, we are introducing a new style of macros 

called “Verification Macros”. These macros have slightly relaxed requirements compared to soft macros, allowing 

users to refine the IP power intent with implementation details successfully. The verification macros still follow the 

self-contained UPF semantics and slightly relaxed terminal boundary semantics to ensure there is no 

accidental/unintentional modification from outside. The comparison of the terminal boundary semantics between soft 

and verification macros is shown in Table 1. 

 

 

 

Table 1 Comparison of Terminal Boundary semantics between Soft Macro and Verification Macro 

S. No. 
Semantics 

(Ref 4.9.2.3 in IEEE 1801-2018 [1]) 

Soft 

Macro 
Verification Macro 

1 
Driver/Receiver supply OUTSIDE assumes output port 

(driver supplies), input port (receiver supplies) 
Yes Yes 

2 
Driver/Receiver supply INSIDE assumes input port (driver 

supplies), output port (receiver supplies) 
Yes Yes 

3 find_objects –transitive stops at the boundary Yes Yes 

4 Global supply availability doesn’t extend beyond boundary Yes No 

5 Location fanout stops at the boundary Yes Yes 

6 
Cannot create any UPF objects inside macro from parent scope, 

except isolation/levelshifters with -location parent 
Yes Yes 

7 Cannot update any UPF object inside macro from parent scope Yes 
Only allow 

implementation updates 

A. Implementation UPF 

The implementation UPF comprises UPF commands and options that provide the information needed to implement 

the power intent for a target technology, referred to as the “Implementation UPF” in Successive Refinement 

Methodology. It is expected that the commands/options will refine the original power intent without violating the 

original intent. Any contradictions during refinement can be caught by a tool. The implementation UPF comprises of 

two sets of UPF commands. The first category is the commands that create new UPF objects representing 

implementation-level power intent, e.g. supply ports, nets, and power switches. The second category is the commands 

with the -update option, which add implementation detail to an existing UPF object. The UPF LRM has built-in 



semantics to catch any contradiction during the refinement process, thereby ensuring any issues are caught during the 

compilation stage. 

 

The following table lists the commands and updates that are classified as representing the implementation UPF. 

Table 2 UPF commands/options which represent the implementation UPF 

S. No. UPF Commands/options Implementation UPF 

1 add_power_state No 

2 add_power_state -update -supply_expr, -legal, -illegal 

3 associate_supply_set No 

4 connect_logic_net -reconnect No 

5 
connect_supply_net, 

connect_logic_net Yes 

6 create_abstract_power_source No (new addition to UPF 4.0) 

7 
create_abstract_power_source 

-update -power_switch  (new addition to UPF 4.0) 

8 
create_logic_port, 

create_logic_net Yes 

9 create_power_domain No 

10 create_power_domain -update 
-elements, -available_supplies, -boundary_supplies, -

define_func_type 

11 create_power_switch Yes 

12 create_power_switch -update -instance 

13 
create_supply_port, 

create_supply_net Yes 

14 create_supply_set No 

15 create_supply_set -update -function 

16 define_power_model No 

17 

map_power_switch, 
map_repeater_cell, 
map_retention_cell Yes 

18 set_equivalent No 

19 set_isolation Yes (would want restrictions but its hard to impose) 

20 set_isolation -update 
-elements, -location, -isolation_supply, -instance, -

force_isolation, 

21 set_level_shifter Yes 

22 set_level_shifter -update 
Any refinable option as these are implementation 

commands 

23 
set_port_attributes, 

set_design_attributes Yes 

24 set_repeater Yes 

25 set_repeater -update 
Any refinable option as these are implementation 

commands 

26 set_retention No (affects functionality so need to verified early) 

27 set_retention -update -instance, -retention_supply 

28 set_variation Yes 

29 

sim_assertion_control, 
sim_replay_control, 
sim_corruption_control No 

30 use_interface_cell Yes 



 

B. Enforcing implementation-only restrictions 

To allow only implementation updates to UPF, a new option, -implementation, is proposed to the load_upf 

command. When this option is passed, tools can check and allow only commands that qualify as implementation UPF 

commands as per Table 2. 

VIII. SUCCESSIVE REFINEMENT OF VERIFICATION MACROS 

The successive refinement of verification macros starts with the IP provider providing a “Constraint UPF”. The IP 

provider also offers various “Configuration UPFs”, which the IP provider has validated as a standalone block. The IP 

goes through exhaustive validation involving a given configuration. This validation is done at a high level without the 

knowledge of implementation details. During this, the IP provider will ensure IP is functioning correctly with power 

management, e.g. 

- IP transitions into legal power states and validates the power-gating behavior 

- If IP has retention, the retention registers are doing proper save/restore 

- If IP has isolation, the ports are getting clamped to correct values at the right time 

The IP integrator uses the constraint and configuration UPF when integrating the IP at the APR level. The integrator 

also adds an “Implementation UPF” that contains details specific to the implementation of the power management, 

which must not violate the validation already done for the IP. 

IX. BENEFITS OF VERIFICATION MACROS 

Treating PVIPs as Verification macros has several benefits. 

1. It empowers tools to compare and highlight deviations from the original power intent, thus enabling them to 

catch any errors during the refinement process by allowing only load_upf -implementation updates during the 

bottom-up verification flow 

2. Enables IP providers to abstract the design with respect to power management but independent from 

implementation details 

3. Provides flexibility to SoC integrator to allow optimization of power intent implementations 

4. Safely refine the power intent of the PVIP for a target technology 

5. Reuse the validation done by the IP provider 

 

X. EXAMPLES 
Example 1:  

A PVIP has a GATED and Always ON (AON) domain. The GATED domain is switched through an SoC implemented 

power switch. IP implements isolation between AON and GATED domains and validates. SoC is the implementer of 

the IP and needs the flexibility of picking the location of isolation coded and validated by the IP based on APR 

requirements.  

 

ip.upf 
# IP hierarchy 

# ip1_top in AON domain 

# |_ ip1_pgd_wrapper in PGD domain 

 

set_design_attributes -models . -attribute {is_verification_macro TRUE} 

 

create_supply_set ss_AON 

create_supply_set ss_PGD 

 

create_power_domain AON -elements {.} 

 

create_power_domain PGD -elements {ip1_pgd_wrapper} 

 

..... 

 

## isolation strategy for ports crossing from PGD to AON. 

## -location not specified by IP team 

## -location, if specified and hardcoded, cannot be overridden through 

Verification macro refinement 

set_isolation "o_PGD_to_AON" \ 

 -domain “PGD” \ 

 -isolation_supply_set "ss_AON" \ 

 -clamp_value "0" \ 

 -elements { 

    ip1_pgd_wrapper/portA 



    ip1_pgd_wrapper/portB 

 } \ 

 -isolation_signal pwr_manager/iso_en_b \ 

 -isolation_sense low 

 

.... 

 

create_pst ip_PST   -supplies "ss_AON.power ss_PGD.power ss_AON.ground" 

add_pst_state ON    -state {ON  ON  ON} -pst ip_pst 

add_pst_state GATED -state {ON  OFF ON} -pst ip_pst 

add_pst_state OFF   -state {OFF OFF ON} -pst ip_pst 

IP defines AON and PGD power domains. PGD is a switched domain of AON requiring isolation between them which 

is implemented using the set_isolation command. The isolation strategy has all the options required for the IP to code 

and validates its power intent. IP does not need a location specified as it is an implementation choice. IP provides SoC 

the ability to define the location based on APR needs by excluding the definition of isolation in IP isolation strategies 

and marking the IP as a verification macro through the set_design_attributes -is_verification_macro option. 

 

ip.socimpl.upf 
set_isolation "o_PGD_to_AON" \ 

 -domain “PGD” \ 

 -location parent \ 

 -update 

SoC integrator of IP follows 2 steps to implement the location of choice.  

Step 1 - ip.socimpl.upf, which refines IP defined isolation strategy with SoC's desired location. It follows successive 

refinement semantics to achieve the refinement with verification macro semantics, allowing isolation to be refined. 

 

parIP1.upf 
# SoC hierarchy 

# parIP1 

# |_ ip1 ip1_top 

 

create_power_domain par_AON -elements {.} 

 

## -implementation option is a cue to the tools that refinement happened on 

IP UPF 

## verification macro rules come into play and check to ensure IP power intent 

## remains unchanged 

load_upf ip.upf -scope ip1 

load_upf ip.socimpl.upf -scope ip1 -implementation 

SoC level parIP1.upf instantiates the original IP UPF along with the SoC refined UPF. SoC refined UPF is loaded into 

the same scope as the original IP UPF but with a new option -implementation. This new option provides a trail of 

changes from IP to SoC so EDA tools can check to ensure PVIP power intent remains unchanged due to SoC-driven 

changes.  

 
Example 2:  

PVIP delivered is placed in a shallower (less ON) power domain at SoC. The partition boundary at SoC APR block is 

always ON. This setup translates into a need for the output ports of PVIP to be isolated through SoC inserted isolation 

strategy before they get consumed. 

 

Example 2 illustrates this case using 1 IP output port which is powered by SoC_VNN that is port mapped to SoC port 

which is powered by SOC_VNNAON. SOC_VNN is less ON than SOC_VNNAON. SoC inserts needed isolation 

from SOC_VNN to SOC_VNNAON but, due to APR constraints, pushes into IP Always ON domain.  

 

IP.upf 
# IP hierarchy 

# ip1_top in AON domain 

# | --- output port ip1_top.o_portA @ ss_AON 

# |_ ip1_pgd_wrapper in PGD domain 

 

set_design_attributes -models . -attribute {is_verification_macro TRUE} 

 



create_supply_set ss_IP_AON 

create_supply_set ss_IP_PGD 

 

create_power_domain AON -elements {.} -primary ss_IP_AON 

 

create_power_domain PGD -elements {ip1_pgd_wrapper} -primary ss_IP_PGD 

 

.... 

 

create_pst ip_PST   -supplies "ss_IP_AON.power ss_IP_PGD.power 

ss_IP_AON.ground" 

add_pst_state ON    -state {ON  ON  ON} -pst ip_pst 

add_pst_state GATED -state {ON  OFF ON} -pst ip_pst 

add_pst_state OFF   -state {OFF OFF ON} -pst ip_pst 

 

 

 

set_port_attributes \ 

-receiver_supply "ss_IP_AON" \ 

-driver_supply "ss_IP_AON" \ 

-ports "o_portA" 

 

IP.upf describes the creation of AON and PGD supply sets. PVIP expects both AON and PGD to be delivered by the 

SoC. It describes the relationship between AON and PGD in the power state table. IP inserted isolation, and the rest 

of the UPF content is not shown for brevity. Port, o_portA, is mapped to ss_IP_AON, the always ON supply from an 

IP standpoint. 

 

parIP1.upf 
# SoC hierarchy 

# parIP1 

# |_ ip1(ip1_top) 

 

create_power_domain par_AON -elements {.} 

 

create_supply_set ss_SOC_AON 

create_supply_set ss_SOC_VNN 

create_supply_set ss_SOC_PGD 

 

load_upf ip.upf -scope ip1 

associate_supply_set {ss_SOC_VNN ip1/ss_IP_AON} 

associate_supply_set {ss_SOC_PGD ip1/ss_IP_PGD} 

 

set_isolation "o_SOCVNN_to_SOCAON" \ 

 -domain "par_AON" \ 

 -location other \ 

 -elements {ip1/o_portA} \ 

 -applies_to_boundary lower \ 

 -isolation_supply ss_SOC_AON \ 

 -isolation_signal soc_isol_en_b \ 

 -isolation_sense low 

 

..... 

 

create_pst par1_PST   -supplies "ss_AON.power ss_VNN.power ss_AON.ground" 

add_pst_state ON    -state {ON  ON  ON} -pst pa1_pst 

add_pst_state GATED -state {ON  OFF ON} -pst par1_pst 

add_pst_state OFF   -state {OFF OFF ON} -pst par1_pst 

 

set_port_attributes \ 

-receiver_supply "ss_SOC_AON" \ 

-driver_supply "ss_SOC_AON" \ 

-ports "ip1/o_portA" 



 

parIP1.upf describes the loading of IP.upf and mapping of IP supply sets AON and PGD to SOC_VNN and 

SOC_PGD. SoC inserts isolation crossing from SOC_VNN to SOC_AON on IP port o_portA. This isolation strategy 

must be implemented within the IP scope due to APR restrictions. Verification macro allows for refinement, whereas 

soft macros do not in situations like  

1. Pushing the isolation strategy into IP scope through the use of -applies_to_boundary lower and location of 

the isolation is self at IP AON domain through the use of -location other. 

2. Allows instance-based override of driver/receiver supplies on set_port_attributes. This capability comes in 

handy as set_port_attributes of o_portA needs an update from ss_IP_AON, which at SoC is mapped to 

SOC_VNN, but with SoC isolation inserted as self in IP AON domain, its attribute changes to SOC_AON. 

 
Example 3:  

Example 3 illustrates the PVIP with a GATED domain and AON models path-based isolation that inserts isolation 

only when there is an electrical need. PVIP choice of isolation strategy coding is to avoid redundant isolations. 

 

IP.upf 
set_design_attributes -models . -attribute {is_verification_macro TRUE} 

 

create_supply_set ss_IP_AON 

create_supply_set ss_IP_PGD 

 

create_power_domain AON -elements {.} 

create_power_domain PGD -elements {ip1_pgd_wrapper} 

 

..... 

 

## IP inserted isolation from PGD.  

## Isolates all output where different supplies power source and sink 

set_isolation "o_PGD_to_AON" \ 

 -domain “PGD” \ 

 -isolation_supply_set "ss_IP_AON" \ 

 -clamp_value "0" \ 

 -location self \ 

 -applies_to outputs \ 

 -source ss_IP_PGD \ 

 -sink ss_IP_AON \ 

 -diff_supply_only TRUE \ 

 -isolation_signal pwr_manager/iso_en_b \ 

 -isolation_sense low 

 

.... 

 

create_pst ip_PST   -supplies "ss_IP_AON.power ss_IP_PGD.power 

ss_IP_AON.ground" 

add_pst_state ON    -state {ON  ON  ON} -pst ip_pst 

add_pst_state GATED -state {ON  OFF ON} -pst ip_pst 

add_pst_state OFF   -state {OFF OFF ON} -pst ip_pst 

 

parIP1.upf 
# SoC hierarchy 

# parIP1 

# |_ ip1(ip1_top) 

 

create_power_domain par_AON -elements {.} 

 

create_supply_set ss_SOC_AON 

create_supply_set ss_SOC_VNN 

create_supply_set ss_SOC_PGD 

 

## ip1 which is an instance of IP.upf where SoC is shorting AON and PGD 

load_upf ip1.upf -scope ip1 



associate_supply_set {ss_SOC_AON ip1/ss_IP_AON} 

associate_supply_set {ss_SOC_AON ip1/ss_IP_PGD} 

 

 

 

## ip2 which is an instance of same IP.upf where SoC has AON and PGD 

implemented separately 

load_upf ip1.upf -scope ip2 

associate_supply_set {ss_SOC_AON ip2/ss_IP_AON} 

associate_supply_set {ss_SOC_PGD ip2/ss_IP_PGD} 

 

.... 

 

create_pst ip_PST -supplies "ss_IP_AON.power ss_IP_PGD.power 

ss_IP_AON.ground" 

add_pst_state ON    -state {ON  ON  ON} -pst ip_pst 

add_pst_state GATED -state {ON  OFF ON} -pst ip_pst 

add_pst_state OFF   -state {OFF OFF ON} -pst ip_pst 

 

parIP1.upf illustrates IP.upf instantiated twice. SoC shorts ss_IP_AON and ss_IP_PGD for one instance (ip1) and 

provides separate power for the second instance (ip2).  

 

Bottom-up verification done through a soft macro model would have resulted in redundant isolations for the ip1 

instance at SoC, leading to APR congestion. The same bottom-up verification done through a verification macro 

semantics allows optimization at SoC APR across terminal boundaries resulting in an optimal QoR. 

XI. CONCLUSION 

PVIPs are becoming more and more common in current SoCs. The time spent on validation is far more than the 

actual design process. Reusing the validation already done for the IPs is vital to achieving more efficiency and a faster 

turnaround time. The current methodologies have several hurdles and limitations for correctly applying successive 

refinement for PVIPs. The paper proposes verification macros that allow the Successive Refinement Methodology to 

reuse PVIP’s power intent and validation. 

XII. STANDARDIZATION UPDATE 

The IEEE 1801-UPF WG already approved the verification macro and its semantics. Currently, the committee is 

working to include the details in the next revision of the UPF 3.1 standard[1]. However, minor changes, especially 

concerning the naming of the verification macro marking, may be possible when the actual standard is released. 
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