
Novel Method To Speed-Up UVM Testbench

Development
Prashantkumar Ravindra (prashantkumar.ravindra@analog.com), Analog Devices (India)

Barry Briscoe (Barry.Briscoe@analog.com), Analog Devices (Ireland)

Miguel Castillo (Miguel.Castillo@analog.com), Analog Devices (Philippines)

Nimay Shah (Nimay.Shah@analog.com), Analog Devices (US)

Abstract-Verification IPs are the building blocks of UVM testbenches, needed for Metric Driven Verification of complex

designs. UVM Testbench generators can instantly create a basic UVM testbench template from scratch, but the VIP

integration must be done manually. This makes the testbench development activity difficult and time-consuming.

Automating VIP integration is the solution, but this is not straightforward due to the lack of an industry-wide standard to

exchange VIP metadata. In this paper, the authors present a non-proprietary VIP metadata template that can enable this

automation via a Testbench Generator. This paper will further highlight how, without restricting the creativity of VIP

developers, multiple vendor VIP titles have been successfully integrated into the ADI's UVM Testbench generator, with the

help of this metadata. This method has enabled the DV engineers to instantly create a ready-to-simulate sophisticated UVM

TB from scratch, reducing the efforts from weeks to minutes.

I. INTRODUCTION

It has been over a decade since the release of the first version of the Universal Verification Methodology (UVM).

Over the years there have been multiple stable releases of UVM, and the adoption has been steadily growing with

every passing day. The advent of Battery Electric Vehicles (EV), Artificial Intelligence (AI), 5G, Industry 4.0, Smart

Gadgets and Wearables, Advanced Driver Assistance System (ADAS), Drones, etc. have resulted in a multifold

increase in the verification complexity of the Application Specific Integrated Circuits (ASIC) and System on Chips

(SoC) used in these applications.

On top of this, Time to Revenue (TTR) is shrinking and to meet this timeline, first-pass silicon is crucial. Hence,

Design Verification (DV) teams leave no stone unturned when it comes to functional verification of the design. For

thorough functional verification, a sophisticated testbench (TB) is necessary and hence developing a complex, yet

flexible, UVM testbench is a critical requirement.

Figure 1 shows a typical UVM testbench development flow. Verification Intellectual Property (VIP) and Testbench

Generator are two of the important pieces needed for any UVM testbench development.

Figure 1 Typical UVM testbench development flow

The concept of a Graphical User Interface (GUI) or a Command Line Interface (CLI) based UVM Testbench

Generator has been around for a while. Semiconductor design companies develop generators on their own or use ones

from Electronic Design Automation (EDA) vendors. Homegrown generators are fine-tuned to be compatible with the

mailto:prashantkumar.ravindra@analog.com
mailto:Barry.Briscoe@analog.com
mailto:Miguel.Castillo@analog.com
mailto:Nimay.Shah@analog.com

company's overall DV ecosystem. On the other hand, vendor solutions are fine-tuned to work best with their respective

DV ecosystem offerings such as VIPs, Simulators, etc. Irrespective of the source, the Testbench Generator is

undoubtedly the fastest way to bring up the UVM testbench in comparison to manually writing every piece of UVM

testbench code from scratch.

VIPs are typically the building blocks of any standard UVM testbench. It is a widespread practice to either develop

UVM based VIPs in-house, by central engineering teams, or to procure from vendors. Especially for

protocols/interfaces that are based on industry standards defined by Institute of Electrical & Electronics Engineers

(IEEE), Joint Electron Device Engineering Council (JEDEC), Mobile Industry Processor Interface (MIPI), Video

Electronics Standards Association (VESA) and others, vendor VIPs offer benefits such as zero development time and

cost, high quality, dedicated support. However, vendor VIPs are typically encrypted and thus it takes considerable

time to integrate these into user testbench and to achieve first test-pass.

Parking the idea of listing the advantages of using Testbench Generator and VIPs, which are well known to the DV

community, the authors would like to highlight the missing feature of “Automating Vendor VIP integration into a

UVM testbench via UVM Testbench Generator” and how to address it.

II. CHALLENGES

It is interesting (and surprising) that there is no defined standard to exchange UVM VIP integration data to

ease/automate the integration. Vendors have ended up with their proprietary ways of enabling integration into end-

users testbench. VIP vendors ship example testbenches, user guides and custom tools to ease integration. However,

all these ways have challenges of their own.

For example

(1) Vendor TB generation tools do not support VIPs from other sources (in-house or third party).

(2) Porting VIP from the shipped example to the user testbench is easier said than done.

III. EXISTING FLOW

At Analog Devices Inc (ADI), with the in-house developed advanced UVM Testbench Generator, DV teams can

develop new UVM testbenches (and test cases) with the required in-house VIPs, project-specific UVCs, and reusable

block-level environments instantly. The UVM Testbench Generator is a critical piece of the ADI’s Unified Design

Verification solution and hence testbench, so generated, is out-of-the-box compliant with the ADI’s DV ecosystem

(tools, flows and methods). These are compile-clean and ready-to-simulate testbenches, minus the vendor VIPs which

are to be integrated manually, post the testbench generation.

Figure 2 UVM testbench development flow using Testbench Generator and manual integration of vendor VIPs

As shown in Figure 2, the biggest challenge in the existing flow is the integration of complex vendor VIPs, as it is

a manual and cumbersome process. VIP-1 (green), representing in-house developed VIP is added via Testbench

Generator flow and VIP-2 (red), representing vendor VIP, is added manually.

Key challenges in the existing flow

1) Stringent timelines – Testbench should be ready ASAP to make way for the verification.

2) Learning curve - VIP structure, configs, sequences, coverage, checkers, interfaces, etc.

3) For complex protocols, it is not straightforward to port example cases to a user’s testbench.

4) VIP integration challenges- Find packages, class names, generate libraries, extract models, etc.

5) Manual VIP integration leads to issues which are difficult and time-consuming to root cause.

6) Testbench architecture updates lead to re-do of manual work.

This flow is common across the industry and hence these challenges resonate with the entire DV community. Even

the well-known Wilson Research Group study shows a similar trend. As shown in Figure 3, even with all the advanced

solutions developed by the EDA vendors, 15% of the ASIC verification engineers time is spent in testbench

development [1], which the authors believe can be significantly minimized with “automation”.

Figure 3 Time spent by ASIC Verification Engineers

IV. PROPOSED SOLUTION

The integration of the vendor VIP portfolio into the Testbench Generator can address the challenges listed in the

earlier section to a significant extent. But the question is How? How to enable this automation?

Over the past couple of years, authors collaborated with multiple VIP vendors and established that integration of

(any) vendor VIP into a UVM testbench can be automated via generic Testbench Generator (developed by another

vendor), if the necessary VIP integration details (VIP Metadata) is available in the pre-defined standard format (VIP

Metadata template).

Figure 4 VIP metadata required for VIP integration

Figure 4 shows the metadata needed to integrate a standard UVM VIP into a UVM testbench. Close inspection

reveals, this is the same information DV engineer uses during manual integration of the VIP into a testbench.

Source: 2022 Wilson Research Group Functional Verification Study

Test Plan
13%

Testbench
Development

15%

Test creation and
Simulation

21%

Debug
46%

Others
5%

The basic idea here is to find all the necessary data needed for VIP integration and represent it in a standard format,

which can be interpreted by any Testbench Generator. The Testbench Generator can then extract the metadata and

inject the processed VIP code in the specific locations of the testbench based on element-attribute combination in the

VIP Metadata File.

Figure 5 shows the representation of the VIP metadata template. The metadata template even has qualifier-attributes

(Simulator, Sim_Arch and UVM_Ver to support multiple simulators, architectures and UVM versions, respectively.

More elements and attributes can be added to support other vendors and testbench types (Ex: emulation, PSS).

Figure 5. Sample representation of VIP metadata template

Through this paper, the authors are not only advocating the need of a well-defined standard to aid the automation

of VIP integration into UVM testbench, but also have defined one (which is non-proprietary) and enabled the

automation which can benefit the greater DV community.

Let us understand the key elements-attributes supported in the current version of VIP metadata template.

As shown in Figure 5, “Element” supports the following types:

1. Setup

2. Common

3. <Agent>

Note: <Agent> is of variable-type and shall be replaced with the name of agent (Ex: source, sink, tx, rx, main, sub).

There could be one or more <Agent>.

1. Setup

This type of element corresponds to the requirement of “Setup Details” mentioned in Figure 4. The attributes

associated with this element captures data needed to setup and prepare the user testbench environment, including all

VIP supporting models and library files. Key attributes of this element are listed in Table 1.

Table 1. Key attributes of “Setup Details”

Attribute Description Reference

vendor_name Name to identify the vendor in TB generator <vendor name>

vip_name Name to identify VIP in TB generator <protocol>:<version>

env_var Set required environment variables setenv VIP_LIB_PATH
${TB_ROOT}/agents/<vendor>/<vip>

src_path Path to the location of the user-editable VIP source
code that needs to be copied to the generated TB

${VIP_ROOT}/…./

pre_comp Perform required operation/ execute script before
compilation

source $VIP_LIB_PATH/vip_comp.csh

pre_sim Perform required operation/ execute script before
simulation

source $VIP_LIB_PATH/vip_sim.csh

pre_comp_sim Perform required operation/ execute script before
compilation and simulation

source $VIP_LIB_PATH/vip_all.csh

comp_opt Compilation options -define VENDOR_PROTOCOL

comp_file Files to be compiled ${TB_ROOT}/agents/protocol/x/y/z

inc_dir Directories required for compilation ${TB_ROOT}/agents/protocol/x/y/z

sim_opt Run time options for simulator -pli ${VIP_ROOT}/somefile.so

2. Common & <Agent>

This type of elements corresponds to the requirement of “Agent Details” mentioned in Figure 4. If “Common” type

is used then the attribute is considered as common for all the agents supported by the VIP, else if <Agent> element is

used then its applicable only to that <Agent>. This section lists attributes that capture the data needed to integrate the

VIP into the user testbench environment. Key attributes of these elements are listed in Table 2.

Table 2. Key attributes of “Agent Details”

Attribute Description Reference

pkg_import VIP env/agent package to be imported in TB env scope
Scope: TB env package

vendor_protocol_pkg

pkg_import_global VIP env/agent package to be imported in global scope
Scope: Global

vip_common_pkg

inc_file Files to be included in TB environment package
Scope: TB env package

vip_protocol_file.sv

inc_file_global Files to be included at the global scope
Scope: Global
Useful to manage non-UVM file compilation, which can
be done outside TB pkg declaration or in simulator
command file

vip_protocol_interface.sv

add_tbpkg_code Custom code required for VIP compilation
This code will be added in the TB environment package
scope prior to importing other packages
Typically used for type or vendor specific forward-
declaration/parameters
Note: If used in <vendor>_common sheet, its vendor-
specific else it is type-specific

typedef class vip_example_class;

add_tbpkg_code_glo
bal

Custom code required for VIP compilation
This code will be added in the global scope
Typically used for type or vendor specific forward-
declaration/parameters
Note: If used in <vendor>_common sheet, its vendor-
specific else it is type-specific

typedef class vip_example_class;

param_list List of parameters used in the TB env scope
Comma separated list should have the parameter
name and its value
Suggestion: Recommended to use only one parameter
per line
Scope: TB Env package

ADDRESS_WIDTH=32,
DATA_WIDTH=32

param_list_global List of parameters used in the global scope
Comma separated list should have the parameter
name and its value
Suggestion: Recommended to use only one parameter
per line
Scope: Global

ADDRESS_WIDTH=32,
DATA_WIDTH=32

macro_list_global List of compile macros used in the global scope
Suggestion: Recommended to use only one macro per
line
Scope: Global

VIP_SAMPLE_EN_MACRO

build_phase_tbenv_c
ode

Custom code can be added in the build_phase of TB
env (Ex: overrides)

set_type_override_by_type(vip_driver::g
et_type(),vip_usr_driver::get_type());

eoe_phase_tbenv_co
de

Custom code to be added in the end of elaboration
phase of the TB environment class

<code>

sos_phase_tbenv_co
de

Custom code to be added in the start of simulation
phase of the TB environment class

<code>

agent_type Agent type to instantiate and create the VIP instance
in the TB environment

vip_protocol_agent

if_type Interface type vip_protocol_interface

sig_list List of VIP interface signals available for connection
with DUT ports

input sigA,
output [1:0] sigB,
inout sigC

cfg_type VIP configuration class type cfg_type

cfg_set_id ID to get/set the cfg class handle via config_db cfg_set_id

cfg_set_hier Hierarchy path in which the VIP config handle must be
accessible via config_db set for the “cfg” class
Default: Typical config_db set statement with id as
"cfg"

${inst}.*

cfg_vars VIP configuration class variables to be available in
generator GUI
Syntax:
<field> = <#value1,value2,value3#>
<field> = <[value1:value10]>
<field> = <value>
Note: Relative to top VIP config instance

vip_protocol_kind = <#xkind,ykind#>;

sqr_type VIP agent sequencer type
Default: <vip_agent_type>_sqr

vip_protocol_sqr

sqr_conn Setting the handle of the VIP sequencer in the
environment virtual sequencer. (connect_phase)
Note: TBG adds the typical connection statement if
this attribute is not used. This attribute is mandatory if
custom cfg_decl is used

sub_agent.sequencer

tr_type Transaction class type vip_xtn

sb_port Used to Connect monitor analysis ports to scoreboard
implementation ports

vip_protocol_monitor.x_dir_prt

Apart from the above listed attributes, there are others related to sequences, RAL (adapt, pred), virt_sqr, etc. that

enable VIP integration. In addition, during the work, it was realized that few of the VIPs require added provision for

custom code (non-generic) code insertion into the user testbench and hence attributes that would allow the VIP

developer to inject such custom code were added ex: *_decl, *_init. These are optional attributes and if not defined,

in the VIP Metadata file, Testbench Generator can follow the default implementation. Refer to Table 3 for the

complete list.

V. NEW FLOW (DEPLOYED IN PRODUCTION)

Now that it is established that with the VIP metadata available, in a non-proprietary standard format, it is possible

to automate the VIP integration. Let us understand the ownership, creation, and delivery of the VIP metadata file.

Given that the VIP developers have the best understanding of their VIP’s capabilities, it is ideal for the VIP developers

to create and deliver the VIP metadata file as part of the VIP deliverables for every release. On the other hand,

Testbench Generator developers should develop a format converter script to convert the standard metadata format to

a format best suited for their solution.

ADI has been using the in-house developed Testbench Generator for a decade. This in-house developed generator

uses a proprietary format to capture VIP details to enable integration of in-house developed VIPs. This has enabled

the users to drag and drop the required VIPs on the generator GUI canvas and create the required testbench

architecture, followed by connection with DUT port, followed by VIP sequence-based test creation and finally the

testbench generation. To support the VIP metadata delivered by VIP vendors, format converter script that converts

the VIP metadata file into an ADI Testbench Generator specific integration file was developed. This enabled authors

to retrofit multiple VIP titles from multiple vendors into the Testbench Generator, and that too without any

modification to the tool. The format converter script is a python-based script that translates the standard non-

proprietary VIP Metadata file into Testbench Generator understandable format. Authors are working to natively

support VIP Metadata in Testbench Generator to get-away this script.

Representation of this new flow is shown in Figure 6. Since this flow is independent of source of Testbench

Generator and VIPs, authors believe that, if EDA partners also develop Testbench Generators that support the

proposed Metadata format, then their customers could also reap the benefit of faster TB development.

Figure 6. New UVM testbench development flow using Testbench Generator and automated integration of vendor VIP.

Figure 6 shows the proposed flow involving the use of a non-proprietary metadata template to automate the

integration of VIP into the testbench.

Any “VIP Vendor” and any “Testbench Generator vendor” can use this metadata template to help their customers

(specifically DV Engineers) to build a UVM testbench with the required VIPs in minutes. It is important to note that

the metadata file supplied by each VIP vendor contains their confidential material, but this file wouldn’t include

anything more than what the vendors have already shared with their customer via user guide, example codes, training

materials, app notes, etc. which are typically covered under the Non-Disclosure-Agreements (NDA). Given this, it

can be seen as legally safe, even from vendor’s perspective.

Here are few of the possible use cases:

Vendors VIP-Vend-A and VIP-Vend-B supply VIPs and its associated Metadata to their Customer Cust-A. Cust-A

uses a Testbench Generator from Vendor TBG-Vend-A. As the Testbench Generator from TBG-Vend-A support

Metadata, DV engineers from Cust-A can quickly generate testbench with required VIPs supplied by VIP-Vend-A

and VIP-Vend-B. This ensures the Metadata file is made available only to Cust-A and is not shared with any 3rd Party.

-> This use case highlights cross-compatibility.

Similarly, vendors VIP-Vend-A and VIP-Vend-B can also ship their respective VIPs and its associated Metadata to

a different Customer Cust-B, who might use an in-house Testbench Generator or from a different Testbench Generator

vendor TBG-Vend-B, which supports the Metadata -> This use case highlights reusability.

Key advantages of the proposed flow:

1) Quick development of testbench of any level of complexity

2) VIP integration complexities are consumed by the Testbench Generator

3) Improved verification quality and debug efficiency

4) No restrictions on VIP and Testbench Generator developers - Scalable solution

5) Minimal manual effort for end-user - The target is to make it zero.

VI. RESULTS

So far, over 20 VIP titles including the IEEE Ethernet, USB, VESA DP, MIPI CSI-2, MIPI I3C, AMBA, etc. from

three major VIP vendors have been integrated into the Testbench Generator. This is an ongoing collaboration with

VIP vendors and many more VIP titles are in the pipeline.

Usually, it takes about a week to manually integrate complex-protocol VIPs. But users can now generate the same

testbench with Testbench Generator, that supports Metadata, in just a few minutes. This has not only helped the

seasoned Digital DV experts but also has significantly lowered the UVM entry bar for designer & Analog/MS DV

experts who are not UVM savvy and want to adopt UVM.

Four projects signed-up and have reaped the benefit, while more projects are in pipeline.

In a recent engagement, full-fledged UVM Testbench for USB 3.2 DUT was created in under 30 mins. The

architecture of the testbench is shown in Figure 6.

Key features of this testbench

1. Combination of both external VIP (USB) and in-house VIPs

2. GUI aided DUT and VIP port connections

3. Provision to create basic testcases with USB VIP sequences

4. Compile clean and ready to simulate

Figure 7. UVM testbench generation for USB 3.2 DUT

IV. CONCLUSION

Leveraging automation is one of the best ways to bring down the development time of (complex) testbenches. A

well-architected and configurable testbench can further improve the verification quality and debug efficiency. VIPs

and Testbench generators play a key role in development of such a sophisticated testbench. Through this paper, the

authors have highlighted the lack of globally accepted standards for VIP developers to enable the automation of VIP

integration into UVM testbenches via a Testbench Generator. The authors have also proposed a solution in the form

of a non-proprietary metadata format to exchange data between VIP and Testbench generator development teams to

enable the required automation and have further explained the workflow to be adhered to by VIP and Testbench

Generator development teams.

Key Takeaways:

1) Non-proprietary format to integrate VIP from one vendor into Testbench Generator from another

2) Rapid integration of vendor VIPs into UVM testbenches via Testbench Generator

3) Scalable and non-invasive solution ensuring liberty to VIP developers and benefitting entire DV community

VII. REFERENCES

[1] “The 2022 Wilson Research Group Functional Verification Study”, https://blogs.sw.siemens.com/

VIII. APPENDIX

All the supported elements and attributes are listed in Table 3.
 Table 3. VIP Metadata element and attribute list

Element Attribute

Si
m

_A
rc

h

Si
m

u
la

to
r UVM_Ver Description Metadata

setup;
common;
<agent>;

 32;
64;

XLM;
VCS;
QSIM;

UVM11d;
UVM12;
UVMIEEE;

setup vendor_name

Name to identify the vendor in TB generator vendor

setup vip_name

Name to identify VIP in TB generator <protocol> <version>

setup vip_title

Name used by vendor to identify the VIP in their
respective portfolio

protocol

setup excl_agents

Are the agent exclusive (Yes/No). This applies to
VIPs with multiple agents.
Yes→ Only one agent can be enabled per instance
of VIP Env.
No → Multiple/All agents can be enabled per
instance of VIP Env.

Yes/No

setup env_var

Set required environment variables setenv VIP_LIB_PATH ${TB_ROOT}/agents/<vendor>/<vip>

setup src_path

Path to the location of the user-editable VIP
source code that needs to be copied to the
generated TB

${VIP_ROOT}/…./

setup pre_comp

Perform required operation/ execute script before
compilation

source $VIP_LIB_PATH/vip_comp.csh

setup pre_sim

Perform required operation/ execute script before
simulation

source $VIP_LIB_PATH/vip_sim.csh

setup pre_comp_sim

Perform required operation/ execute script before
compilation and simulation

source $VIP_LIB_PATH/vip_all.csh

setup comp_opt

Compilation options -define VENDOR_PROTOCOL

setup comp_file

Files to be compiled ${TB_ROOT}/agents/x/y/z

setup inc_dir

Directories required for compilation ${TB_ROOT}/agents/x/y/z

setup sim_opt 32 XLM

Run time options for simulator in 32 bit mode -pli ${VIP_ROOT}/somefile.so

setup sim_opt 64 VCS

Run time options for simulator in 64 bit mode -P ${VIP_ROOT}/somefile_64.so

common/
<agent>

pkg_import

VIP env/agent package to be imported in TB env
scope
Scope: TB env package

vendor_protocol_pkg

common/
<agent>

pkg_import_glo
bal

VIP env/agent package to be imported in global
scope
Scope: Global

vip_common_pkg

common/
<agent>

inc_file

Files to be included in TB environment package
Scope: TB env package

vip_protocol_file.sv

common/
<agent>

inc_file_global

Files to be included at the global scope
Scope: Global
Useful to handle non-uvm file compilation, which
can be done outside TB pkg declaration or in
simulator command file

vip_protocol_interface.sv

common/
<agent>

add_tbpkg_cod
e

Custom code needed for VIP compilation
This code will be added in the TB environment
package scope prior to importing other packages
Typically used for type or vendor specific forward-
declaration/parameters
Note: If used in <vendor>_common sheet, its
vendor-specific else it is type-specific

typedef class vip_example_class;

common/
<agent>

add_tbpkg_cod
e_global

Custom code needed for VIP compilation
This code will be added in the global scope
Typically used for type or vendor specific forward-
declaration/parameters
Note: If used in <vendor>_common sheet, its
vendor-specific else it is type-specific

typedef class vip_example_class;

common/
<agent>

param_list

List of parameters used in the TB env scope
Comma separated list should have the parameter
name and its value
Suggestion: Recommended to use only one
parameter per line
Scope: TB Env package

ADDRESS_WIDTH=32,
DATA_WIDTH=32

common/
<agent>

param_list_glo
bal

List of parameters used in the global scope
Comma separated list should have the parameter
name and its value
Suggestion: Recommended to use only one
parameter per line
Scope: Global

ADDRESS_WIDTH=32,
DATA_WIDTH=32

common/
<agent>

macro_list_glo
bal

List of compile macros used in the global scope
Suggestion: Recommended to use only one macro
per line
Scope: Global

VIP_SAMPLE_EN_MACRO

https://blogs.sw.siemens.com/

common/
<agent>

build_phase_tb
env_code

 Custom code can be added in the build_phase of
TB env (Ex: overrides)

set_type_override_by_type(vip_driver::get_type(),vip_usr_dri
ver::get_type());

common/
<agent>

eoe_phase_tbe
nv_code

Custom code to be added in the end of
elaboration phase of the TB environment class

<code>

common/
<agent>

sos_phase_tbe
nv_code

Custom code to be added in the start of
simulation phase of the TB environment class

<code>

<agent> agent_type

Agent type to instantiate and create the VIP
instance in the TB environment

vip_protocol_agent

<agent> agt_decl

Custom code for declaration of VIP agent in TB
env
Default: Typical UVM declaration code based on
agt_type

vip_protocol_agent ${inst};

<agent> agt_init

Custom code for creating the VIP agent in TB env
Default: Typical UVM creation code based on
agt_type

${inst} = vip_protocol_agent :: type_id :: create("${inst}");

common/
<agent>

if_type

Interface type vip_protocol_interface

common/
<agent>

if_decl

Declaration of interface in top file vip_protocol_interface ${inst}_if();

common/
<agent>

if_set_id

ID to get/set the interface handle via config_db
Note: TBG adds the typical i/f config_db set
statement with id as "vif" if this attribute is not
used

vif

common/
<agent>

if_set_hier

VIP hierarchy that needs access to the interface
Note: TBG adds the typical i/f config_db set
statement with id as "vif" if this attribute is not
used

${inst}*

common/
<agent>

sig_list

List of VIP interface signals available for
connection with DUT ports

input sigA,
output [1:0] sigB,
inout sigC

common/
<agent>

cfg_type

VIP configuration class type
Default: <vip_agent_type>_cfg

vip_protocol_config

common/
<agent>

cfg_decl

Custom code for declaration of VIP agent
configuration in TB configuration
Default: Typical UVM declaration code based on
cfg_type

vip_protocol_config ${inst}_cfg;

common/
<agent>

cfg_init

Custom code for creating the VIP agent
configuration in TB configuration
Default: Typical UVM creation code based on
cfg_type

${inst}_cfg = vip_protocol_config :: type_id ::
create("${inst}_cfg");

common/
<agent>

cfg_set_id

ID to get/set the cfg class handle via config_db
Default: Typical config_db set statement with id
as "cfg"

cfg

common/
<agent>

cfg_set_hier

Hierarchy path in which the VIP config handle
must be accessible via config_db set for the “cfg”
class
Default: Typical config_db set statement with id
as "cfg"

${inst}.*

common/
<agent>

cfg_vars

VIP configuration class variables to be available in
generator GUI
Syntax:
<field> = <#value1,value2,value3#>
<field> = <[value1:value10]>
<field> = <value>
Note: Relative to top VIP config instance

vip_protocol_kind = <#xkind,ykind#>;

common/
<agent>

cfg_util Registration of configuration instance to UVM
factory

`uvm_field_object(${inst}_cfg, UVM_DEFAULT)

common/
<agent>

cfg_ap Configuration Variable to determine if agent is set
as active or passive
Note: TBG adds typical statement as per the
selection list set while adding an agent (By default
set as active)

${agt_inst}_agent_cfg.is_active = UVM_${ap};

<agent> sqr_type

VIP agent sequencer type
Default: <vip_agent_type>_sqr

vip_protocol_sqr

<agent> sqr_decl

Custom code for declaration of VIP agent
sequencer in TB virtual sequencer
Default: Typical UVM declaration code based on
sqr_type

vip_protocol_seqr ${inst}_sqr;

<agent> sqr_conn

Setting the handle of the VIP sequencer in the
environment virtual sequencer. (connect_phase)
Note: TBG adds the typical connection statement
if this attribute is not used. This attribute is
mandatory if custom cfg_decl is used

sub_agent.sequencer

<agent> seq_type

Declare the sequence type to be run on the
sequencer in the virtual sequence

vip_seq `vip_VIP_PARAM

<agent> seq_decl

Declare the VIP sequence type to be run on the
sequencer in the virtual sequence

vip_seq2 ${inst}_seq;

<agent> seq_init

Creating the sequence as per the sequence handle
declared in the virtual sequence

${inst}_seq = vip_seq2::type_id::create(\"${inst}_seq\");

<agent> seq_start_code

Custom code to Start VIP Seq on Sqr. if (p_sequencer.cfg.has_${inst} &&
p_sequencer.cfg.${inst}_cfg.has_tx_agt) begin
 ${inst}_seq.start(p_sequencer.${inst}_sqr, this);
end

<agent> seq_lib VIP sequence library
If typical UVM sequence syntax is applicable, then
this attribute can be used instead of listing each
sequence. TBG manages the instantiation,
creation, and execution of sequence.

vip_seq1,
vip_seq2

common/
<agent>

vsqr_type

VIP Virtual Sequencer type name vip_virtual_sequencer
vip_virtual_sequencer `VIP_PARAM (if parameterized)

common/
<agent>

vsqr_decl

Custom code for declaration of VIP virtual
sequencer in TB virtual sequencer
Default: Typical UVM declaration code based on
vsqr_type

vip_protocol_vsqr ${inst}_vsqr;

common/
<agent>

vsqr_conn_cod
e

Setting the handle of the VIP Virtual Sequencer in
the environment virtual sequencer
(connect_phase)
Note: TBG adds the typical connection statement
if this attribute is not used. This attribute is
mandatory if custom cfg_decl is used

$cast(vsqr.${inst}_<VIP_NAME>_vsqr.Seqr,
${inst}.sequencer);

common/
<agent>

vseq_list

List of Virtual Sequences available for use by the
agent

vip_virtual_sequenceA,
vip_virtual_sequenceB

common/
<agent>

reg_adapt_typ
e

Used to declare register adapter. For RAL Usage. vip_agent_adapter `VIP_PARAM

common/
<agent>

reg_act

Used to Connect the RAL model to agent register
adapter

cfg.${agt_inst}_env_cfg.has_agent_vip

common/
<agent>

tr_type

Transaction class type vip_xtn

common/
<agent>

sb_port

Used to Connect monitor analysis ports to
scoreboard implementation ports

vip_protocol_monitor.x_dir_prt

common/
<agent>

sb_pkt_type

Use this if the SB packet type is different from
tr_type

vip_checker_packet

