
Novel Method To Speed-Up
UVM Testbench Development

Nimay Shah, Prashant Ravindra,

Barry Briscoe, Miguel Castillo

Agenda

• Verification Complexity

• Development challenges

• UVM TB Development Flow
• Typical Flow

• Existing Flow

• New Flow (Metadata)

• Results & Summary

Verification Complexity

• Sophisticated designs are the need of the hour!
• First-pass bug-free silicon is crucial to meet stringent TTR

• Demand for “Effective” and “Efficient” verification methods to
signoff (near) bug-free spec-compliant designs!
• This calls for highly complex, yet configurable UVM Testbenches

Catching Bugs Early….

Release 0 Release N

Expensive Bugs

B
u

g
R

at
e

W
o

rk R
ate

Development Time

Beta
Release

Source: https://www.valytic.co.uk/the-origin-of-bugs

90% Bug 10% Bug

Eliminate
This

Region

Our
Focus

Bring-up
TB faster

Find bugs
sooner

Reduce
Time to
RevenueOur

Goal

Time Spent by Verification Engineers

Test Plan
13%

Testbench
Development

15%

Test creation
and

Simulation
21%

Debug
46%

Others
5%

Source: Wilson Research Group Functional Verification Study, 2022

EDA
Focus
Areas

Time Spent by Verification Engineers

Test Plan
13%

Testbench
Development

15%

Test creation
and

Simulation
21%

Debug
46%

Others
5%

Source: Wilson Research Group Functional Verification Study, 2022

EDA
Focus
Areas

What
about
this?

EDA Offerings for TB Development
V

er
if

ic
at

io
n

 IP

Building blocks of
UVM TB

Complex integration

Te
st

b
en

ch

G
en

er
at

o
r

Generates UVM TB
framework

Closed ecosystem

In
te

gr
at

ed

D
ev

el
o

p
m

en
t

En
vi

ro
n

m
en

t

Faster TB coding -
Autocomplete &
Debug

LRM support

UVM TB Development - Typical Flow

Testbench Generator Developer Scope

Generate Basic template of
UVM Testbench

End User
Scope

To
p

Generic UVM
Testbench
Generator

CLI U
V

M
 T

es
ts

u
it

e

En
vi

ro
n

m
en

t cfg

Output:
• Basic UVM TB template

Downside:
• Manual integration of DUT & VIPs

• Not fine-tuned for end-user’s DV
ecosystem

DUT

SB

VIP 1 VIP 2

Manual
Integration

VIP
metadata

VIP
Library

VIP Developer Scope

VIP
Library

VIP Developer Scope

Manual
Integration

TB Development Challenges

Complex Protocols

• Not straight forward
to port VIP example
cases to user’s TB

Learning curve

• VIP structure,
configs, sequences,
coverage, checkers,
interfaces, etc.

Integration

• Find VIP packages,
class names,
generate libraries,
extract models, etc.

Manual Work

• Leads to issues
which are difficult
and time-consuming
to root cause

Duplicate Effort

• Design/TB
architecture updates
lead to re-do of
manual work

ADI’s TB Generator

• ADI internally developed UVM Testbench Generator that can generate
unified testbench for Digital, DMS, AMS and Analog DV

ADI’s UVM TB Generator

DUT (RTL,
Netlist)

UVM TB +
DUT +

Testcases

DV Infra
setup files

CLI Mode

VIP

GUI Mode

RAL Model

TB Development – Existing Flow (ADI)

To
p DUT

U
V

M
 T

es
ts

u
it

e

En
vi

ro
n

m
en

t

SB cfg

Testbench
Generator

GUI / CLI

VIP 1TBG
Integration
File
(Proprietary)

Inhouse
VIP Library

VIP Developer Scope

VIP
Database

Testbench Generator Developer Scope

End User Scope

Users can drag and drop any
VIP and create custom UVCs

• Output:
• Full-fledged UVM TB

• Inhouse VIP+DUT integrated

• RAL and SB integrated

• UVM Tests

• Fine-tuned for ADI DV ecosystem

• Downside:
• No support for Vendor VIPs

Vendor VIP
Library

Manually Integrate
and generate
supporting files

VIP 2

Automation
Enabler

Improved
TBG

Manual
IntegrationAutomated

Integration

If we can automate integration of inhouse VIPs,
then what stops us from doing the same for vendor VIPs?

Challenges in Vendor VIP Integration

VIP Database
of TBGIntegration files

Vendor VIP
Library

Learn about VIP
and extract details

Repeat the process for any update to existing VIP Library or,
to add new VIP titles

End user
invokes TBG

and creates TB

Solution:
Best for VIP developers to

deliver this, but how?

Problem:
Scalability & maintenance is

challenging

Need for a non-proprietary format to capture the
VIP Metadata (integration details)

VIP Integration Process

• Four step (universal) process

GenerateConnectConfigureInstantiate

Metadata Required for VIP Integration

Installation
path

File
Includes

Packages
imports

Parameter, env
vars / compile

options

Agent / Env
class

Interface
Protocol and

VIP config

Transaction,
Sequence lib,

Sequencer

Scoreboard,
coverage

RAL
integration

Setup details

Agent details

VIP Metadata Template

Element Attribute Sim_Arch Simulator UVM_ver Metadata

setup inc_dir 32 XLM UVM12 <Path to VIP 32bit dir>

setup inc_dir 64 VCS UVMIEEE <Path to VIP 64bit dir>

…

common param_list <Parameter Name>=<Value>

…

source if_type <interface name>

…

sink agent_type <agent/env name>

…

vendor1_common vendor1_dp vendor1_smbus vendor1_pmbus vendor1_axi4 vendor1_ace …

Attribute

Type
Element

Type

Simulator

Type

UVM

Version

VIP

Metadata
Simulator

Architecture

Vendor specific – Applicable

to all VIPs from same vendor

Title specific – Applicable to

only to a specific VIP title

Element - Attribute

• “Element” supports the following types:
• Setup

• <Agent> - variable

• Common

• Each element supports multiple attributes
• Only valid Element-Attribute pairs are supported

Setup details

Agent details

Element: “setup”

Attribute Description Reference
vendor_name Name to identify the vendor in TB generator <vendor name>
vip_name Name to identify VIP in TB generator <protocol>:<version>
env_var Set required environment variables setenv VIP_LIB_PATH

${TB_ROOT}/agents/<vendor>/<vip>
src_path Path to the location of the user-editable VIP source code that

needs to be copied to the generated TB
${VIP_ROOT}/…./

pre_comp Perform required operation/ execute script before compilation source $VIP_LIB_PATH/vip_comp.csh
pre_sim Perform required operation/ execute script before simulation source $VIP_LIB_PATH/vip_sim.csh
pre_comp_sim Perform required operation/ execute script before compilation

and simulation
source $VIP_LIB_PATH/vip_all.csh

comp_opt Compilation options -define VENDOR_PROTOCOL
comp_file Files to be compiled ${TB_ROOT}/agents/protocol/x/y/z
inc_dir Directories required for compilation ${TB_ROOT}/agents/protocol/x/y/z
sim_opt Run time options for simulator -pli ${VIP_ROOT}/somefile.so

Element: “common” or “<Agent>”

Attribute Description Reference
pkg_import VIP env/agent package to be imported in TB env scope

Scope: TB env package
vendor_protocol_pkg

inc_file Files to be included in TB environment package
Scope: TB env package

vip_protocol_file.sv

add_tbpkg_code Custom code required for VIP compilation
This code will be added in the TB environment package scope prior to
importing other packages
Typically used for type or vendor specific forward-declaration/parameters
Note: If used in <vendor>_common sheet, its vendor-specific else it is
type-specific

typedef class
vip_example_class;

param_list List of parameters used in the TB env scope
Comma separated list should have the parameter name and its value
Suggestion: Recommended to use only one parameter per line
Scope: TB Env package

ADDRESS_WIDTH=32,
DATA_WIDTH=32

Element: “common” or “<Agent>”

Attribute Description Reference

agent_type Agent type to instantiate and create the VIP instance in the TB environment vip_protocol_agent

if_type Interface type vip_protocol_interface

sig_list List of VIP interface signals available for connection with DUT ports input sigA,
output [1:0] sigB,
inout sigC

cfg_type VIP configuration class type cfg_type

cfg_vars VIP configuration class variables to be available in generator GUI
Syntax:
<field> = <#value1,value2,value3#>
<field> = <[value1:value10]>
<field> = <value>
Note: Relative to top VIP config instance

vip_protocol_kind =
<#xkind,ykind#>;

tr_type Transaction class type vip_xtn

sb_port Used to Connect monitor analysis ports to scoreboard implementation ports vip_protocol_monitor.x_dir_
prt

TB Development – New Flow

• Output:
• Full-fledged UVM TB

• VIP+DUT

• RAL and SB

• UVM Tests

• Fine-tuned for ADI DV ecosystem

• Native support for vendor VIPs

End User Scope

Testbench
Generator

GUI / CLI

To
p

U
V

M
 T

es
ts

u
it

e

En
vi

ro
n

m
en

t

SB cfg

Testbench Generator Developer Scope

DUT

Testbench
Generator
Integration File
(Proprietary Format)

Format
converter
script

VIP
Database

VIP 1 VIP 2

Simulatable user testbench with
automated VIP integration

VIP
metadata

VIP
Library

VIP Developer Scope

VIP
metadata

VIP
Library

VIP Developer Scope

VIP
Metadata
(Non-Proprietary)

VIP
Library

VIP Developer Scope

Enhanced
TBG

Automated
IntegrationNEW

(Metadata)

Example Usecase: Development of USB 3.2 TB

Multiple
VIP

Sources

Multiple
VIP

Titles

Automated TB
Development

Generic
TBG, 50

ADI TBG
w/o

Metadata,
25

ADI TBG w/
Metadata,

0.5
0

10

20

30

40

50

60

Time (Hrs)

Ti
m

e
(H

rs
)

Results

• TB development reduced from weeks to minutes

• Over 20 vendor VIPs are supported
• IEEE Ethernet, USB 3.2, VESA DP, MIPI CSI-2, MIPI I3C, AMBA etc

• Deployed in production environment
• Deployed in four projects; many more in pipeline

• Demand for new title addition

What Did We Achieve?

Expensive Bugs

B
u

g
R

at
e

W
o

rk R
ate

Development Time Source: https://www.valytic.co.uk/the-origin-of-bugs

Release 0 Release N

Development Time

Beta
Release

Improved
Timelines

Early
Product
Release

Bring-up
TB faster

Find bugs
sooner

Reduce
Time to
Revenue

Summary

• Non-proprietary “Metadata” format can enable automated
integration of vendor VIPs
• Shrink TB development time & improve Time To Revenue

• Lower the entry-bar for designers, Analog/MS DV experts who aren’t UVM
savvy

• Increased adoption of MDV & UVM VIPs

• Scalable and non-invasive solution ensuring liberty to developers
• Win-win solution for vendor and end-users

Call for Action!

• Give this a try!
• If you like it, ask your TBG and VIP vendors to support Metadata

• Refer to the paper for the complete list of supported elements & attributes

• Connect with authors to contribute to development of Metadata

Thank You!

	Slide 1: Novel Method To Speed-Up UVM Testbench Development
	Slide 2: Agenda
	Slide 3: Verification Complexity
	Slide 4: Catching Bugs Early….
	Slide 5: Time Spent by Verification Engineers
	Slide 6: Time Spent by Verification Engineers
	Slide 7: EDA Offerings for TB Development
	Slide 8: UVM TB Development - Typical Flow
	Slide 9: TB Development Challenges
	Slide 10: ADI’s TB Generator
	Slide 11: TB Development – Existing Flow (ADI)
	Slide 12: If we can automate integration of inhouse VIPs, then what stops us from doing the same for vendor VIPs?
	Slide 13: Challenges in Vendor VIP Integration
	Slide 14: Need for a non-proprietary format to capture the VIP Metadata (integration details)
	Slide 15: VIP Integration Process
	Slide 16: Metadata Required for VIP Integration
	Slide 17: VIP Metadata Template
	Slide 18: Element - Attribute
	Slide 19: Element: “setup”
	Slide 20: Element: “common” or “<Agent>”
	Slide 21: Element: “common” or “<Agent>”
	Slide 22: TB Development – New Flow
	Slide 23: Example Usecase: Development of USB 3.2 TB
	Slide 24: Results
	Slide 25: What Did We Achieve?
	Slide 26: Summary
	Slide 27: Call for Action!
	Slide 28: Thank You!

