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Verification Complexity

• Sophisticated designs are the need of the hour!
• First-pass bug-free silicon is crucial to meet stringent TTR

• Demand for “Effective” and “Efficient” verification methods to 
signoff (near) bug-free spec-compliant designs!
• This calls for highly complex, yet configurable UVM Testbenches



Catching Bugs Early….
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EDA Offerings for TB Development
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UVM TB Development - Typical Flow
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TB Development Challenges

Complex Protocols

• Not straight forward 
to port VIP example 
cases to user’s TB

Learning curve

• VIP structure, 
configs, sequences, 
coverage, checkers, 
interfaces, etc.

Integration

• Find VIP packages, 
class names, 
generate libraries, 
extract models, etc.

Manual Work

• Leads to issues 
which are difficult 
and time-consuming 
to root cause

Duplicate Effort

• Design/TB 
architecture updates 
lead to re-do of 
manual work



ADI’s TB Generator

• ADI internally developed UVM Testbench Generator that can generate 
unified testbench for Digital, DMS, AMS and Analog DV

ADI’s UVM TB Generator
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TB Development – Existing Flow (ADI)
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• Output:
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If we can automate integration of inhouse VIPs, 
then what stops us from doing the same for vendor VIPs?



Challenges in Vendor VIP Integration
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Need for a non-proprietary format to capture the 
VIP Metadata (integration details)



VIP Integration Process

• Four step (universal) process

GenerateConnectConfigureInstantiate



Metadata Required for VIP Integration
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VIP Metadata Template 

Element Attribute Sim_Arch Simulator UVM_ver Metadata

setup inc_dir 32 XLM UVM12 <Path to VIP 32bit dir>

setup inc_dir 64 VCS UVMIEEE <Path to VIP 64bit dir>

…

common param_list <Parameter Name>=<Value>

…

source if_type <interface name>

…

sink agent_type <agent/env name>

…

vendor1_common vendor1_dp vendor1_smbus vendor1_pmbus vendor1_axi4 vendor1_ace …

Attribute 

Type
Element 

Type

Simulator 

Type

UVM 

Version

VIP 

Metadata
Simulator 

Architecture

Vendor specific – Applicable 

to all VIPs from same vendor

Title specific – Applicable to 

only to a specific VIP title



Element - Attribute

• “Element” supports the following types:
• Setup

• <Agent>  - variable

• Common

• Each element supports multiple attributes
• Only valid Element-Attribute pairs are supported

Setup details

Agent details



Element: “setup”

Attribute Description Reference
vendor_name Name to identify the vendor in TB generator <vendor name>
vip_name Name to identify VIP in TB generator <protocol>:<version>
env_var Set required environment variables setenv VIP_LIB_PATH 

${TB_ROOT}/agents/<vendor>/<vip>
src_path Path to the location of the user-editable VIP source code that 

needs to be copied to the generated TB 
${VIP_ROOT}/…./

pre_comp Perform required operation/ execute script before compilation source $VIP_LIB_PATH/vip_comp.csh 
pre_sim Perform required operation/ execute script before simulation source $VIP_LIB_PATH/vip_sim.csh 
pre_comp_sim Perform required operation/ execute script before compilation 

and simulation
source $VIP_LIB_PATH/vip_all.csh 

comp_opt Compilation options -define VENDOR_PROTOCOL
comp_file Files to be compiled ${TB_ROOT}/agents/protocol/x/y/z
inc_dir Directories required for compilation ${TB_ROOT}/agents/protocol/x/y/z
sim_opt Run time options for simulator -pli ${VIP_ROOT}/somefile.so



Element: “common” or “<Agent>”

Attribute Description Reference
pkg_import VIP env/agent package to be imported in TB env scope

Scope: TB env package
vendor_protocol_pkg

inc_file Files to be included in TB environment package
Scope: TB env package

vip_protocol_file.sv

add_tbpkg_code Custom code required for VIP compilation
This code will be added in the TB environment package scope prior to 
importing other packages
Typically used for type or vendor specific forward-declaration/parameters
Note: If used in <vendor>_common sheet, its vendor-specific else it is 
type-specific

typedef class 
vip_example_class;

param_list List of parameters used in the TB env scope
Comma separated list should have the parameter name and its value
Suggestion: Recommended to use only one parameter per line
Scope: TB Env package

ADDRESS_WIDTH=32,
DATA_WIDTH=32



Element: “common” or “<Agent>”

Attribute Description Reference

agent_type Agent type to instantiate and create the VIP instance in the TB environment vip_protocol_agent

if_type Interface type vip_protocol_interface

sig_list List of VIP interface signals available for connection with DUT ports input sigA,
output [1:0] sigB, 
inout sigC

cfg_type VIP configuration class type cfg_type

cfg_vars VIP configuration class variables to be available in generator GUI
Syntax: 
<field> = <#value1,value2,value3#>
<field> = <[value1:value10]>
<field> = <value>
Note: Relative to top VIP config instance

vip_protocol_kind = 
<#xkind,ykind#>;

tr_type Transaction class type vip_xtn

sb_port Used to Connect monitor analysis ports to scoreboard implementation ports vip_protocol_monitor.x_dir_
prt



TB Development – New Flow

• Output:
• Full-fledged UVM TB

• VIP+DUT 

• RAL and SB

• UVM Tests

• Fine-tuned for ADI DV ecosystem

• Native support for vendor VIPs
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Example Usecase: Development of USB 3.2 TB
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Results

• TB development reduced from weeks to minutes

• Over 20 vendor VIPs are supported
• IEEE Ethernet, USB 3.2, VESA DP, MIPI CSI-2, MIPI I3C, AMBA etc

• Deployed in production environment
• Deployed in four projects; many more in pipeline

• Demand for new title addition



What Did We Achieve?
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Summary

• Non-proprietary “Metadata” format can enable automated 
integration of vendor VIPs
• Shrink TB development time & improve Time To Revenue 

• Lower the entry-bar for designers, Analog/MS DV experts who aren’t UVM 
savvy 

• Increased adoption of MDV & UVM VIPs

• Scalable and non-invasive solution ensuring liberty to developers
• Win-win solution for vendor and end-users



Call for Action!

• Give this a try!
• If you like it, ask your TBG and VIP vendors to support Metadata

• Refer to the paper for the complete list of supported elements & attributes

• Connect with authors to contribute to development of Metadata



Thank You!
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