
Achieving Full Liveness Proofs via a Systematic 

Assume-Guarantee Approach and Iterative 

Helper Generation  
 

Stella Simic, ssimic@qti.qualcomm.com, Qualcomm Inc. 

Karthik Baddam, kbaddam@qti.qualcomm.com, Qualcomm Inc. 

 
Abstract — Proving the liveness of a design is notoriously difficult, as this requires an analysis of infinite behaviors.  We 

outline a strategy for achieving full liveness proofs through formal verification by translating a liveness property into a 

series of simpler properties.  By considering a chain of safety properties placed in an assume-guarantee structure, and by 

iteratively adding helpers to reduce the state space for non-converging assertions, we achieve convergence on all newly 

created properties.  The proof of the original liveness property then follows as a trivial consequence.  We applied our 

strategy on a formal test bench for an FSM within the MMU of the next generation Qualcomm Snapdragon compute CPU 

in which several liveness checks were not converging with a time-out of 7 days.  Using our approach, we were able to achieve 

a full liveness proof in a matter of hours. 

 

I.   INTRODUCTION 

 
Proving liveness-related properties such as the absence of deadlock or livelock [4] and forward progress is known 

to be a difficult task, as this entails the analysis of infinite traces.  While formal verification can, in theory, give us a 

definitive answer, in practice it is often hard to reach convergence on a liveness proof.  In real-world hardware designs, 

proving liveness of a finite state machine (FSM) requires extensive effort, as transitions between states are often 

governed by highly complex logic.  Our work is centered on a block within a high performance, superscalar flagship 

Qualcomm CPU core, where we approach the following problem: proving forward progress on an FSM related to 

translation invalidation, starting from a non-converging liveness property. We use Cadence’s Jasper tool for formal 

verification of the case study presented in this paper, but we believe that the ideas presented here can be applied using 

other commercially available formal verification tools such as Synopsys’s VC Formal and Siemens EDA’s Questa 

Formal. 

We address the liveness problem by leveraging several recent approaches for proof simplification.  First, we 

translate liveness checking into safety checking by considering k-liveness formulations [1,2,7]: we use an event-based 

k-liveness approach and create a chain of safety properties, and an assume-guarantee based reasoning.  We then 

perform a form of reset abstraction on any undetermined properties to find and add helper assertions to reduce the 

state space. This form of reset abstraction is available in most commercial FV tools; Jasper calls this feature state-

space tunnelling (SST) [3].  Finally, when SST does not provide any more clues, we use a simple automatic helper 

generation approach.  Our overall approach consists in systematically employing the power of an assume-guarantee 

decomposition and using state-space reduction techniques until we reach convergence on all properties. 

This paper is organized as follows. In Section II. we introduce all the technical concepts needed to understand our 

approach, namely, k-liveness, assume-guarantee and SST. In section III. we outline the application of these techniques 

to our case study. Section IV. summarizes the results and findings.  

 

II.   METHODOLOGY 

 
In the rest of this paper, we assume familiarity with SystemVerilog Assertions (SVA) [5,6]. We will express 

properties in the following form: “[assertion/assumption name] : [expression]”, using intuitive naming for future 

referencing. When using the construct “##[0:$]” we mean s_eventually (strong eventuality). 

Consider the following property stating that, starting from a non-reset state of an FSM, we will eventually reach the 

FSM’s reset state:  

 

asrt_liv_fsm:  (state != reset_state)  |−>  ##[0:$] (state == reset_state).                            (1) 

 

 A direct check of such a liveness assertion will rarely converge and we need to simplify this problem. In the 

following we describe how to break a liveness check into simpler checks and how to reduce the state space that needs 

to be considered. 

mailto:ssimic@qti.qualcomm.com
mailto:kbaddam@qti.qualcomm.com


 

A. Liveness as safety 

Let us focus for now on a single non-reset state S of an FSM and on proving forward progress for this state. We 

consider the following assertion, stating that once the FSM is in state S, it will eventually leave state S: 

 

asrt_liv_S:  (state == S)  |−>  ##[0: $]  (state ! = S) .                                         (2) 

 

A possible approach to proving liveness as in (2) is to use an event-based k-liveness formulation of this check. This 

consists in finding a relevant event in the cone of interest (COI) of (2) and a natural number k and proving that: a) 

given the antecedent, the consequent will occur in at most k occurrences of the event, and b) the chosen event does 

eventually occur. This breakdown of the original liveness check consists of proving two new properties: a safety 

property and a liveness property (now with a smaller COI). 

The translation of (2) into a k-liveness property is therefore performed as follows.  We need to look for a relevant 

event “evnt” and a number k1 and try to prove that the number of occurrences of evnt, while the FSM is in state S, is 

less than k1. This is equivalent to proving that the number of cycles spent in S while evnt also holds true is bounded 

by k1.  If we are also able to prove that evnt eventually occurs, then the proof of (2) follows as a consequence. Indeed, 

the following two properties: 

 

 asrt_b_liv_S_w_evnt:  count(evnt, S) ≤ k1                                                          (3) 

 asrt_liv_evnt:  ~evnt  |−>  ##[0:$] evnt .                                                         (4) 

 

imply that (2) also holds. We may even be able to prove a bounded (stronger) formulation of (4), i.e.,  

 

asrt_b_liv_evnt:  ~evnt  |−>  ##[0:k2] evnt ,                                                      (5) 

 

for an adequate bound k2. In that case, Eq. (3) and (5) are both safety properties. 

 

B. Assume-guarantee 

Self-loops are often the bottleneck of FSM liveness checks.  Once state S is entered, a certain blocking event A may 

need to occur N times before S is left.  An example of event A is an index that needs to go through a set of N possible 

values. We can then consider the following k-liveness property stating that, once the FSM is in state S, then event A 

happens in at most k3 occurrences of evnt: 

 

asrt_b_liv_A_w_evnt:  count(evnt, (S & ~A)) ≤ k3.                                              (6) 

 

If we are able to prove (6), we can then assume this to be true and use it as an assumption and try to prove that the 

maximum number of occurrences of A will happen in at most N*k3 cycles: 

 

asrt_b_liv_maxA_w_evnt:  count(evnt, (S & ~maxA) ≤ N* k3 .                                  (7) 

 

Once (7) is proven, we can use it as an assumption for the proof of (3).  In general, we may add as many properties as 

necessary to reach a proof of (3). 

Using an EDA tool, we can organize our properties into nodes in the order they need to be proved (guaranteed) and 

later assumed.  The first node will contain properties that do not require any assumptions, the second node will contain 

properties that rely on assumptions in the first node, and the last node will contain the most complex properties which 

require all other properties to be assumed. FV tools often provide features that help organize assume-guarantee 

structures; in Jasper this feature is called Proof Structure. 

 

C. Helper generation 

A helper or invariant is a property that always holds true for a design. Ideally, a helper is a simple statement which 

describes allowed behaviors, thus excluding infeasible behaviors from being considered. When such a property is 

proven, it can be used as an assumption to help prove more complex properties. Helpers can often be identified through 

human analysis of the DUT. For example, simple embedded RTL assertions already provided by the designers may 

be considered helpers. Additionally, one may come up with properties simply from their knowledge of the design. 

Examples are: a given signal is onehot or a given counter can only increase its value by one. 



When we are faced with complex non-converging properties, we may try to generate helpers to reduce the state 

space that the verification tool needs to explore to reach a proof. If we are not able to manually create helpers, we can 

turn to SST to help in finding helpers. For a given non-converging property and a selected bound M, an SST trace will 

show a failure starting from an abstracted initial state, which might not be reachable, and ending in a failure in M 

cycles.  Through this analysis, we hope to find insights into impossible combinations of variable values and add helper 

properties stating that such scenarios may never happen.  

For example, consider two signals, signal1 and signal2. We suspect that only one signal can be asserted at a time.  

However, the SST trace shows a cycle in which signal1 = 1’b1 and signal2 = 1’b1.  We think this is not possible, so 

we check the following property: 

 

asrt_helper1: ~(signal1 & signal2).                                                                (8) 

 

If this property is proven, then we can assume it to reduce the state space and simplify state exploration during the 

proof of our non-converging property.  

If SST analysis does not provide any more clues, we may resort to automatic helper generation.  Given an SST trace 

and a list of signals that we suspect may have interesting relations (but are unable to formulate those relations into a 

property), we use a script to automatically generate a helper listing all valid value combinations for these signals. The 

script is an implementation of the technique described in [3]. 

For example, consider two 3-bit signals, process_done and process_in_progress. Each bit in these signals is asserted 

when the corresponding process is done or is in progress, respectively. If we know that these signals are involved in 

a non-converging property but relating them is not obvious, we use the automatic helper generation script to generate 

all possible value combinations for this list of two signals. Consider a result in the following form: 

 

((process_done == 3’b000) ∧ (process_in_progress == 3’b000) ∨ 
 (process_done == 3’b000) ∧ (process_in_progress == 3’b001) ∨ 
(process_done == 3’b000) ∧ (process_in_progress == 3’b010) ∨ 
(process_done == 3’b000) ∧ (process_in_progress == 3’b100) ∨ 

… 
(process_done == 3’b001) ∧ (process_in_progress == 3’b000) ∨ 
 (process_done == 3’b001) ∧ (process_in_progress == 3’b010) ∨ 
 (process_done == 3’b001) ∧ (process_in_progress == 3’b100) ∨ 
 (process_done == 3’b011) ∧ (process_in_progress == 3’b000) ∨ 
 (process_done == 3’b011) ∧ (process_in_progress == 3’b100) ∨ 
 (process_done == 3’b111) ∧ (process_in_progress == 3’b000)). 

 
After some inspection, we notice that a process can only be in progress if it is not already done and that only 
one process can be in progress at a time. When used as a helper, asrt_helper2, the expression above reduces 
the state space significantly, as it only allows 20 feasible combinations instead of the possible 26 = 64. 
 

 
Figure 1: Assume-guarantee nodes. The simplest assertions (helpers and embedded assertions) are placed in node 0 and the most complex 

assertion (forward progress in state S) is in node 5. In particular, the proof of node 5 follows from the assumption of nodes 4 and 1. 



D. Overall approach 

Recall the liveness assertion we considered at the beginning of this section, namely, asrt_liv_S in Eq. (2). To 

reach convergence on the proof of this property, we broke it down into a chain of simpler properties. Putting all of 

the above together, we show the assume-guarantee nodes in Figure. 1.  

 
III.   CASE STUDY 

 
Our DUT is an invalidation FSM within the MMU of a Qualcomm CPU core, as shown in Figure. 2. It receives an 

invalidation request from an invalidation queue and accesses every entry in a RAM, ensuring its contents are 

invalidated if required. Once done, it sends out a done signal. The FSM has 6 states, two of which are self-looping. 

The reset state of the FSM is IDLE. The goal is to prove that state DONE is always eventually reached, i.e., 

 

asrt_liv_InvalFsm:  InvalReq  |−>  ##[0:$] InvalDone.                                       (9) 

 
A direct proof attempt on this assertion did not converge with a timeout of one week. Hence, we applied the strategy 

described in Section II. In the rest of this section we illustrate how we achieved this. 

From our knowledge of the DUT, we knew there is an event in the COI of (9) that is needed for forward progress, 

as it was involved across the FSM logic. The event was evnt =(InvReqVld & ~InvLkupGnt), or, in natural language: 

“the invalidation request is valid but there is no invalidation lookup grant”. In the case of this DUT, the logic behind 

these signals was entirely internal to the DUT, and we were able to figure out a bound k_evnt = 4 on the number of 

cycles it takes for evnt to occur. In other words, we were able to prove: 

 

asrt_b_liv_evnt:  ~evnt  |−>  ##[0: 4] evnt .                                            (10) 

 

We then attempted to prove the following event-based k-liveness property, with a reasonable (conservative) bound 

k_fsm_liv = 650 which we guessed according to our knowledge of the DUT: 

 

asrt_b_liv_InvalFsm_w_evnt:  count(evnt, ~InvalDone) ≤ 650,                              (11) 

 

which, in natural language, means “InvalDone will be asserted in at most 650 occurrences of evnt, after the InvalReq 

signal was seen”. This proof did not converge, so we decided to focus on proving forward progress on the single states 

of the FSM. State S3 proved to be the most complex to reason about, hence we will outline how we approached it. 

 

 

 

 
 

 

 

 

Figure 2: Invalidation FSM. Once an invalidation request InvalReq is received, the FSM processes it and should eventually issue a done 

signal, InvalDone. 

 



 

 

From our knowledge of the design, we knew that,  

1. once the FSM has entered state S3, it will stay in S3 while a signal called S3Done == 0;  

2. S3Done == 0 while an index called idx hasn’t reached its maximum value,i.e., idx < idx_max; 

3. the initial value of idx is 0 and idx_max == 127; 

4. idx increases by one when the grant signal is asserted: InvLkupGnt == 1’b1.  

Notice that point 3. above implies that idx can increase at most 128 times. Our goal was now to prove: 

 

asrt_b_liv_S3_w_evnt:  count(evnt, S3) < 261,                                         (12) 

 

meaning “once the FSM enters state S3, it will leave S3 in at most 261 occurrences of evnt”. Our estimate of 261 

occurrences of evnt was given as double the amount of index increases that need to happen, plus 5 extra occurrences  

of evnt, as an overestimate. This property was not converging either, so we decided to look more into detail at the 

events that need to occur for the FSM to leave S3.  

We decided that it would be useful to prove that the index idx does eventually increase when the FSM is in state 

S3, in at most k_idx_liv = 2 occurrences of evnt: 

 

asrt_b_liv_idx_w_evnt:  count(evnt, idx) ≤ 2,                                          (13) 

 

meaning “once the FSM is in state S3, the index increases in at most 2 occurrences of evnt”. Now this property 

converged and we managed to prove it. We then tried to prove asrt_b_liv_S3_w_evnt in Eq. (12) again, using 

asrt_b_liv_idx_w_evnt as an assumption. Notice that the estimate 261 that we chose was now confirmed to be sensible, 

as 261 = 2*128 + 5, in other words, two evnt occurrences per idx increase plus an extra 5. This assertion still did not 

converge, so we decided to perform SST on it.  

The 15-cycle trace our FV tool provided is depicted in Figure. 3., in a simplified version. Here, we have plotted the 

interesting signals that we suspected would be the culprits of the false failure. In this waveform, the signal count is 

the counter in Eq. (12). We can see that the failure in cycle 15, consisting in the count exceeding the bound 261 in Eq. 

(12), is due to the initial value of count in cycle 1 not being possible in combination with the initial value of idx. 

Indeed, the index increases in the worst case with every two occurrences of evnt, but here we have idx = 124 and 

count = 256 > (124 +1) * 2. We add 1 in the right-hand side of this equation as the minimum value of idx is zero. 

We therefore wrote a property to exclude such behaviours, namely: 

 

asrt_helper_count_S3_bounded:  count(evnt, S3) ≤ (idx + 1)*2.                          (14) 

 

We first proved this property and then used it as a helper to prove the k-liveness properties considered earlier. We also 

added a number of other helpers, such as: 

 

asrt_helper_count_S3_reset:  (state ! = S3)|−> (count(evnt, S3) == '0),                   (15) 

 

meaning “the counter for occurrences of evnt in state S3 is zero when the FSM is not in S3”. We kept adding helpers 

until all of our properties converged. The final proof structure was organized as depicted in Figure. 4. 

 

 

  
 

Figure 3: Waveform illustrating SST trace for asrt_b_liv_S3_w_evnt. Infeasible combination of values for count and idx in cycle 1, 

resulting in false failure in cycle 15. 

 



 
 

 

In node 0 of the assume-guarantee nodes, we placed all the embedded RTL assertions provided by the designers, 

and all of the helpers, such as asrt_helper_count_S3_bounded and asrt_helper_count_S3_reset (Eq. (14) and (15), 

respectively).  In node 1 we placed the bounded liveness (safety) property asrt_b_liv_evnt (Eq. (10)). In node 3 we 

placed asrt_b_liv_idx_w_evnt from Eq. (13). Node 7 contains asrt_b_liv_S3_w_evnt, from Eq. (12). Node 8 contains 

asrt_b_liv_InvalFsm_w_evnt, from Eq. (11). This is the event-based k-liveness property proving end-to-end liveness 

for the entire FSM. Finally, we placed the full liveness assertion, namely asrt_liv_InvalFsm from Eq. (9) in node 10.  

The results of this strategy were very encouraging. We managed to prove all properties in our assume-guarantee 

nodes in a matter of hours. Most notably, node 7 took ~20s, node 8 took ~7h and node 10 took ~7min. Recall that, 

without all of the previous nodes (0-9), the property in node 10 was timing out after 1 week of runtime. Figure. 5. 

shows a screenshot of our assume-guarantee nodes captured in Jasper’s proof structure window. 

 

IV.   RESULTS AND FUTURE WORK 

 
In this paper, we have outlined a strategy to tackle non-converging liveness checks on FSMs with self-looping 

states. The strategy includes two main techniques of proof simplification. The first is a break-down of liveness 

properties into a chain of safety properties focusing on smaller portions of the FSM. The second is a reduction of the 

state space by way of helper assertions.  

We validated our approach on a complex invalidation FSM. Our approach proved to be successful, as we were able 

to reach a full liveness proof in a matter of hours, while earlier our checks were inconclusive even after a week of run 

time. We believe that our approach carries over well to other designs, as many of our strategies are universal across 

FSMs.  In particular, the critical event for k-liveness and the repetitive events for self-looping states are often of the 

same form.  Moreover, our intuition is that focusing on counters and indices and their mutual relations is a good rule 

of thumb. We are testing this conjecture on a more complex case study and have gotten promising results. 

While good helpers can dramatically reduce the state space and help reach proofs on complex liveness properties, 

we also found that finding a helper, be it from an SST trace or otherwise, for a k-liveness property often requires 

extensive human effort. A good intuition, stemming from deep knowledge of the DUT is often needed. Even then, 

SST trace analysis can hit a dead end in helper generation. Moreover, if the expression used in a helper assertion is a  

complex Boolean formula, this may even be detrimental to the proofs of properties in subsequent nodes of the assume-

guarantee chain. 

 In conclusion, generating strong helpers is crucial for reaching convergence and our current work on other case 

studies shows that this is a hard task and that not all helpers are helpful. We believe that the field of machine learning 

and AI has a role to play in this task, and we are exploring potential ways forward in this regard. Our experience with 

the DUT presented here has given us some insight into interesting classes of signals to focus on and relations to look 

for when considering two counter type signals. This may be used as a template for learning new helpers.  

 

 

Figure 4: Final assume-guarantee nodes. Only showing nodes with properties regarding S3 forward progress and end-to-end liveness 

properties. All other properties regarding other states are not shown here, but follow similar reasoning. 

 



 
 

 

 

REFERENCES 

 
[1] N. Sharma, V.N. Narisetty, “Liveness Assume-Guarantee Proof Schema: A Step Towards Liveness Full Proofs”, DVCON-US, March ‘24. 

[2] K. Claessen, N. Sörensson, “A Liveness Checking Algorithm that Counts”, FMCAD, ‘12. 

[3] D. Gilday, “Human-Guided Proof Closure”, Jasper User Group, November ’21. 

[4]    A. Garg, “Forward Progress Checks in Formal Verification: Liveness vs Safety”, DVCON-US, March ’24.  

[5]    E. Seligman, T. Schubert, M.V.A.K. Kumar, “Formal Verification – An Essential Toolkit for Modern VLSI Design”, 2nd ed., Elsevier, ‘23. 

[6]    “IEEE Standard for SystemVerilog–Unified Hardware Design, Specification, and Verification Language,” IEEE STD 1800-2009, Dec ‘09. 

[7]    A. Biere, C. Artho, V. Schuppan, “Liveness checking as safety checking”. ENTCS, 66(2):160–177, ‘02. 

Figure 5: Screenshot of our assume-guarantee nodes captured in Jasper’s Proof Structure window. 


