
We will illustrate our approach to liveness on an invalidation FSM
within a Qualcomm CPU core - it receives an invalidation request
and accesses every entry in a RAM, ensuring its contents are
invalidated if required.

This FSM sends a request (InvalLkupVld) to an arbiter that allows
access to a RAM by indicating (InvLkupGnt). The self loop state S3,
remains until it iterates over every index (idx) in the ram.

Thanks to our colleagues Nitish Sharma, Nishanth Narisetty for feedback, and Abhishek
Datta for guidance and encouraging us to publish this work . Thanks to DVCON
organizers, volunteers , anonymous reviewers and our paper’s shepherd for feedback.

Stella Simic and Karthik Baddam

Qualcomm Technologies

Achieving Full Liveness Proofs via a
Systematic Assume-Guarantee Approach

and Iterative Helper Generation

2. k-liveness + AG1. Introduction

3. Case study – k-liveness + AG

5. Semi-automatic helpers 6. Conclusions

Acknowledgements

antc |-> s_eventually cons

antc |-> ##[0:k1] cons

clock_count(antc_seen & ~cons) <= k1

clock_count((antc_seen & ~cons) & fairness) <= k2

antc |-> s_eventually fairness

clock_count(antc_seen & ~fairness) <= k3

Guarantee Node N+2

Guarantee Node N+1

Guarantee Node N

Assume Node

Problem Statement:
If InvalReq is received, then InvalDone

is eventually asserted

InvalReq |-> s_eventually InvalDone

Starting from the original FSM liveness property, which wasn’t converging in a
week, we created an assume guarantee chain of k-liveness properties and
helpers. All properties now converge within 8 hours.

Our strategy carriers over to other FSMs – fairness events are often similar.
Generating strong helpers is crucial as not all helpers reduce state space.

IDLE S1 S2

S3 S4

DONE

4. Helpers

We know there is no progress while InvLkupGnt = 0. Consider the
fairness condition: fairness = ~(InvalLkupVld & ~InvalLkupGnt). We
prove k-liveness property on this fairness first.

clock_count(InvalLkupVld & ~InvalLkupGnt) <= k3

We then consider the k-liveness property with the above fairness
condition first, then without it.

clock_count((InvalReq_seen & ~InvalDone)&fairness) <= k2

Since this property was still not converging, we focused on k-liveness
for state S3, first with fairness, then without it.

clock_count((state_s3_seen & ~state_s3)&fairness) <= k4

clock_count(state_s3_seen & ~state_s3) <= k4 * k3

clock_count(InvalReq_seen & ~InvalDone) <= k1

The k-liveness property on state S3 was still not converging, so we
used SST (a form of reset abstraction) to find helper properties.
Below is a representative waveform illustrating from SST that shows
infeasible combination of values for K clock count and design’s index
(idx), which results in a failure in later cycles.

clock_count((state_s3_seen & ~state_s3)&fairness) <= (idx+1)*2+3

We know from a proven property that it takes two occurrences of
fairness for an idx increase. The helper assertion to remove this non-
reachable state (there by reducing proof effort) is shown below.

If SST analysis does not provide any more clues, we may resort to
automatic helper generation. Given an SST trace and a list of signals
that we suspect may have interesting relations (but are unable to
formulate those relations into a property), we use a script to
automatically generate a helper listing all valid value combinations
for these signals.

For example, consider two 3-bit signals, process_done and
process_in_progress. Manually determining their relationship would
have taken longer than automating.
((process_done == 3’b000) & (process_in_progress == 3’b000)) |
((process_done == 3’b000) & (process_in_progress == 3’b001)) |
((process_done == 3’b000) & (process_in_progress == 3’b010)) |
((process_done == 3’b000) & (process_in_progress == 3’b100)) |

…
((process_done == 3’b011) & (process_in_progress == 3’b000)) |
((process_done == 3’b011) & (process_in_progress == 3’b100)) |
((process_done == 3’b111) & (process_in_progress == 3’b000))

Helper properties

k-liveness for fairness event

Index increase event based k-liveness

S3 event-based k-liveness

end-to-end event-based k-liveness

end-to-end original liveness

allows 20 out
of 64

combinations

asrt_helper_count_s3_bounded,
embedded_rtl_asserts

asrt_liv_fairness_evnt

asrt_b_liv_idx_w_evnt

asrt_b_liv_S3_w_evnt

asrt_b_liv_InvalFsm_w_evnt

asrt_liv_InvalFsm

Guarantee Node 0

Guarantee Node 1

Guarantee Node 3

….

Guarantee Node 7

Guarantee Node 8

Assume Node

….

….

	Slide 1

