Achieving Full Liveness Proofs via a 2025
Systematic Assume-Guarantee Approach DESIGN AND VERIFICATION ™

8008//8[‘8 and Iterative Helper Generation DVCON

CONFERENCE AND EXHIBITION
Stella Simic and Karthik Baddam

SYSTEMS INITIATIVE

Qualcomm Technologies
FEBRUARY 24-27, 2025

1. Introduction 2. k-liveness + AG

We will illustrate our approach to liveness on an invalidation FSM Assume Node
within a Qualcomm CPU core - it receives an invalidation request]

and accesses every entry in a RAM, ensuring its contents are antc |->s_eventually cons
invalidated if required. f

Guarantee Node N+2
This FSM sends a request (InvalLkupVId) to an arbiter that allows antc |-> ##[0:k1] cons]
access to a RAM by indicating (InvLkupGnt). The self loop state S3,

remains until it iterates over every index (idx) in the ram. f Guarantee Node N+1

$2 clock_count(antc_seen & ~cons) <= k1]

S1
(S3 . Guarantee Node N
clock_count((antc_seen & ~cons) & fairness) <= k2
Problem Statement: .
If InvalReq is received, then InvalDone antc |->s_eventually fairness]

is eventually asserted T
InvalReq |->s_eventually InvalDone clock_count(antc_seen & ~fairness) <= k3]

3. Case study — k-liveness + AG 4. Helpers

We know there is no progress while InvLkupGnt = 0. Consider the The k-liveness property on state S3 was still not converging, so we
fairness condition: fairness = ~(InvalLkupVId & ~InvalLkupGnt). We used SST (a form of reset abstraction) to find helper properties.
prove k-liveness property on this fairness first. Below is a representative waveform illustrating from SST that shows

infeasible combination of values for K clock count and design’s index
] (idx), which results in a failure in later cycles.

[clock_count(InvalLkupVId & ~InvalLkupGnt) <= k3

We then consider the k-liveness property with the above fairness SST race forkfveness on tale 53
condition first, then without it. % gy s s O e O O s Y s O s Y oy O s Y e N s T s T s O

D state S3
clock_count((InvalReqg_seen & ~InvalDone)&fairness) <= k2 famess \ /—; / ;
J idx 124 125
X

chkent __256) 257 X X259

/ \

X

clock_count(InvalReqg_seen & ~InvalDone) <= k1

Since this property was still not converging, we focused on k-live We know from a proven property that it takes two occurrences of
for state S3, first with fairness, then without it. fairness for an idx increase. The helper assertion to remove this non-
() reachable state (there by reducing proof effort) is shown below.

clock_count((state_s3_seen & ~state_s3)&fairness) <= k4

~ i = ([*
clock_count(statele R St te. <3) <= k4 * k3 [clock_count((state_s3_seen & ~state_s3)&fairness) <= (idx+1)*2+3]

5. Semi-automatic helpers 6. Conclusions

If SST analysis does not provide any more clues, we may resort to Starting from the original FSM liveness property, which wasn’t converging in a
automatic helper generation. Given an SST trace and a list of signals week, we created an assume guarantee chain of k-liveness properties and
that we suspect may have interesting relations (but are unable to helpers. All properties now converge within 8 hours.

formulate those relations into a property), we use a script to
automatically generate a helper listing all valid value combinations Our strategy carriers over to other FSMs — fairness events are often similar.
for these signals. Generating strong helpers is crucial as not all helpers reduce state space.

For example, consider two 3-bit signals, process_done and Guarantee Node O SSEIEIEEIUSSS A Helper properties

embedded_rtl_asserts

rocess_in_progress. Manually determining their relationship would . .
Eave tal?en_lgngger than autométing ; P Guarantee Node 1 k-liveness for fairness event

({process_done =i R (process_!n_progress) | Guarantee Node 3 Index increase event based k-liveness
((process_done == 3’b000) & (process_in_progress == 3'b001)) |

((process_done == 3’b000) & (process_in_progress == 3'b010)) | allows 20 out .

((process_done == 3’b000) & (process_in_progress == 3’b100)) | of 64 Guarantee Node 7 53 event-based k-liveness
((process_done == 3’b011) & (process inmprogress ==3'b000)) | S ULIUEEEY SR Guarantee Node 8 end-to-end event-based lcliveness
((process:done ==3'b011) & (process:in:progress ==3'b100)) | Assume Node

((process done == 3’b111) & (process_in_progress == 3'b000))

asrt_liv_InvalFsm end-to-end original liveness

Acknowledgements

Thanks to our colleagues Nitish Sharma, Nishanth Narisetty for feedback, and Abhishek
Datta for guidance and encouraging us to publish this work . Thanks to DVCON

organizers, volunteers, anonymous reviewers and our paper’s shepherd for feedback.

© Accellera Systems Initiative

	Slide 1

