
Demystifying Formal Testbenches:
Tips, Tricks, and Recommendations

Dr. Shahid Ikram, Distinguished Engineer, Marvell Semi

Mark Eslinger, Product Engineer, Siemens

Introduction

• Formal Test plans

• Simulation’s Testbench Vs. Formal Testbench

• Components of Formal Testbench

• Advance Topics

• Architecting a Formal Testbench

• Functional Completeness

• Putting it All together

Planning
“By failing to prepare, you are preparing to fail.” Benjamin Franklin

Formal Testplanning

• Formal testplanning is important to the success of property checking

• Follow the 7-step flow outline as part of formal testplanning
• Identify, describe, interface, requirements, properties, strategy, coverage

• Overall project testplanning includes formal and simulation
• Decide what verification strategy will be applied to what parts of the design

• Create a written testplan that the formal results will be tracked by

Item Type Description Check Status

req_eventually assume / cover Eventually req each port s_eventually pend[i] && req[i] covered

reqs_granted cover All reqs granted req[i] |=> s_eventually gnt[i] covered

gnts_unique check / cover Only 1 gnt active onehot0(gnt) / cover gnt[i] passed / covered

What is different?
A zoom out before a zoom in

Simulation / Formal Testbench Components

• Simulation and formal testbenches are similar in nature conceptually

• Verification requires 2 models – one of which is the DUT
• The 2nd model in formal is the modeling code and properties

• In simulation vectors are driven, in formal the full input space is explored

DUTDriver Monitor

Sequencer Model
Compare

Pass/Fail

Simulation Testbench Components

DUT
Assumes

Constraints

Asserts

Covers

All Possible

Inputs

Model

Code

Results

Proof/CEX

Formal Testbench Components

Comparing Formal / Simulation Testbenches

Component Formal Simulation

Design RTL (SV/Verilog/VHDL) Only synthesizable Synthesizable and behavioral

Properties and coverage Required Recommended

Inputs - Vectors All possible inputs explored by tool Directed, constrained random, …

Input constraints Assumptions remove illegal inputs Part of driver - transactors

Second Model Assertions and modeling code UVM, C, …

Results Assertions proven or have CEX Design compared to model – pass/fail

Implementation TB bound to DUT / DUT instance in TB DUT instantiated in TB

Ports TB monitor design signals TB drives inputs and monitors outputs

Formal Testbench Implementations

• Wrapper around the DUT
• Can be a closed system, only clk/rst as inputs

• Formal can drive DUT undriven inputs

• Other signals as inputs OK to help with setup

• Bound with the DUT
• Often preferred (can be used in sim)

• All DUT signals can be inputs to formal TB

• Can bind more to internal modules/instances

Formal TB
asserts

assumes

covers

model code

abstractions

DUT

DUT Formal TB asserts

assumes

covers

model code

abstractions

Tip: Use the same names in the FTB as the design for simpler binding

What makes a Formal Test Bench?
“The whole is Greater than the sum of its parts” Aristotle

Formal Testbench Components

• Clocks
• Formal is cycle based, multi-clock designs require clock definitions

• Initialization sequence
• Proper design initialization important to formal results

• Properties – required
• assert / assume / cover / cover bin

• Modeling code

• Abstractions

Properties - assert

• Checks of Design’s behavior

• Adds complexity to verification state-space
• Keep as simple as possible

• Divide and conquer, Case analysis

• Keep as sequentially short as possible
• Keep it precise by using $rose, $fell

• Meaningful naming
• Group by names

• Must be checked in Simulation/Emulation at Block and SOC levels

• Back annotation to the Test plan

A | B → C & D

A → C

B → C

A → D

B → D

Tip: Decompose complex properties into a set of simple properties

Trick: Use triggers (e.g. $rose) in antecedent to minimize CEXs

Properties - assume

• Used to restrict the state space
• Keep them simple

• Global vs. Local
• Assumptions are global unless restricted through tasks or oracles

• Add assumptions progressively
• Start with no assumptions

• Keep these to minimum

• Must be checked in Simulation/Emulation at block/SOC level as
assertions

• Back annotation to the Formal Test plan

Recommendation: Use formal VIP to constrain bus interfaces

Trick: Sometimes it is easier to write an assumption on an internal signal

Properties - cover

• Existential Checks of design behavior

• Critical to the Formal Analysis
• Tendency to over-constrain

• Keep them simple

• No implication only sequence

• Keep them separate

• Follow a strict naming convention

• Back annotation to the Test plan

A ##[1:5] B or C
A ##[1:5] B

A ##[1:5] C

A |=>[0:5] B A ##[1:5] B

Modeling Code

Modeling code simplifies signals and writing of properties
• Makes properties easier to read and understand
• Often easier to implement that trying to check everything in a property

// Requirement: Never > 5 outstanding wr’s (without a rd) and no rd before wr
reg [2:0] my_cnt;
always @(posedge clk or negedge rstn)
if (!rstn) my_cnt <= 3’b000;
else if (wr && !rd) my_cnt <= my_cnt + 1;

else if (!wr && rd) my_cnt <= my_cnt – 1;
else my_cnt <= my_cnt;

a_wr_outstanding_le5: assert property (@(posedge clk) my_cnt <= 3’d5);

a_no_rd_without_wr: assert property (@(posedge clk) !((my_cnt == 3’d0) && rd));

Recommendation: Use exact/minimal bit widths when defining signals

Trick: Use hierarchical references to access signals in sub hierarchy

Abstractions

Abstractions are all about state space reduction

• Parameter reduction

• Constants

• Blackboxing

• Cutpoints

• Initial value

• Counter/memory/arithmetic

Tip: Use parameters in FTB to match the DUT

Tricks of the Trade
“Some people are so busy learning the tricks of the trade that they never learn the
trade.” Vernon Law

Advanced Topics

• Non-Determinism(ND)
• Let formal explore all possibilities, temporally and spatially

• Data Independence(DI)
• When the datapath is independent of the control logic, can use 1 data bit

• Symbolic Variables
• Hold value stable during formal run, formal analyzes all possible values

• Phantom Wires
• Make use of antecedent to constrain values formal can drive

Using Modeling Code and ND for Bug Hunting

DDR requirement: No precharge to same addr as write within 11 cycles
// Simplify DDR signals
parameter PRECHARGE = 7’b11_0010_0; parameter WRITE = 6’b11_0100;
reg pre_cke; always @(posedge ddrclk) pre_cke <= ddr_cke;
wire [6:0] ddr_cmd = {pre_cke,ddr_cke,ddr_cs,ddr_ras,ddr_cas,ddr_we,ddr_addr[10]};
wire precharge = (ddr_cmd == PRECHARGE); wire write = (ddr_cmd[6:1] == WRITE);

// modeling code logic

wire same_pre = precharge && (ddr_ba == my_ba);

a_wr_to_pre_bug: assert property (@(posedge ddr_clk) $rose(my_wr) |-> (!same_pre)[*11]);

&

ND_startND_start

writewrite

!my_wr!my_wr

enen

DD

EE

QQ my_wr(0=>1)my_wr(0=>1)11

enen
my_ba[2:0]my_ba[2:0]ddr_ba[2:0]ddr_ba[2:0] DD

EE

QQ

enen

Tip: Using ND in bug hunting allows formal the flexibility to find the corner case bug

Data Integrity

• Data Integrity classically makes use of ND and DI
• ND input: start, DI is lsb: dati[0]

• Generator drives: …00011000…

• Monitor checks: …00011000… (in == dato[0])

• Catches dropped, duplicated/added, reordered errors

Generator

start

!out out out !out

2nd DONEWAIT 1st

Monitor!in

in

ERR

WAIT
in

1st

!in in

!in

2nd

m_di0: assume property (@(posedge clk) dati[0] == out);

a_no_err: assert property (@(posedge clk) cstate != ERR);

..010.. ; ..0011100.. ; ..0010100..

Tip: The principles used here have many applications, only limit is your imagination

Symbolic Variables and Phantom Wires

• Symbolic Variables
• Application: Configuration register

• Phantom Wires
• Application: ECC verification

din[N:0]

dout[N:0]

pout[M:0]

enc

din[N:0]
dout[N:0]

pin[M:0]

dec

err0
err1
err

wrapperenc dec

// no error

a_0_err_dat: assert property (@(posedge clk) $countones({(enc.dout^dec.din),(enc.pout^dec.pin)}) == 0 |-> dec.dout == enc.din);

// 1 error (detect and correct)

a_1_err_dat: assert property (@(posedge clk) $countones({(enc.dout^dec.din),(enc.pout^dec.pin)}) == 1 |-> dec.dout == enc.din);

// 2 errors (detect only, only check error outputs)

a_2_err_err: assert property (@(posedge clk) $countones({(enc.dout^dec.din),(enc.pout^dec.pin)}) == 2 |-> dec.err);

m_config_1_lo_val: assume property (@(posedge clk) config_1[3:0] <= 4’h4);

m_config_1_hi_1hot: assume property (@(posedge clk) $onehot(config_1[7:4]));

m_config_1_stable: assume property (@(posedge clk) $stable(config_1));

Configuration Registers

D[7:0] Q[7:0]

config_1

cut

Tip: Symbolic variables can be used on inputs or internal nodes with a cutpoint

Architecting a Formal TB
"We shape our buildings: thereafter they shape us."

-Winston Churchill

Formal Testbench Architectures

• Divide and Conquer
• When state space is large

• Verify each component

• Brute Force
• Hard constraints

• Can parallelize runs

Bridge

Scoreboard

XBAR Switch

SVA

Conn Spec

0 0
1

2

15

256 Total Runs

SV
A

SV
A

SV
A

SV
A

SV
A

Formal Testbench Architectures - Elegant

Advanced formal techniques allow you to simplify the formal TB

• ND, DI, Symbolic Variables, Formal VIP, modeling code => minimize state

Recommendation: Use the advanced techniques available to minimize state in your FTB

X
B

A
R

 S
w

itch

Bridge

Bridge

Bridge

Bridge

X
B

A
R

 S
w

itch

256 combinations

Selects stable during transmission

Data integrity end to end

- Symbolic Variables for input/bridge/output

- Stable - Determines select value

- ND – formal picks the path

- Proof – all scenarios good, CEX shows bad path

Scoreboard

Input i 0 to 3

Bridge j 0 to 3

Output k 0 to 3

i j kj

selA[j] = i selB[k] = j

Are we there yet?
“It always seems impossible until it's done.”

Nelson Mandela

Proof of Completeness

• A subjective target:
• A Formal Test-plan as a contract among stake holders

• Checkers completeness
• Full proofs

• Partial/bounded proofs and design depth

• Random fault insertions

• Coverage
• Formal Coverage

• Formal and Simulation coverage

Putting It All Together

• Proper testplanning is important to ensure success
• A coverage strategy that is tied back to the testplan is important

• Decide on your formal TB structure
• Make use of as many techniques as makes sense for what you are checking

• Each formal TB will be unique based on who is creating it (just like sim!)

• Start where you are and expand from there as you gain experience

• Discuss and share with colleagues your experiences
• Continue to learn and expand your awareness of these techniques

Questions?

