2023

DESIGN AND VERIFICATION™

DVGCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 27-MARCH 2, 2023

Demystifying Formal Testbenches:
Tips, Tricks, and Recommendations

Dr. Shahid Ikram, Distinguished Engineer, Marvell Semi

Mark Eslinger, Product Engineer, Siemens




Introduction

* Formal Test plans

 Simulation’s Testbench Vs. Formal Testbench
 Components of Formal Testbench

* Advance Topics

 Architecting a Formal Testbench

* Functional Completeness

* Putting it All together

@

SYSTEMS INITIATIVE




(2023

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 27-MARCH 2, 2023

Planning

“By failing to prepare, you are preparing to fail.” Benjamin Franklin

SYSTEMS INITIATIVE




Formal Testplanning

* Formal testplanning is important to the success of property checking

* Follow the 7-step flow outline as part of formal testplanning
* |ldentify, describe, interface, requirements, properties, strategy, coverage

* Overall project testplanning includes formal and simulation
» Decide what verification strategy will be applied to what parts of the design
* Create a written testplan that the formal results will be tracked by

| fem | Type | Description | Check | status |

req_eventually assume /cover Eventually req each port s_eventually pend[i] && req[i] covered
reqs_granted  cover All regs granted req[i] |=>s_eventually gnt[i]  covered
gnts_unique check / cover  Only 1 gnt active onehot0(gnt) / cover gnt[i] passed / covered

A0

DESIGN AND VERIFICATION™

@ e f

SYSTEMS INITIATIVE



(2023

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 27-MARCH 2, 2023

What is different?

A zoom out before a zoom in

SYSTEMS INITIATIVE




Simulation / Formal Testbench Components

e Simulation and formal testbenches are similar in nature conceptually

* Verification requires 2 models — one of which is the DUT
* The 2"9 model in formal is the modeling code and properties

* In simulation vectors are driven, in formal the full input space is explored
Simulation Testbench Components Formal Testbench Components

All Possible Model Results
- ‘
! 1 1 7 L T |

N pur [N Assum.es N puT [N Asserts
Constraints Covers

R 2023
1 i ] e ) ! EGNVANDV RIELCATJON_

SYSTEMS INITIATIVE



Comparing Formal / Simulation Testbenches

Component Formal Simulation
Design RTL (SV/Verilog/VHDL) Only synthesizable Synthesizable and behavioral
Properties and coverage Required Recommended
Inputs - Vectors All possible inputs explored by tool Directed, constrained random, ...
Input constraints Assumptions remove illegal inputs Part of driver - transactors
Second Model Assertions and modeling code uvm, C, ...
Results Assertions proven or have CEX Design compared to model — pass/fail
Implementation TB bound to DUT / DUT instance in TB  DUT instantiated in TB
Ports TB monitor design signals TB drives inputs and monitors outputs

R - 003"
accellera ) & ] * ) . EGNVA\ND?V R%:A‘fl’i.or\_f
. . ) . * ] 2 ‘ X : “ CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE




Formal Testbench Implementations

Formal TB

* Wrapper around the DUT asserts

* Can be a closed system, only clk/rst as inputs azf)t:]ris
* Formal can drive DUT undriven inputs N model code

e Other signals as inputs OK to help with setup

abstractions

* Bound with the DUT Formal TB s
e Often preferred (can be used in sim) assumes
. . covers
e All DUT signals can be inputs to formal TB nodel code
e Can bind more to internal modules/instances abstractions

(2023

accellers) - - Tip: Use the same names in the FTB as the design for simpler binding DVCOMN

SYSTEMS INITIATIVE . . ; 7 _



(2023

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

What makes a Formal Test Bench?

“The whole is Greater than the sum of its parts” Aristotle

SYSTEMS INITIATIVE




Formal Testbench Components

* Clocks
* Formal is cycle based, multi-clock designs require clock definitions

* Initialization sequence
* Proper design initialization important to formal results

* Properties — required
e assert / assume / cover / cover bin

* Modeling code
* Abstractions

SYSTEMS INITIATIVE

@



Properties - assert

e Checks of Design’s behavior

* Adds complexity to verification state-space S
» Keep as simple as possible

B->C
* Divide and conquer, Case analysis AlB—>C&D ASD

» Keep as sequentially short as possible B->D
* Keep it precise by using Srose, Sfell

 Meaningful naming
e Group by names

* Must be checked in Simulation/Emulation at Block and SOC levels
e Back annotation to the Test plan

accellera - . ) : Tip: Decompose complex properties into a set of si.mple properties DESIGN AND V EQC%%N
. T Trick: Use triggers (e.g. Srose) in antecedent to m'ini_mize CEXs 7 DVLC '

SYSTEMS INITIATIVE



Properties - assume

» Used to restrict the state space
* Keep them simple

* Global vs. Local
* Assumptions are global unless restricted through tasks or oracles

* Add assumptions progressively
e Start with no assumptions
* Keep these to minimum

* Must be checked in Simulation/Emulation at block/SOC level as
assertions

* Back annotation to the Formal Test plan

accellera . _ 3 Recommendation: Use formal VIP to constrain bus‘interfaces R S

Trick: Sometimes it is easier to write an assumption on an internal signal

SYSTEMS INITIATIVE




Properties - cover

 Existential Checks of design behavior

e Critical to the Formal Analysis
* Tendency to over-constrain

» Keep them simple

* No implication only sequence
* Keep them separate A ##[1:5] B

* Follow a strict naming convention

A ##[1:5] C

e Back annotation to the Test plan

SYSTEMS INITIATIVE



Modeling Code

Modeling code simplifies signals and writing of properties
* Makes properties easier to read and understand
* Often easier to implement that trying to check everything in a property

// Requirement: Never > 5 outstanding wr’s (without a rd) and no rd before wr
reg [2:0] my_cnt;
always @(posedge clk or negedge rstn)
if ('rstn) my_cnt <= 3’b000;
else if (wr&& !rd) my_cnt<=my cnt+1;
else if ('wr && rd) my _cnt<=my_cnt-1;
else my_cnt <= my_cnt;

a_wr_outstanding_leb: assert property (@ (posedge clk) my_cnt <= 3’d5b )
a_no_rd _without wr: assert property (@Q(posedge clk) !((my_cnt == 3’d0) && rd))

.
14
.
14

J . T Recommendation: Use exact/minimal bit widths when defining signals o ., 293%,
accellera) - el

Trick: Use hierarchical references to access signals in sub hierarchy s S srion

SYSTEMS INITIATIVE




Abstractions

Abstractions are all about state space reduction
e Parameter reduction

* Constants

 Blackboxing

* Cutpoints

* Initial value

e Counter/memory/arithmetic

| AR 2023
accellera - Tip: Use parameters in FTB to match the DUT DVCON

SYSTEMS INITIATIVE




(2023

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 27-MARCH 2, 2023

Tricks of the Trade

“Some people are so busy learning the tricks of the trade that they never learn the
trade.” Vernon Law

SYSTEMS INITIATIVE




Advanced Topics

* Non-Determinism(ND)
* Let formal explore all possibilities, temporally and spatially

e Data Independence(Dl)
* When the datapath is independent of the control logic, can use 1 data bit

e Symbolic Variables
* Hold value stable during formal run, formal analyzes all possible values

* Phantom Wires
* Make use of antecedent to constrain values formal can drive

SYSTEMS INITIATIVE

@



Using Modeling Code and ND for Bug Hunting

DDR requirement: No precharge to same addr as write within 11 cycles
// Simplify DDR signals
parameter PRECHARGE = 7’b11 0010 _O0; parameter WRITE = 6’b11_0100;

reg pre_cke; always @(posedge ddrclk) pre_cke <= ddr_cke;
wire [6:0] ddr_cmd = {pre_cke,ddr_cke,ddr_cs,ddr_ras,ddr_cas,ddr_we,ddr_addr[10]};

wire precharge = (ddr_cmd == PRECHARGE); wire write = (ddr_cmd[6:1] == WRITE);
// modeling code logic
ND_start — 1 _p al- my_wr(0=>1)
write — & — €N en—E ddr_ba[2:0] —p a— my_ba[2:0]
Imy_wr — — en —|E
wire same_pre = precharge && (ddr_ba == my_ba); e

a_wr_to_pre_bug: assert property (@(posedge ddr_clk) Srose(my_wr) |-> (Isame_pre)[*11] );

N ' ‘ 2023
accellerd) - -Tip: Using ND in bug hunting allows formal the flexibility to find the corner case bug DVCON
. : ) . ] ‘ X : “ co ENCE HIBITIO|

SYSTEMS INITIATIVE




Data Integrity

» Data Integrity classically makes use of ND and DI

* ND input: start, Dl is Isb: dati[0]
E Generator &

* Generator drives: ...00011000...

start mmp
lout out out lout
m_diO: assume property (@ (posedge clk) dati[0] == out );
. . lin Monitor lin
e Monitor checks: ...00011000... (in == dato[0])

a_no_err: assert property (@Q(posedge clk) cstate != ERR );

 Catches dropped, duplicated/added, reordered errors in
..010.. ; ..0011100.. ; ..0010100..

A0

accellera) - - Tip: The principles used here have many applications, only limit is your imagination DVCON

SYSTEMS INITIATIVE




Symbolic Variables and Phantom Wires

Configuration Registers

config_1

e Symbolic Variables o D7:0] Qi) I

* Application: Configuration register

m_config_1_lo_val: assume property (@ (posedge clk) config 1[3:0] <= 4'h4d );
m_config_1_hi_lhot: assume property (Q(posedge clk) Sonehot (config_1[7:4]) );
m_config_1_stable: assume property (Q(posedge clk) $stable(config_1) );

enc wrapper dec
enc

* Phantom Wires B

din[N:0]

C
dout[N:0]
errQ
errl

err

din[N:0]

pout[M:0] pin[M:0]

* Application: ECC verification

// no error

a_0_err_dat: assert property (@ (posedge clk) $countones ({ (enc.dout”dec.din), (enc.pout”?dec.pin)}) == 0 |-> dec.dout == enc.din );
// 1 error (detect and correct)

a_1l_err_dat: assert property (Q(posedge clk) S$countones({(enc.dout”dec.din), (enc.pout”dec.pin)}) == 1 |-> dec.dout == enc.din );
// 2 errors (detect only, only check error outputs)

a_2_err_err: assert property (Q(posedge clk) S$countones({(enc.dout”dec.din), (enc.pout”dec.pin)}) == 2 |-> dec.err );

DESIGN AND VERIFICATION™

accellera) __*_ Tip: Symbolic variables can be used on inputs or internal nodes with a cutpoint DVCOI

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE




(2023

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

Architecting a Formal TB

"We shape our buildings: thereafter they shape us."
-Winston Churchill

SYSTEMS INITIATIVE




Formal Testbench Architectures

y =
* Divide and Conquer —F
_ scoreboard s Egé

* When state space is large
* Verify each component

* Brute Force
 Hard constraints
e Can parallelize runs

@

SYSTEMS INITIATIVE



Formal Testbench Architectures - Elegant

Advanced formal techniques allow you to simplify the formal TB

* ND, DI, Symbolic Variables, Formal VIP, modeling code => minimize state

Data integrity end to end
- Symbolic Variables for input/bridge/output
- Stable - Determines select value
- ND —formal picks the path
- Proof —all scenarios good, CEX shows bad path

YUms yveax

x
®
>
o
w
z
-
(=]

>

Input 1 0 to 3
Bridge j 0 to 3

Bridge
Output k 0 to 3

Selects stable during transmission

DESIGN AND VERIFICATION™

awellera .~ .Recommendation: Use the advanced techniques available to-minimize state in your FTB I;N)\/N;NDCMON

SYSTEMS INITIATIVE



(2023

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 27-MARCH 2, 2023

Are we there yet?

“It always seems impossible until it's done.”

Nelson Mandela

SYSTEMS INITIATIVE




Proof of Completeness

* A subjective target:
* A Formal Test-plan as a contract among stake holders

e Checkers completeness

* Full proofs
* Partial/bounded proofs and design depth

e Random fault insertions

* Coverage
* Formal Coverage
* Formal and Simulation coverage

@

SYSTEMS INITIATIVE



Putting It All Together

* Proper testplanning is important to ensure success
* A coverage strategy that is tied back to the testplan is important

* Decide on your formal TB structure
* Make use of as many techniques as makes sense for what you are checking
* Each formal TB will be unique based on who is creating it (just like sim!)

e Start where you are and expand from there as you gain experience

* Discuss and share with colleagues your experiences
e Continue to learn and expand your awareness of these techniques

SYSTEMS INITIATIVE

@



Questions?

SYSTEMS INITIATIVE




