
Early Detection of Functional Corner Case

Bugs using Methodologies of the ISO 26262

Moonki Jang1, Sunil Roe2, Youngsik Kim3, Seonil Brian Choi4
Samsung Electronics, 1-1, Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do 18488, Korea

moonki.jang@samsung.com1, sunil.roe@samsung.com2, ys31.kim@samsung.com3, seonilb.choi@samsung.com4

Abstract- ISO 26262[1] does not suggest a new verification methodology for systematic failures covered in design

verification. However, ISO 26262 requires a persistent impact analysis and risk assessment at every stage. We introduced

HARA (Hazard Analysis and Risk Assessment)[2] and safety analysis methodology used in ISO 26262 to the design

verification field and used it to measure the risk of each element of the target design. We found risk factors that can

represent the level of risk for detailed items. And, through FMEA (Failure Mode and Effect Analysis) and DFA

(Dependent Failure Analysis)[3], it was possible to easily see the expected design vulnerabilities by classifying the risk

factors that could affect the system level. And to verify the expected design vulnerabilities, a systematic fault model was

created using the ML algorithm. Through this, it was possible to verify the time critical corner case, which has been

difficult in pre-silicon so far.

I. INTRODUCTION

The biggest change around us in recent years is probably the automobile sector. This is because the supply of

electric vehicles is expanding and high-performance semiconductors and various advanced technologies are being

integrated for complete autonomous driving. Driving, steering, and braking systems, which are core functions of

automobiles, are already electronically controlled through built-in microcontrollers. In the future autonomous

driving era, the driver's role will also be replaced by sensors and artificial intelligence.

However, the number of accidents due to the instability of electronic devices is also steadily increasing. This is

because even a minor error that can be solved by simply rebooting in our mobile phone can threaten the life of the

driver if it occurs while driving a car.

ISO 26262, an international standard for automotive functional safety, has been published to prevent damage

caused by malfunctioning of such automobile functions. ISO 26262 provides clear standards for safety to be

considered when developing functions that can be directly related to human life, and provides specific guidelines for

effectively reducing risks due to the increase in technical complexity.

ISO 26262 classifies the causes of risk into systematic failure and random hardware failure.

Systematic failure is a failure that arises from the activity itself that develops and produces a system. Human error

of personnel participating in development and production activities is the biggest cause. RTL bugs caused by

incorrect design in the semiconductor design process are typical systematic failures.

Random HW failure is a term that is limited to HW elements and refers to failures that occur due to physical

limitations of HW elements. This occurs mainly in the form of memory cell deterioration and instantaneous state

change of logic caused by external environmental factors, and is not covered with in the design verification stage.

In other words, in order to ensure functional safety in ISO 26262, the following two requirements are required in

the semiconductor design verification stage.

1) Avoid or prevent systematic failure by checking all errors in the design process.

2) Even if systematic failure occurs, there must be a plan to minimize the impact on the system.

ISO 26262's design verification requirements for systematic failure are not different from other fields. However,

in the automotive environment covered by ISO 26262, a higher level of strict reliability is required than before

because even a minor error can threaten human life. These high-level requirements of ISO 26262 are also affecting

the semiconductor development process in other fields. Semiconductors are already expanding their scope of use

from a role for human convenience to a variety of fields where human safety must be ensured. Accordingly, higher

reliability than before is required in the entire semiconductor field.

In this paper, we created a methodology called Systematic Failure Analysis (SFA) for semiconductor design

verification by referring to the safety analysis methodology of ISO 26262. And to verify the failure mode with

complex conditions, the ML based PSS action sequence model [4] announced last year was applied. Our

methodologies used the methodologies proposed in ISO 26262, but were made to be used to increase the reliability

of the design verification stage in the general semiconductor field. At the end of this paper, we will also show how

our results can be used again in ISO 26262.

II. SYSTEMATIC FAILURE ANALYSIS

ISO 26262 relies on the traditional design verification methodology to mitigate the risk due to the systematic

failure. However, as system complexity increases, errors caused by unintended actions that occur during interactions

between different components are increasing. As a result, fatal systematic failures with complex interaction

conditions that are difficult to detect with existing verification methods are often found at the silicon level. In order

to prevent this, it is necessary to identify the function and critical sequence in which such a corner case can occur in

advance and predict the risk.

For this reason, we created Systematic Failure Analysis (SFA) to expand the functional verification coverage by

extracting risk factors from the IP level and predicting risks.

Failure mode definition

Failure mode is created to predict possible failures during the function operation of the semiconductor component

and to establish preventive measures against them. The failure mode created during design verification for SFA

records the expected failure when a fault occurs due to the following causes during function operation. In SFA,

failure mode is used as a verification target to ensure that it does not occur.

- FM1: Integration issues (connection, configuration...)

- FM2: Accessibility issues (access path, access control...)

- FM3: Functionality issues (wrong output, unintended behavior…)

- FM4: State transition issues (power gating, clock gating, reset…)

- FM5: Absence of independence or FFI (Freedom from Interference)

An example of the failure mode of SFA is as follows.
TABLE I

EXAMPLE OF FAILURE MODE

ID IP Function Failure mode
CPUCL_F1 CPU [CPD] CPU Cluster power down

1) All cores are power down
2) Coherency disconnect

3) L3 goes into power down
4) power gating for CPUCL

5) wakeup by external interrupt

CPU_CPD_FM1: wakeup interrupt can’t delivered

CPU_CPD_FM2: debugger can’t access through debug path during CPD
CPU_CPD_FM3: P-ch handshaking has failed

CPU_CPD_FM4: core1 does not working after wakeup from CPD
CPU_CPD_FM5: ACE interface stalled after snoop arrived between

coherency disconnect and coherency disable

CPUCL_F2 CMU [ACG] Automatic Clock Gating
1) All cores are in idle state

2) enable clock gating

3) blocking all external access
4) CPUCL clock gating

CMU_ACG_FM1: wrong clock pll ratio
CMU_ACG_FM2: CMU configuration is no available

CMU_ACG_FM3: Q-ch handshaking has failed

CMU_ACG_FM4: incoming access occurred after clock down
CMU_ACG_FM5: unintended clock gating occurred during CPU is in

active state.

Among the types of failure modes above, ‘FM5: Absence of independence or FFI’ is an item related to functional

corner cases that could not be verified in the existing design verification. Because this occurs due to interference

access from the outside that occurred at a specific point of weakness in the function, it was difficult to reproduce in

the existing verification environment.

And, FM5 failures discovered late at the silicon level lead to a huge cost increase due to revision, so it remains a

big problem to be solved in the design verification field. In this study, the biggest reason we introduced the

methodology of ISO 26262 and created the design verification methodology called SFA was to find vulnerabilities

that could cause FM5 failure through systematic analysis.

To this end, in order to determine what external elements that have a dependency that can affect each function and

what kind of interference they cause, and to check whether there is a vulnerable part that can be affected by external

interference in the function, as follows I created a correlation table and hazardous function list.

 1) Correlation table

The correlation table shows the list of incoming access that can occur during function operation and outgoing

access that the function can affect externally. Through this, the dependency relationship with external elements can

be identified when each function is operated. And DFA (Dependent Failure Analysis) analyzes whether there is a

problem due to dependency between functions that can affect each other by referring to the correlation in the table

below.
TABLE II

EXAMPLE OF CORRELATION TABLE

ID IP Function Incoming Outgoing
src Access type dst Access type

CPUCL_F1 CPU [CPD] CPU Cluster power down

1) All cores are power down
2) Coherency disconnect

3) L3 goes into power down

4) power gating for CPUCL
5) wakeup by external interrupt

CPUCL2

CPUCL2
GPU

PCIe

GIC
Debugger

Snoop transaction

DVM transaction
Snoop transaction

Snoop transaction

Interrupt
Debug CMD

PMU

BUS

Power gating config

SYSCOREQ handshaking

CPUCL_F2 CMU [ACG] Automatic Clock Gating

1) All cores are in idle state
2) enable clock gating

3) blocking all external access
4) CPUCL clock gating

CPUCL2

CPUCL2
GPU

PCIe
GIC

Debugger

Snoop transaction

DVM transaction
Snoop transaction

Snoop transaction
Interrupt

Debug CMD

CMU Clock gating config.

2) Hazardous function list

The table below shows the functions in which time critical corner case bugs such as the FM5 failure case occur

most empirically so far. In the function list below, it can be seen that functions including state transition have a

critical sequence in which external interference is not allowed, and many vulnerabilities have occurred in this part.

The critical sequence of hazardous functions with such vulnerabilities should be identified in advance through

impact analysis at the design stage and included in verification requirements.
TABLE III

HAZARDOUS FUNCTION LIST

Function Vulnerable sequences

Power gating -Interference between gating enable configuration and power gating

-Receiving snoop between coherency disconnect phase and coherency disable phase

Clock gating Interference between gating enable configuration and clock gating

Reset Abnormal state can’t restored after reset

Buffer overflow Read/write channel stalled and data lost due to buffer overflow.

Exception occurrence Interference occurred during exception handling

Accordingly, the FM5 items can define the failure mode by assuming that the incoming access of the correlation

table for the above hazardous function is interference occurring in the critical sequence.

Risk assessment process

Risk in ISO 26262 is evaluated by the severity and probability of failure. However, in SFA in the design

verification stage, risk refers to the possibility that fatal systematic failure occurs at the silicon level. To evaluate this

level of risk, we defined the following risk factors at the architecture and design stage.

1) Proven in use level[5]

If the IP related to the function operation in the failure mode is a new IP that has not been used before or is

modified to add a function, systematic faults due to design errors are highly likely to occur. In order to evaluate the

risk, the following proven in use level was reflected in each failure mode..
TABLE IV

PROVEN IN USE LEVEL

Proven in use level

(Risk Point)

Description

P4 (4) Implement new In-house IP / logic that has not been used

P3 (3) Implement new 3rd party IP / logic that commonly used on the industry

P2 (2) Change version of used IP/logic

P1 (1) Implement same IP / logic that already used on another product

2) Severity level

In order to indicate the severity of systematic failure defined in the failure mode, it was classified into severity

levels as follows. In the case of S4, it means the most severe state in which the entire system falls into a disabled

state due to the occurrence of failure. And S3 means that the function falls into an impossible state due to failure, but

the rest of the system is operable.
TABLE V

SEVERITY LEVEL CLASSIFICATION

Severity level

(Risk Point)

Description

S4 (4) Entire system will not be available due to critical failure

S3 (3) Function element will not be available but no system wide impact.

S2 (2) Performance degradation is expected due to failure

S1 (1) No impact

3) Known issues in other project

It indicates whether systematic failure defined in failure mode has a history of causing bugs in other projects. This

is to check whether the bug has been properly corrected or the avoidance method has been properly applied. This

includes the contents of the errata notice provided by the IP provider. In general, the errata notice provided by the

IP provider has a very rare condition, but we consider this as one of the risks to be checked in the design

verification stage and verify whether there is a risk in our system.

4) Applicable workaround

Indicates whether systematic failure defined in failure mode can be avoided by software workaround. However,

SW workaround always affects the performance or function, except when backup IP/logic is prepared or another

function can replace the failure occurrence function. This item is determined by the software engineer, and the

software engineer records the SW high level function related to the failure mode in the FMEA form for the software

DFA.

TABLE VI

APPLICABLE WORKAROUND

W/A level

(Risk Point)

Description

W4 (4) No W/A. H/W revision is required.

W3 (3) Software W/A is available but function will not be available

W2 (2) Software W/A is available with performance impact

W1 (1) Software W/A is available without any performance impact

4) Risk definition of SFA

The risk level for failure mode in SFA is calculated as follows through the risk point of the items shown above.

•
• Figure 1. Calculation of Risk Level

Using the risk level obtained in this way, we created a new SFSL (Systematic Failure Severity Level) as follows.

ISO 26262's ASIL (Automotive Safety Integrity Level) [6] indicates the functional safety level guaranteed by the

system, but SFSL indicates the risk of fatal failure. We can determine which failure mode to prioritize verification

by using the SFSL obtained through this risk assessment process. In addition, additional verification of the effects

that may occur due to the failure is also performed by referring to the SFSL.
TABLE VII

DEFINITION OF SFSL LEVEL

SFSL Level Definition Description

SFSL_A Risk Level > 12 Very high risk of critical failures. Detailed verification is required

SFSL_B Risk Level > 8 High risk of critical failures. Additional verification is required

SFSL_C Risk Level > 4 Mid risk of critical failures. Impact analysis is required

SFSL_D Risk Level <= 4 Low risk of critical failures.

FMEA (Failure Mode and Effect Analysis)

FMEA is one of the safety analysis methodologies of ISO 26262 to analyze the effect of failure mode on system

function. In SFA, FMEA is used to analyze how critical each failure mode is.

The following shows the results of FMEA conducted by SFA. The systematic failure mode obtained from the

function list and the final risk level calculated by the risk factor make it possible to easily identify the expected

weakness of the design to be verified.

FMEA

ID Requirements SFSL P S H K W

CPU_CPD_FM3 CPUCL_F1 P-ch handshaking has failed
wrong connection of P-CH

interface

Power mode transition does

not working
B 3 3 Y N 1

SYSTEM idle/sleep

mode
try power mode transition

CPU_CPD_FM5 CPUCL_F1

ACE interface stalled after snoop

arrived between coherency

disconnect and coherency disable

reported Errata: 1500609
Deadlock occurred between

CPUCL and BUS
A 3 4 Y Y 1 SYSTEM sleep mode

Generate snoop between

SYSCOREQ and SYSCOACK

CMU_ACG_FM1 CPUCL_F2 wrong clock pll ratio wrong PLL configuration generate wrong clk out D 1 2 N N 3 Normal active mode Check clk after CMU init

CMU_ACG_FM5 CPUCL_F2

unintended clock gating

occurred during CPU is in active

state

Interference occurred

between clk gating sequence

Deadlock occurred due to

incompleted transactions
A 2 4 Y Y 1

SYSTEM sleep mode

throttling enable

Access CPUCL0 register

between cpucl0_clk_gating_en

and cpucl0_clk_blocking_ext_en

Occurance Conditions
Name / Function

Potential Failure Mode(s) Potential Cause of Failure Potential Effect of Failures
Related high level

functions

Risk Assessment

Figure 2. Example of FMEA

DFA (Dependent Failure Analysis)

DFA is performed to investigate the effect of failure modes defined in FMEA on each other. Dependent failure is

a failure that is influenced by other failures, rather than failures that occur independently. Dependent failure defined

in DFA can be classified into Cascading Failure and Common Cause Failure as shown in the figure below.

-Cascading Failure: Failure of an element, resulting from a root cause, and then causing a dependent failure of

another element or elements

-Common Cause Failure: Dependent failure of two or more elements, resulting directly from a single specific

event or root cause

Figure 3. Type of dependent failures

There are two things we want to check through DFA:

-Check whether the failure mode defined in FMEA can be a Dependent Failure Initiator (DFI) that can cause a

cascading failure

-Check whether a common cause failure occurs in multiple elements due to a fault generated in a shared resource

through fault injection

1) Cascading failure caused by failure mode of FMEA

In order to check whether the failure mode defined in FMEA can act as a DFI that causes cascading failure in

other elements, it is necessary to identify the components and functions affected by this failure. To this end, we were

able to figure out the dependency relationship between the functions of each component using the correlation table

used in FMEA.

2) Common cause failure caused by fault injection

In ISO 26262, fault injection is used for DC (Diagnostic Coverage)[7] measurement, which indicates how much

the generated fault can be detected by a safety mechanism. SFA generates a DFI that can occur due to a random

hardware fault by generating a fault in the shared resource using the backdoor interface of the memory.

Common cause failures checked here are as follows:

- Whether failure occurs due to DFI in multiple components accessing shared resources and whether normal

recovery is possible through error detection logic

- When a component is operating error handling due to a fault occurring in the shared resource, check whether

failure occurs in other components due to the coupling factor

This content has already been covered in ‘ISO 26262 Dependent Failure Analysis using PSS’ presented at DVCon

US 2019[8], and we perform fault injection using the backdoor interface to the shared resource below.

- Uncorrectable ECC error injection: Manipulates data in shared region to generate ECC error when accessing

- MMU translation fault generation: Manipulates the valid field of the MMU page descriptor to be invalid,

causing a translation fault to occur during table walk for the address.

- RAS error injection for CPU, Interrupt controller, System MMU: The RAS (Reliability, Availability, and

Serviceability) extension is ARM's error handling and recovery architecture that is applied from the ARMv8

architecture. RAS has its own fault injection model extension that can inject faults into the L1 / L2 / L3 caches to

generate error interrupts

The DFIs generated by fault injection listed here are random hardware faults, but logic to avoid this kind of

random hardware fault is generally applied at the design stage. We performed verification using this fault injection

to find systematic failures that may occur during fault handling of the corresponding logic.

The coupling factors that can cause failure in other elements in the fault state caused by the above DFI are as

follows:

- False sharing access

- DVM (Distributed Virtual Memory) transaction broadcasting

- Exclusive access

We created a fault injection model in the PSS environment to check whether failure can occur in other elements

due to the coupling factor in a state where a fault occurred in the shared region and recorded the result in the form of

FTR as follows. This fault model is used not only for design verification, but also for verification of recovery

operation in SW.

Figure 4. Example of FTR (Fault Tolerance Report)

The DFA result for the above cascading failure and common cause failure is included in the SFA result in the

form below.

Dependent Failure Analysis (DFA)

Element Redundant Element Functional Dependency DFA

Short name and

description

Short name and

description
Description Systematic fault Shared resource Expected Dependent Failure

CPU_CPD_FM5 BLK_CPUCL0 BLK_GPU
CPU should wake up GPU for

requested GPU processing

Stalled ACE

interface of CPU

GPU can't wakeup and system hang

occurred
PSS_ML_fault_model

BLK_CPUCL0 BLK_PCIe

PCIe will send posted write

request and it will generate

snoop to CPUCL0

Stalled ACE

interface of CPU

PCIe will not available. Posted write

will wait for snoop response from

CPU.

PSS_ML_fault_model

MIF_FAULT_1
Memory

scheduler:ECC logic
BLK_CPUCL0 False sharing

ECC error generated from

shared DRAM region

CPU will access fault address during

ECC error state

PSS_fault_injection_mo

del

Memory

scheduler:ECC logic
BLK_CPUCL0 exclusive access

ECC error generated from

shared DRAM region

CPU will access fault address during

ECC error state

PSS_fault_injection_mo

del

Verification Method

Dependent Failure Initiator(DFI)

FMEA_ID

Figure 5. Example of DFA result

III. SYSTEMATIC FAULT MODEL GENERATION USING MACHINE LEARNING

We were able to obtain failure modes with complex conditions with high risk expected through FMEA and DFA.

However, it is very difficult to reproduce systematic failure that occurs at the moment when a specific condition

of a plurality of elements is satisfied in the design verification stage. This is because this failure mode is a form

that cannot be recognized by a method that verifies the expected output for the input. Until now, this type of

failure was mainly discovered through long-term random tests at the silicon product level, which increased the

semiconductor design cost due to mask revision.

In order to create a fault model to reproduce this failure mode, we needed an environment that could generate the

operation of each element at the precise time we wanted.

In DVCon US 2022, we have already presented the process of finding the time when the desired condition occurs

by inserting a configurable delay using the ML algorithm.

TB structure of systematic fault model

As shown below, the functions are executed at the same time from the SW point of view, but in the actual HW,

they are operated at different times. Configurable delay compensates for this difference.

Figure 6. Concept of the ML based PSS action sequence model

The figure below shows the delay counter that counts the configurable delay in testbench.

There are two reasons for not implementing delay in SW. First, the minimum unit of delay that can be generated

in SW is microsecond. We need a delay counter with clock cycle resolution because we need to detect the cross

condition of HW event. And secondly, in the case of SW delay, the applied delay time may change depending on the

state of the CPU cache or instruction pipeline. In order to apply the ML algorithm, which will be discussed later, the

applied delay must have a linear characteristic. On the other hand, the delay counter implemented with SV code in

testbench performs counting every rising edge of clock. And when the delay count as much as the requested number

of clocks is completed, an interrupt is generated to the CPU core that requested the delay, so that the requested delay

value and the actual delay have a linear characteristic.

Figure 7. Delay counter

The figure below shows how to detect a target condition and how to store this information. The output monitor

checks whether a preset target condition occurs, and when the corresponding condition occurs, the simulation time

information and target condition information are exported to the simulation log. After the simulation is finished, the

output log goes through the phasing process and is saved in a separate output repository.

Figure 8. Output monitor and Output repository

The last shows the CPU SW that executes the function. We inserted an action called pss_delay in front of each

function using the PSS tool and performed simulation by generating SW codes with different delay values.

Pss_delay action transmits the delay request to the delay counter of the testbench through a separate mailbox

interface as shown in the figure and waits for the interrupt from the delay counter.

Figure 9. Verification with ML based PSS action sequence model

ML(Machine learning) implementation

Before applying ML, it was repeated to set the delay value, run the simulation, and adjust the value again

according to the result. This was an inefficient operation that required a lot of time and human resources. To

improve this, we applied the linear regression algorithm, which is the most basic algorithm of ML. First, create a

code with a certain range of delay values for function_A and function_B and conduct simulation to examine the

simulation timestamp value where the target condition occurred for each. One coordinate can be created by the

combination of the input delay value and the simulation timestamp where the actual function is executed, and the

linear equations for function_A and function_B can be obtained using the obtained coordinates. Through this, we

can predict the simulation time at which the actual target condition occurs according to the delay value. If the

extended Euclidean algorithm is applied to these two linear equations, innumerable combinations of delay values of

function_A and function_B having a common simulation timestamp value are obtained.

Figure 10. Extended Euclidean algorithm for Diophantine equation

The Extended Euclidean algorithm [9] finds the greatest common divisors of a and b, as well as x and y values that

satisfy the equation. The solution obtained in this way is called a particular solution, and using this, a general

solution can be obtained that can find numerous combinations of x and y depending on the integer k value.

Figure 11. Result of Extended Euclidean algorithm

However, unexpected external factors that affect the delay value may occur in the actual system. And this may

break the linearity between the input delay and the simulation timestamp where the target condition occurred. To

compensate for this, we performed learning only on data with linearity in the analysis stage through the ML flow as

shown below and corrected the result value through the ML algorithm.

- Particular solution (d : GCD of a and b)

X0 = s x c/d

Y0 = t x c/d

- General solution (k : integer value)

x = x0 + k * b/d

y = y0 - k * a/d

Figure 12. ML sequence modeling flow

As a result, we were able to obtain a verification code that can reproduce the target condition through ML-based

regression only by setting the target condition that each element should have.

IV. SFA RESULT EXPORT TO ISO 26262

The results of SFA obtained through the process so far are as follows.

Figure 13. Result of SFA

The above results were classified according to the verification work products required by ISO 26262-8:2018,

9.5.[10] Looking at the contents, it can be seen that most of the contents are covered by the existing design

verification.

In particular, in the case of the coverage report, new cross function bins between the dependent elements that

were not previously covered were added through correlation table, risk factor analysis, and DFA. In addition,

through the ML algorithm-based fault model, the critical sequence condition of the hazardous function could also be

covered through simulation. In the case of CPU, it was possible to increase the number of functional coverage bins

by about 15% only for high-risk items of SFSL-B or higher through SFA.

 The results of this SFA are used in the risk assessment process for systematic faults in the safety analysis

process of ISO 26262. And it is used to create the FMEDA report required by ISO 26262 by adding the failure rate

and diagonal coverage results for random hardware faults to the FMEA and DFA reports of the SFA.

What we want to show here is that the activities we have been doing in the design verification field to prevent

systematic faults can be independently applied and utilized to standards requiring design reliability such as ISO

26262 and IEC 61508[11] through the SFA. This could be the key to simplifying the requirements driven verification

process, which has recently been attracting attention.

V. CONCLUSION

As the density of semiconductors increases and the complexity of their functions increases, systematic failures

with complex conditions that were not detected in the design verification stage are more often found at the silicon

product level. We thought that in order to detect systematic failure in the pre-silicon design verification stage, an

inductive (bottom-up) approach is needed to find and analyze the risk factors from the smallest functional unit and

broaden the scope to find system vulnerabilities.

In this paper, we introduced HARA (Hazard Analysis and Risk Assessment) and safety analysis methodology

used in ISO 26262 to the design verification field and used it to measure the risk of each element of the target design.

We found risk factors that can represent the level of risk for detailed items. And, through FMEA and DFA, it was

possible to easily see the expected design vulnerabilities by classifying the risk factors that could affect the system

level. To verify the expected design vulnerabilities, a systematic fault model was created using the ML algorithm.

Through this, it was possible to verify the time critical corner case, which has been difficult in pre-silicon so far.

ISO 26262 does not suggest a new verification methodology for systematic failures covered in design

verification. However, ISO 26262 requires a persistent impact analysis and risk assessment at every stage. This is

because all fatal failures start with minor faults, and it is important to predict and prevent them in advance.

Systematic failures dealt with in our design verification field are especially caused by human errors in the design

process. To prevent this, the establishment of a more rigorous risk assessment and risk prediction process will

become an essential element for semiconductor production requiring high reliability in the future

REFERENCES
[1] ISO-26262:2018 “Road vehicles –Functional safety“

[2] ISO-26262-3:2018 “Road vehicles –Functional safety- part3, 6. Hazard analysis and risk assessment”
[3] ISO-26262-11:2018 “Road vehicles –Functional safety- part11, 4.7 Semiconductor dependent failures analysis”

[4] Jang, M., Hyun, M., Ahn, H., Kim, J., Kim, Y. (DVCon 2022) PSS action sequence modeling using Machine Learning
[5] ISO-26262-8:2018 “Road vehicles –Functional safety- part8, 14 Proven in use argument”

[6] ISO-26262-9:2018 “Road vehicles –Functional safety- part9, Automotive Safety Integrity Level”

[7] ISO-26262-5:2018 “Road vehicles –Functional safety- part5, annex D, Diagnostic coverage
[8] Jang, M., Kim, J., Kim, D. (DVCon 2020) Dependent Failure Analysis using PSS

[9] https://www.math.cmu.edu/~bkell/21110-2010s/extended-euclidean.html
[10] ISO-26262-8:2018 “Road vehicles –Functional safety- part8, 9.5 Verification work product”

[11] IEC 61508-2:2010 “Functional safety of electrical/electronic/programmable electronic safety-related systems.

https://www.math.cmu.edu/~bkell/21110-2010s/extended-euclidean.html

