
Early Detection of Functional Corner Case Bugs 
using Methodologies of the ISO 26262

Moonki Jang, Samsung Electronics



Agenda

• Introduction of ISO 26262

• Systematic Failure Analysis

• Systematic failure model generation using Machine Learning

• SFA for requirements-driven verification

• Conclusion



Requirements of Functional Safety

• For a long time, electronics were a comfort feature
• Now, they are a safety feature



What is ISO 26262?

• Functional Safety standard for Road vehicles
• Aims to address possible hazards caused by the malfunctioning behaviour of electronic 

and electrical systems in vehicles.

• The first edition was published on 11 November 2011.

• The second edition, published in December 2018, added ‘Part 11. Guidelines on 
application of ISO 26262 to semiconductors’

• Based on IEC 61508 : Functional Safety of Electrical / Electronic / 
Programable Electronic Safety-related system

• Both IEC 61508 and ISO 26262 are risk-based safety standard



Overall framework of ISO 26262

• ISO 26262 V diagram



Foundations of Functional Safety

• Functional Safety
• Avoidance of Systematic Faults

• Control of Systematic Faults

• Control of Random Hardware Faults



Random Hardware Failures
• Random Hardware Failure

• Failure that can occur unpredictably during the lifetime of a hardware element and that 
follows a probability distribution

• Measures against failures
• Required runtime safety mechanisms (self-tests, diagonostic coverage)

• Redundancy, safety layer

• SPFM (Single Point Fault Metric) : shows robustness of the item to single-point faults
• Single Point Fault : Fault in an element that is not covered by a safety mechanism

• LFM (Latent Fault Metric) : shows robustness of the item to latent faults
• Latent Fault :Multi-point fault whose presence is not detected by a safety mechanism

• PMHF (Probability Metric for random Hardware Failures)
• Calculating the system failure rates and assessing the ASIL for functional safety



Systematic Failures

• Systematic failure is a failure that arises from the activity itself that 
develops and produces a system. 

• Human error of personnel participating in development and production activities is the 
biggest cause. 

• RTL bugs caused by incorrect design in the semiconductor design 
process are typical systematic failures



How to prevent these Systematic Failures?

• ISO 26262 relies on the traditional design verification methodologies

• However, as system complexity increases, errors caused by 
unintended action that occur during interactions conditions that are 
difficult to detect with existing verification methods are often found 
at the silicon level

• To detect above complex systematic fault, another new robust 
methodologies are required.



Cluster might not response to snoop during coherency connection handshake

Conditions:
1. The Cluster is in the OFF, MEM_RET, or DEBUG_RECOV power mode
2. The Cluster is powered on by the system requesting a transition on the cluster P-channel to the ON power mode. This 

caused the Cluster to request to connect to system coherency (SYSCOREQ=1, SYSCOACK=0).
3. The interconnect sends a snoop to the Cluster after it has observed SYSCOREQ HIGH but before it has asserted SYSCOACK.
4. The interconnect has a dependency that causes it to delay asserting SYSCOACK until the snoop transaction is outstanding

Example of functional corner case bugs - 1

• Errata cases reported from IP provider



Example of functional corner case bugs - 2

• Protocol conflict between PCIe and ACE interface

Condition_1

Condition_2

Condition_3

Condition_1: PCIe RC buffer overflowed

Condition_2: CPU generates Writeback transaction

Condition_3: Snoop generated from posted write of PCIE



Agenda

• Introduction of ISO 26262

• Systematic Failure Analysis

• Systematic failure model generation using Machine Learning

• SFA for requirements-driven verification

• Conclusion



Introduction of SFA (Systematic Failure Analysis)

• We created Systematic Failure Analysis (SFA) to expand the functional 
verification coverage by extracting risk factors from the IP level and 
predicting risks.
• Failure mode definition

• Risk assessment

• FMEA (Failure Mode and Effect Analysis)

• DFA (Dependent Failure Analysis)



Failure mode definition for SFA

• Failure mode is created to predict possible failures
• FM1: Integration issues (connection, configuration..)

• FM2: Accessibility issue (access path, access control…)

• FM3: Functionality issue (wrong output, unintended behavior…)

• FM4: State transition issues (power gating, clock gating, reset…)

• FM5: Absence of independence or FFI (Freedom from Interference)



Risk factors

• Hazardous functionality

• Proven in use level

• Severity level

• Known issues in another project

• Applicable workaround



Definition of SFSL (Systematic Failure Severity Level)

• SFSL indicates the functional safety level guaranteed by the system.

SFSL Level Definition Description 

SFSL_A Risk Level > 12 Very high risk of critical failures. Detailed verification is required 

SFSL_B Risk Level > 8 High risk of critical failures. Additional verification is required 

SFSL_C Risk Level > 4 Mid risk of critical failures. Impact analysis is required 

SFSL_D Risk Level <= 4 Low risk of critical failures. 

 



FMEA (Failure Mode and Effect Analysis)

• Failure Mode and Effects Analysis (FMEA) determines all possible 
ways a system component can fail and determines the effect of such 
failures on the system. 

FMEA

ID Requirements SFSL P S H K W

CPU_CPD_FM3 CPUCL_F1 P-ch handshaking has failed
wrong connection of P-CH

interface

Power mode transition does

not working
B 3 3 Y N 1

SYSTEM idle/sleep

mode
try power mode transition

CPU_CPD_FM5 CPUCL_F1

ACE interface stalled after snoop

arrived between coherency

disconnect and coherency disable

reported Errata: 1500609
Deadlock occurred between

CPUCL and BUS
A 3 4 Y Y 1 SYSTEM sleep mode

Generate snoop between

SYSCOREQ and SYSCOACK

CMU_ACG_FM1 CPUCL_F2 wrong clock pll ratio wrong PLL configuration generate wrong clk out D 1 2 N N 3 Normal active mode Check clk after CMU init

CMU_ACG_FM5 CPUCL_F2

unintended clock gating

occurred during CPU is in active

state

Interference occurred

between clk gating sequence

Deadlock occurred due to

incompleted transactions
A 2 4 Y Y 1

SYSTEM sleep mode

throttling enable

Access CPUCL0 register

between cpucl0_clk_gating_en

and cpucl0_clk_blocking_ext_en

Occurance Conditions
Name / Function

Potential Failure Mode(s) Potential Cause of Failure Potential Effect of Failures
Related high level

functions

Risk Assessment



DFA (Dependent Failure Analysis)
• The analysis of dependent failures aims to identify the single events 

or single causes that could bypass or invalidate a required 
independence or freedom from interference between elements and 
violate a safety requirement or a safety goal



DFA implementation for DV

• We’ve found DFI (Dependent Failure Initiator) and coupling factors by:
• Fault injection

• Uncorrectable ECC error injection (DRAM/L3DCache/L1,L2 Dcache)

• Memory Management Unit(MMU) translation fault generation

• RAS (Reliability, Availability, and Serviceability) error injection for CPU, Interrupt 
controller, System MMU

• Generate interference stimulus for a shared memory region
• False sharing coherency access

• Distributed Virtual Memory(DVM) transaction broadcasting

• Exclusive access

• CPU cluster power down



Output of DFA

• FTR (Fault Tolerance Report)



Output of DFA

• DFA result
Dependent Failure Analysis (DFA)

Element Redundant Element Functional Dependency DFA

Short name and

description

Short name and

description
Description Systematic fault Shared resource Expected Dependent Failure

CPU_CPD_FM5 BLK_CPUCL0 BLK_GPU
CPU should wake up GPU for

requested GPU processing

Stalled ACE

interface of CPU

GPU can't wakeup and system hang

occurred
PSS_ML_fault_model

BLK_CPUCL0 BLK_PCIe

PCIe will send posted write

request and it will generate

snoop to CPUCL0

Stalled ACE

interface of CPU

PCIe will not available. Posted write

will wait for snoop response from

CPU.

PSS_ML_fault_model

MIF_FAULT_1
Memory

scheduler:ECC logic
BLK_CPUCL0 False sharing

ECC error generated from

shared DRAM region

CPU will access fault address during

ECC error state

PSS_fault_injection_mo

del

Memory

scheduler:ECC logic
BLK_CPUCL0 exclusive access

ECC error generated from

shared DRAM region

CPU will access fault address during

ECC error state

PSS_fault_injection_mo

del

Verification Method

Dependent Failure Initiator(DFI)

FMEA_ID



Agenda

• Introduction of ISO 26262

• Systematic Failure Analysis

• Systematic failure model generation using Machine Learning

• SFA for requirements-driven verification

• Conclusion



Requirements of systematic failure model

• Even if SW is executed at the same time, the resulting HW event 
occurs differently.

• We had to insert delay to make synchronized HW events.



• We’ve created UVM Delay counter/Output monitor and Output 
repository for Machine Learning and result analysis

TB structure of the systematic failure model

• Generated Tests from PSS
• Delay Counter
• Output Monitor
• Output Repository



Machine Learning implementation

Action A Action B 

(0, 1) (0, 2) 

(1, 3) (1, 5) 

(2, 5) (2, 8) 

 

(a , b)

(2 , 1)
(5 , 3)
(8 , 5)

(11 , 7)
.
.
.

① ② ③

④

⑤⑥



ML sequence modeling flow



Agenda

• Introduction of ISO 26262

• Systematic Failure Analysis

• Systematic failure model generation using Machine Learning

• SFA for requirements-driven verification

• Conclusion



Reusable output of SFA 

• SFA output could be reuse for various requirements based standards



Agenda

• Introduction of ISO 26262

• Systematic Failure Analysis

• Systematic failure model generation using Machine Learning

• SFA for requirements-driven verification

• Conclusion



Conclusion 

• Higher levels of reliability will be required for semiconductors
• Reinforced HARA(Hazard Analysis and Risk Assessment) process will be 

required

• Innovative expansion of the verification coverage is needed

• ISO 26262 is not a reference. It will be a common requirements for our 
future development process.



• Questions and Answers
• Please feel free to contact me (moonki.jang@gmail.com)


	슬라이드 1: Early Detection of Functional Corner Case Bugs using Methodologies of the ISO 26262
	슬라이드 2: Agenda
	슬라이드 3: Requirements of Functional Safety
	슬라이드 4: What is ISO 26262?
	슬라이드 5: Overall framework of ISO 26262
	슬라이드 6: Foundations of Functional Safety
	슬라이드 7: Random Hardware Failures
	슬라이드 8: Systematic Failures
	슬라이드 9: How to prevent these Systematic Failures?
	슬라이드 10: Example of functional corner case bugs - 1
	슬라이드 11: Example of functional corner case bugs - 2
	슬라이드 12: Agenda
	슬라이드 13: Introduction of SFA (Systematic Failure Analysis)
	슬라이드 14: Failure mode definition for SFA
	슬라이드 15: Risk factors
	슬라이드 16: Definition of SFSL (Systematic Failure Severity Level)
	슬라이드 17: FMEA (Failure Mode and Effect Analysis)
	슬라이드 18: DFA (Dependent Failure Analysis)
	슬라이드 19: DFA implementation for DV
	슬라이드 20: Output of DFA
	슬라이드 21: Output of DFA
	슬라이드 22: Agenda
	슬라이드 23: Requirements of systematic failure model
	슬라이드 24: TB structure of the systematic failure model
	슬라이드 25: Machine Learning implementation
	슬라이드 26: ML sequence modeling flow
	슬라이드 27: Agenda
	슬라이드 28: Reusable output of SFA 
	슬라이드 29: Agenda
	슬라이드 30: Conclusion 
	슬라이드 31

