DESIGN AND VERIFICATION TH **CONFERENCE AND EXHIBITION**

UNITED STATES

SAN JOSE, CA, USA FEBRUARY 27-MARCH 2, 2023

Early Detection of Functional Corner Case Bugs using Methodologies of the ISO 26262

Moonki Jang, Samsung Electronics

SAMSUNG

Agenda

- Introduction of ISO 26262
- Systematic Failure Analysis
- Systematic failure model generation using Machine Learning
- SFA for requirements-driven verification
- Conclusion

Requirements of Functional Safety

- For a long time, electronics were a comfort feature
 - Now, they are a safety feature

What is ISO 26262?

- Functional Safety standard for Road vehicles
 - Aims to address possible hazards caused by the malfunctioning behaviour of electronic and electrical systems in vehicles.
 - The first edition was published on 11 November 2011.
 - The second edition, published in December 2018, added 'Part 11. Guidelines on application of ISO 26262 to semiconductors'
- Based on IEC 61508 : Functional Safety of Electrical / Electronic / Programable Electronic Safety-related system
 - Both IEC 61508 and ISO 26262 are risk-based safety standard

Overall framework of ISO 26262

• ISO 26262 V diagram

	1	2. Managemen	t of functional safety	1	1
2-5 Overall safety management		2-6 Safety manageme and the product devel	ent during the concept phase opment phases		anagement during production, rvice and decommissioning
3. Concept phase			pment at the system leve		7. Production, operation
3-5 Item definition	4-5 General development	topics for the product t at the system level	4-9 Safety validation	in the second second	service and decommissioning
3-6 Hazard analysis and risk assessment	4-6 Technica	al safety concept	4-8 System and Item and verification	integration	7-5 Planning for production, operation, service and decommissioning
3-7 Functional safety concept		4-7 System	architectural design		7-6 Production
					7-7 Operation, service and
12. Adaptation of ISO 26262 for motorcycles		development at the dware level	6. Product deve softwar		decommissioning
12-5 Safety culture		opics for the product tatthe hardware level	6-5General topics development at th		
12-6 Confirmation measures		tion of hardware	6-6 Specification of requirements		
12-7 Hazard analysis and risk assessment		e design in of the hardware metrics	6-7 Software arch 6-8 Software unit implementation	design and	
12-8 vehicle inlegration and testing	5-9 Evaluatio violations du failures	n of the safety goal e to random hardware	6-9 Software unit v 6-10 Software intervention		
12-9 Safety validation	5-10 Hardwa verification	re integration and	6-11 Testing of the software	embedded	
		8. Suppor	rting processes		
 8-5 Interfaces within distributed developed file 8-6 Specification and management of requirements 8-7 Configuration management 8-8 Change management 		8-9 Verification 8-10 Documentation m 8-11 Confidence in the 8-12 Qualification of so 8-13 Evaluation of hard	use of sof ware lools oftware components	application out 8-16 Integration	use argument a base vehicle or item in an of scope of ISO 20202 of safety related systems not rding to ISO 26262
		9. ASIL-oriented and	safety-oriented analyse	, <u>.</u>	
9-5 Requirements decomposition with 9-6 Criteria for coexistence of elemen		tailoring	9-7 Analysis of dep 9-8 Safety analyse		
		40 C. 14-1	ne on ISO 26262		

Foundations of Functional Safety

- Functional Safety
 - Avoidance of Systematic Faults
 - Control of Systematic Faults
 - Control of Random Hardware Faults

Random Hardware Failures

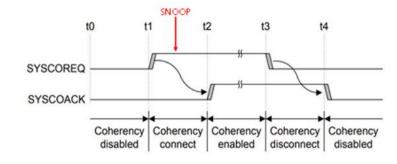
- Random Hardware Failure
 - Failure that can occur unpredictably during the lifetime of a hardware element and that follows a probability distribution
- Measures against failures
 - Required runtime safety mechanisms (self-tests, diagonostic coverage)
 - Redundancy, safety layer
 - SPFM (Single Point Fault Metric) : shows robustness of the item to single-point faults
 - Single Point Fault : Fault in an element that is not covered by a safety mechanism
 - LFM (Latent Fault Metric) : shows robustness of the item to latent faults
 - Latent Fault : Multi-point fault whose presence is not detected by a safety mechanism
 - PMHF (Probability Metric for random Hardware Failures)
 - Calculating the system failure rates and assessing the ASIL for functional safety

Systematic Failures

- Systematic failure is a failure that arises from the activity itself that develops and produces a system.
 - Human error of personnel participating in development and production activities is the biggest cause.
- RTL bugs caused by incorrect design in the semiconductor design process are typical systematic failures

How to prevent these Systematic Failures?

- ISO 26262 relies on the traditional design verification methodologies
- However, as system complexity increases, errors caused by unintended action that occur during interactions conditions that are difficult to detect with existing verification methods are often found at the silicon level
- To detect above complex systematic fault, another new robust methodologies are required.

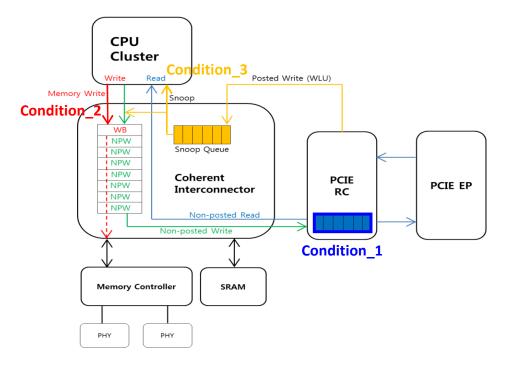

Example of functional corner case bugs - 1

• Errata cases reported from IP provider

Cluster might not response to snoop during coherency connection handshake

Conditions:

- 1. The Cluster is in the OFF, MEM_RET, or DEBUG_RECOV power mode
- 2. The Cluster is powered on by the system requesting a transition on the cluster P-channel to the ON power mode. This caused the Cluster to request to connect to system coherency (SYSCOREQ=1, SYSCOACK=0).
- 3. The interconnect sends a snoop to the Cluster after it has observed SYSCOREQ HIGH but before it has asserted SYSCOACK.
- 4. The interconnect has a dependency that causes it to delay asserting SYSCOACK until the snoop transaction is outstanding



Example of functional corner case bugs - 2

Protocol conflict between PCIe and ACE interface

Condition_1: PCIe RC buffer overflowed

Condition_2: CPU generates Writeback transaction

Condition_3: Snoop generated from posted write of PCIE

Agenda

- Introduction of ISO 26262
- Systematic Failure Analysis
- Systematic failure model generation using Machine Learning
- SFA for requirements-driven verification
- Conclusion

Introduction of SFA (Systematic Failure Analysis)

- We created Systematic Failure Analysis (SFA) to expand the functional verification coverage by extracting risk factors from the IP level and predicting risks.
 - Failure mode definition
 - Risk assessment
 - FMEA (Failure Mode and Effect Analysis)
 - DFA (Dependent Failure Analysis)

Failure mode definition for SFA

- Failure mode is created to predict possible failures
 - FM1: Integration issues (connection, configuration..)
 - FM2: Accessibility issue (access path, access control...)
 - FM3: Functionality issue (wrong output, unintended behavior...)
 - FM4: State transition issues (power gating, clock gating, reset...)
 - FM5: Absence of independence or FFI (Freedom from Interference)

Risk factors

- Hazardous functionality
- Proven in use level
- Severity level
- Known issues in another project
- Applicable workaround

Definition of SFSL (Systematic Failure Severity Level)

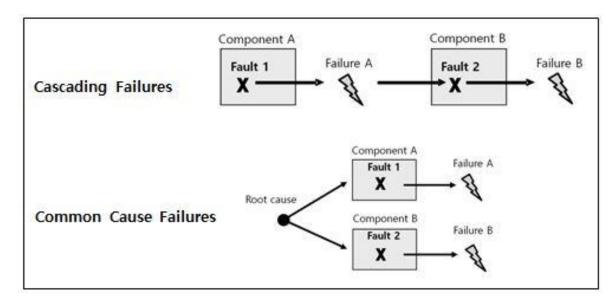
• SFSL indicates the functional safety level guaranteed by the system.

 $Risk \,Level = \frac{P(4..1) + S(4..1) + H(4,0) + K(4,0)}{W(4..1)}$

SFSL	Level Definition	Description
SFSL_A	Risk Level > 12	Very high risk of critical failures. Detailed verification is required
SFSL_B	Risk Level > 8	High risk of critical failures. Additional verification is required
SFSL_C	Risk Level > 4	Mid risk of critical failures. Impact analysis is required
SFSL_D	Risk Level <= 4	Low risk of critical failures.

FMEA (Failure Mode and Effect Analysis)

 Failure Mode and Effects Analysis (FMEA) determines all possible ways a system component can fail and determines the effect of such failures on the system.


	FMEA												
Name / Function		Potential Failure Mode(s)	Potential Cause of Failure	Potential Effect of Failures	Ris	Risk Assess			ent		Related high level	Occurance Conditions	
ID	Requirements			rotential Effect of Fallules	SFSL	Ρ	S	ΗKW		W	functions	Occurance conditions	
CPU_CPD_FM3	CPUCL_F1	P-ch handshaking has failed	5	Power mode transition does not working	В	3	3	Y	Ν		SYSTEM idle/sleep mode	try power mode transition	
CPU_CPD_FM5	-	ACE interface stalled after snoop arrived between coherency disconnect and coherency disable	reported Errata: 1500609	Deadlock occurred between CPUCL and BUS	A	3	4	Y	Y	1	SVSIEM cloop mode	Generate snoop between SYSCOREQ and SYSCOACK	
CMU_ACG_FM1	CPUCL_F2	wrong clock pll ratio	wrong PLL configuration	generate wrong clk out	D	1	2	Ν	Ν	3	Normal active mode	Check clk after CMU init	
CMU_ACG_FM5	CPUCL_F2	unintended clock gating occurred during CPU is in active state	Interference occurred between clk gating sequence	Deadlock occurred due to incompleted transactions	A	2	4	Y	Y		system sleep mode	Access CPUCL0 register between cpucl0_clk_gating_en and cpucl0_clk_blocking_ext_en	

DFA (Dependent Failure Analysis)

• The analysis of dependent failures aims to identify the single events or single causes that could bypass or invalidate a required independence or freedom from interference between elements and violate a safety requirement or a safety goal

DFA implementation for DV

- We've found DFI (Dependent Failure Initiator) and coupling factors by:
 - Fault injection
 - Uncorrectable ECC error injection (DRAM/L3DCache/L1,L2 Dcache)
 - Memory Management Unit(MMU) translation fault generation
 - RAS (Reliability, Availability, and Serviceability) error injection for CPU, Interrupt controller, System MMU
 - Generate interference stimulus for a shared memory region
 - False sharing coherency access
 - Distributed Virtual Memory(DVM) transaction broadcasting
 - Exclusive access
 - CPU cluster power down

Output of DFA

• FTR (Fault Tolerance Report)

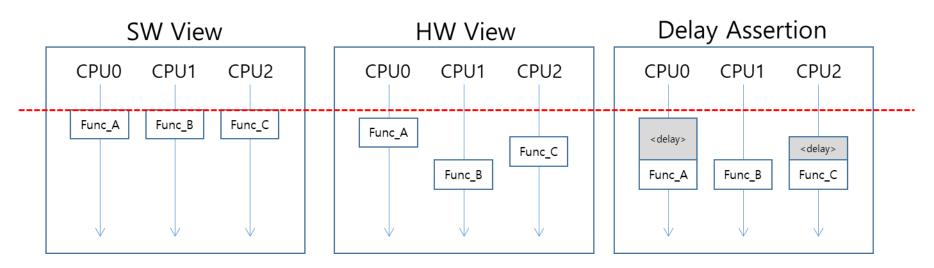
	Fault To	lerance	Report (FTR)										
Fault Injection				Interference stimulus					Simul	ation result	on result Scenario info	nfo	
FMEA_ID	type	target	expected failures	FTR_ID	stimulus_1	stimulus_2	stimulus_3	stimulus_4	stimulus_5	Recovery result	Fault Tolerance Report (FTTI)	Scenario name	Seed number
				M001_1	false sharing access					done	80	dram_1_ecc_1	3523
				M001_2	false sharing access	exclusive access				done	100	dram_1_ecc_2	3475
M001 E				M001_3	false sharing access	exclusive access	MMU page remap	_		done	105	dram_1_ecc_3	2531
			in more and hereing a	M001_4	false sharing access	exclusive access	MMU page remap	cluster powerdown		done	105	dram_1_ecc_4	3767
	ECC error	DRAM	error interrupt/ error response	M001_5	false sharing access	exclusive access	MMU page remap	cluster powerdown	DFS level change	done	110	dram_1_ecc_5	8236
				M001_6	exclusive access					done	50	dram_1_ecc_1	3257
				M001_7	exclusive access	MMU page remap				done	55	dram_1_ecc_2	3278
				M001_8	exclusive access	MMU page remap	false sharing access			done	90	dram_1_ecc_3	4291
				M001_9	exclusive access	MMU page remap	false sharing access	DFS level change		done	93	dram_1_ecc_4	3982
				M001_10	exclusive access	MMU page remap	false sharing access	DFS level change	cluster powerdown	done	97	dram_1_ecc_5	7218

Output of DFA

• DFA result

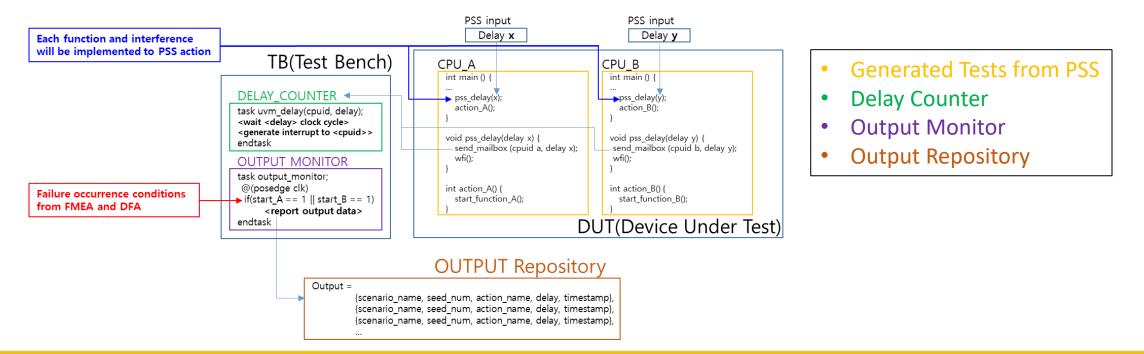
	Dependent Failu	re Analysis (DFA)						
	Element	Redundant Element	Functional Dependency	Dependent	Failure Initiator(DFI)	DFA		
FMEA_ID	Short name and description	Short name and description	Description	Systematic fault	Shared resource	Expected Dependent Failure	Verification Method	
CPU_CPD_FM5	BLK_CPUCL0		CPU should wake up GPU for requested GPU processing	Stalled ACE interface of CPU		GPU can't wakeup and system hang occurred	PSS_ML_fault_model	
	BLK_CPUCL0	BLK_PCIe	request and it will generate	Stalled ACE interface of CPU		PCIe will not available. Posted write will wait for snoop response from CPU.	PSS_ML_fault_model	
MIF_FAULT_1	Memory scheduler:ECC logic	BLK_CPUCL0	False sharing			CPU will access fault address during ECC error state	PSS_fault_injection_mo del	
	Memory scheduler:ECC logic	BLK_CPUCL0	exclusive access			CPU will access fault address during ECC error state	PSS_fault_injection_mo del	

Agenda


- Introduction of ISO 26262
- Systematic Failure Analysis
- Systematic failure model generation using Machine Learning
- SFA for requirements-driven verification
- Conclusion

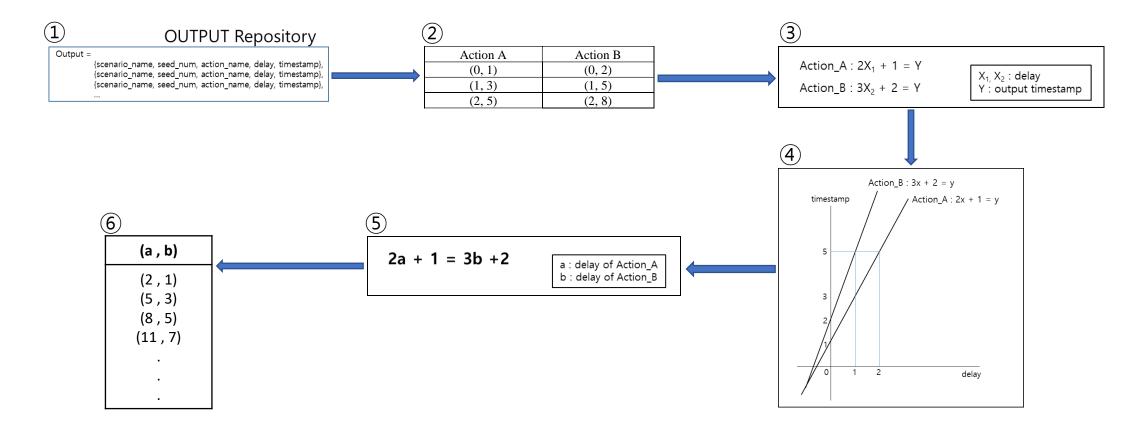
Requirements of systematic failure model

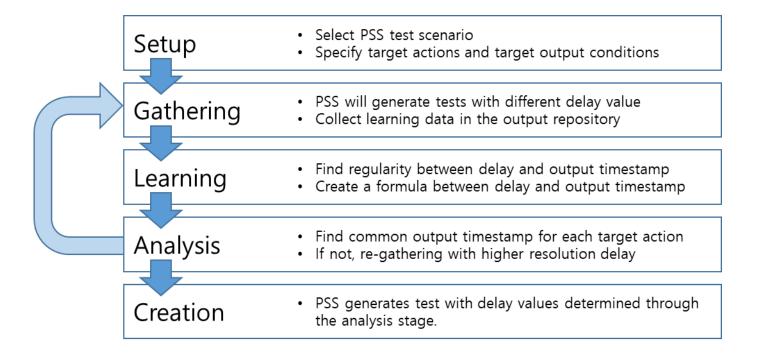
• Even if SW is executed at the same time, the resulting HW event occurs differently.



• We had to insert delay to make synchronized HW events.

TB structure of the systematic failure model


• We've created UVM Delay counter/Output monitor and Output repository for Machine Learning and result analysis


Machine Learning implementation

ML sequence modeling flow

Agenda

- Introduction of ISO 26262
- Systematic Failure Analysis
- Systematic failure model generation using Machine Learning
- SFA for requirements-driven verification
- Conclusion

Reusable output of SFA

• SFA output could be reuse for various requirements based standards

Architecture and design specification

- Change management and impact analysis report
- Detailed hardware design specification and requirements

Verification plan

- Tool, methods and environments that used for verification
- Verification strategy for target design

Verification specification

- Risk analysis report
- Function list with correlations for target design
- Test cases, test data and objects

Verification report

- FMEA report
- DFA report
- Coverage report

Agenda

- Introduction of ISO 26262
- Systematic Failure Analysis
- Systematic failure model generation using Machine Learning
- SFA for requirements-driven verification
- Conclusion

Conclusion

- Higher levels of reliability will be required for semiconductors
 - Reinforced HARA(Hazard Analysis and Risk Assessment) process will be required
 - Innovative expansion of the verification coverage is needed
- ISO 26262 is not a reference. It will be a common requirements for our future development process.

- Questions and Answers
 - Please feel free to contact me (moonki.jang@gmail.com)

