
Functional Verification from Chaos to Order:
Using Continuous Integration for Hardware

Functional Verification
Abdelouhab Ayari, Product Engineer, Siemens EDA, Munich, Germany

(abdelouahab.ayari@siemens.com)

Kirolos Mikhael, Product Engineer, Siemens EDA, Cairo, Egypt
 (kirolos.magdy@siemens.com)

Abstract- In recent years, continuous integration and development have become crucial in organizing software
development cycles. As a result, it has also become a way to streamline hardware flow, especially with the increased
complexity of chips and SOCs. Integrating various teams that may be working on different systems, sub-systems, and IPs
can be a challenge and may cause integration chaos. CI/CD plays an important role in organizing the hardware flow and
making integration seamless, easy, and trackable using the ability of running multiple jobs in parallel it is capable of
accelerating the workflow. This paper discusses the ability of hardware CI flow to accelerate the functional verification
flow and increase productivity and quality.

I. INTRODUCTION

As system complexity grows and tool performance hits the performance wall, the focus shifts towards enhancing
productivity using existing tools. This paper will demonstrate how to leverage the CI flow in hardware to boost
productivity, making the process more adaptable and smoother.
Wilson Research [1] reports that 24% of time is spent on creating tests and running simulations, and 41% on
debugging. Using continuous integration (CI) in functional verification ensures automation and tight integration
between various functional verification tools, resulting in reduced time and effort. This paper will cover the process
of building a strong integration and its positive effects on time and effort savings.

II. CONTINUOUS INTEGRATION FRAMEWORK
This chapter will cover the continuous integration framework which is

designed to test code in an automated manner. With modern SoCs
comprising multiple subsystems, the CI framework is implemented at both
the subsystem and chip levels. This allows the code to be integrated into
larger sub-systems and systems. The CI framework involves multiple loops,
as depicted in Figure 1, where each loop represents a bigger subsystem [2].
The code passes through these loops until it becomes stable enough to be
integrated into the main streamline of the chip/SoC.

Unit testing is a software method used in the validation of the smallest
parts of the software [3]. Unit testing offers various benefits, such as
detecting bugs at an early stage, improving code quality, aiding in
refactoring, accelerating development, and enhancing collaboration

Next, after the unit testing process comes sub-system level testing,
which involves integrating your units into a larger sub-system. To
illustrate, if we consider a processor design, we can divide the system into
multiple units such as the Address Unit (AU), Execution Unit (EU), Bus
Unit (BU), and Instruction Unit (IU). Suppose the designer is working on
a decoder in the IU; we can perform unit testing on the decoder and then
integrate it into the IU for sub-system testing. After that, we can integrate
this with all the other units and perform system-level testing. If the processor is part of another system, we can
extend the testing loop even further. By adopting this approach, we can automate testing more efficiently and obtain
results faster and earlier in the design stage, thus saving ourselves from integration difficulties or what the designers
call “Integration Hell”.

Using the provided framework flow, we can delineate the algorithmic perspective as depicted in "Algorithm 1".
This will assist in crafting the code necessary to steer our CI system, ensuring robust integration and a holistic testing
strategy given that every CI loop is based on our CI system infrastructure which will be discussed in the following
section.

Designer’s new code

Build System

CI Loop 1: Unit Testing

CI Loop 2: Sub-system Level Testing

Figure 1: Continuous Integration Framework Loop

CI Loop 3: System Level Testing

ALGORITHM 1: CONTINUOUSINTEGRATION FOR DESIGNER'S CODE

Input: DesignerCode (The new code provided by the designer)
Output: Status of the CI system

1 function BUILD(DesignerCode)
2 return DesignerCode is valid ? Compile and Test () : Error
3 end function

4 function UNIT_TEST(DesignerCode)
5 for each unit in it the DesignerCode: if not test(unit) then return Failure else return Success
6 end function

7 function SUBSYSTEM_TEST(DesignerCode)
8 for each submodule in System that contains the DesignerCode: if not test(sub) then return Failure else

Success.
9 end function

10 function SYSTEM_TEST(DesignerCode)
11 For the DesignerCode integrated in the full system; if not test(system) then return Failure else Success
12 end function

13 if BUILD(DesignerCode) is Error: Output "Build failed"; Stop
14 if UNIT_TEST(DesignerCode) is Failure: Output "Unit test failed"; Stop
15 if SUBSYSTEM_TEST(DesignerCode in SubSystem) is Failure: Output "Sub-system test failed"; Stop
16 if SYSTEM_TEST(DesignerCode in FullSystem) is Failure: Output "System test failed"; Stop
17 Output "All CI steps passed!"

III. CI SYSTEM INFRASTRUCTURE
To carry out the tests outlined in the preceding chapter, we require a robust infrastructure for our CI system that

oversees the testing process and ensures comprehensive feedback and transparency. As depicted in Figure 2, we
present our suggested infrastructure for the CI setup. This system encompasses several functional units, including
the repository project data, the CI tool, the run process, a database for collating data, and a method for data
visualization.

 The project repository is overseen
by the version control system and the
CI system provides essential metrics
and statuses to facilitate commit
gating. For instance, when employing
mechanisms like the 'pre-build
branch merging' git plugin[5], you'll
need to specify the criteria for a
successful merge. The CI system can
supply this information through
communication APIs, bridging the CI
tool and the run process. This run
process encompasses procedures for
static, formal, and simulation
verification, delivering results in the
form of a pass/fail metric.

In the run process stage, this
primarily involves executing make
targets and required scripts for simulation, static, and formal verification tools. During this stage, the CI system
employs the provided APIs from these tools to gather all necessary data. By utilizing the run process with the tools
and associated APIs, the CI system can generate data and metrics in multiple and varied formats (CSV, UCDB, XML,
etc.). This data requires a communication layer between the static, formal, and simulation tools and the database
portion of the CI system. This communication layer is achieved by a script that seamlessly runs the tools' APIs and

Figure 2: Continuous Integration System

creates the necessary data for debugging and visualization in the formats mentioned earlier and the data can be archived
either by complicated databases or with the native database techniques from the CI tools.

Diving deeper into the CI infrastructure, we can explore the communication pathways and understand how data is
sent and produced among various components and the CI tool. Initially, let's discuss the connection between the Source
Code Management (SCM) and the CI tool. This connection largely relies on the SCM in use, and currently, multiple
methods exist to establish this link, mainly through the APIs offered by the SCM. For instance, when "git" is utilized
as an SCM system, it becomes straightforward to implement webhooks that detect code modifications and prompt the
CI tool to initiate the associated tests.

Another vital connection to understand is the one between the CI tool and visualization. Given that the execution
phase might yield varied outputs from processes like functional verification via static, formal, and simulation
instruments, there are numerous ways to manage this link. The CI execution phase can produce data in several formats,
such as CSV, UCDB, XML, and JSON, utilizing the APIs of the chosen functional verification tools. These diverse
formats allow for visualization through various techniques. While some plugins within the CI tool can aid in
visualization, there are also specialized tools tailored for visualizing these specific formats. In subsequent sections,
we will delve deeper into the implementation details.

 The connection between the CI tool and the run process, encompassing the runs for static, formal, and simulation,
is shown in Figure 3. This communication originates
from the CI tool, activating the makefile. This makefile
refers to the tool configuration, offering multiple targets
for tool execution, and can also specify targets for
regression runs. Our communication approach between
the CI tool and the run process hinges on triggering these
“make” targets. This method ensures that the
infrastructure remains scalable and deployment-
friendly.

Furthermore, we've incorporated a scripting layer
within the make targets. This layer invokes the runs,
employing the tool APIs to generate varied data and
conduct analyses, ultimately producing result metrics in
a pass/fail format. Importantly, this scripting layer is
versatile; it can manage configurations based on user-
specified TCL scripts or even those associated with tool execution through regression managers for enhanced control
over regression runs.

In summary, the infrastructure proposed provides a flow that can be easily and seamlessly integrated with the
existing configuration and flows in hardware design. Most of the tool users are using the Makefile

IV. REQUIREMENTS FOR EDA VENDOR TOOLS TO SUPPORT CI
We will discuss the most important requirements for EDA vendors to support a CI flow.

A. Pass/Fail Status API mechanism
In this work, we introduced a CI wrapper

that utilizes the functional verification tools to
generate data and track the status and this is called
“wrapper script”. In the CI integration system, the test
status is crucial for exchanging information between the
CI modules. The wrapper facilitates the generation
of the test status, which can take on four states:
OK, Warning, Error, and Fatal. These states are
configurable. The user can easily configure the
status generation using the wrapper script and
implement a checker list for verification. The
checker list will depend on which CI loop the
verification runs at and the level of
verification.

The CI tool will be in charge of
starting the run/execution process for the
verification. To make this step easy to implement and handle, it is highly recommended to have a common
way/script to run all the verification tools. Moreover, the pass-fail status of the verification tool run should be

Figure 3: Communication between the CI system and Run process

Figure 4: API Mechanism

provided simply and easily. The status is used by the pipeline to decide on the next actions. Tools have also to
provide a simple interface to configure the pass-fail mechanism, this will add more flexibility to the CI flow.

As shown in Figure 4, the API mechanism takes the databases (DB) from the functional verification runs, and under
the hood, it can run the APIs on it to extract the needed metrics/data and it also can produce these metrics in different
formats that are suitable to different usages (i.e., visualization, commit gating, track the quality of the code, etc.).
Hence, tools used in CI should be capable of having a unified way to configure the analysis and generate data.

B. Common Output Data Format to be Processed by CI Tools
It is essential to have a standardized way of outputting data in a CI system because it integrates multiple tools,

each producing different results. Collecting these results in one form makes analysis and decision-making more
straightforward and identifiable. The CSV format is a suitable way to exchange data, as it is simple and can be
integrated with various tools. On the other hand, UCDB is more integrated with simulation results, as it is coverage-
based and uses the same syntax to generate results, making it easy to integrate with different tools. Therefore, tools
used in the CI system should be capable of generating both UCDB and CSV formats for the results.

C. Fine Granularity of Tool Configurations
 To have a configurable and scalable CI system, tools should support different modes:
 Light mode: Tools should be able to run in a mode that

can execute a specific set of checks which should be
faster. This supports the CI unit testing loop.

 Full mode: To run the tools in the full functional mode
and this could be used in the regression analysis.

 User mode: Tools should have the configurability to
have different run options in different situations so it’s
flexible to be configured using the CI system.

V. CONFIGURABILITY, ADAPTABILITY, AND TIGHTNESS

In the previous chapter we went through the framework
steps, and this was going through starting from the building loop
with unit testing, to the system level with bigger loops. So, this
means that the CI system configuration must contain the
configurability features.

 Figure 5 illustrates an example of various configurations
for the same CI pipeline. In Figure 4 (a), the full pipeline for a
complete system regression, including functional verification and
simulation, is displayed. However, as there are different levels of
CI operation depending on the purpose of running the CI pipeline
and the user, we require more configurability levels, such as a light
mode that runs for a shorter time to provide instant feedback. This
increased degree of freedom enables us to adapt the analysis
according to the purpose. For instance, if a verification engineer
adds a test case and wishes to examine its impact only, they can
run the pipeline in light mode, as demonstrated in Figure 5 (c), and
receive the results promptly, without having to go through the
entire regression mode. This not only saves engineers' time but
also conserves resources.

Apart from configurability, our CI system also boasts
adaptability, which can be achieved in various ways. For instance,
the pipeline can skip certain stages based on the results of other
stages, as depicted in Figure 5 (b). This means that in case of a
failure, the pipeline can avoid unnecessary steps, saving time and
effort in debugging. Furthermore, adaptability can be implemented
by passing artifacts through different runs, allowing the CI system
to conduct a comparative analysis of the results. Based on this
analysis, some stages can be skipped while others can be run
specifically to obtain more information about the differences.

(a) Full system mode

(b) Skip based on results

(c) Light system mode
Figure 5: CI Configuration modes

To fully support configurability and adaptability the run process (Functional verification and simulation
tools) should support the light modes and be able to adapt to different configurations based on the state.

VI. EXPERIMENT
In this section, we will utilize the CI flow on AXI4-Lite from a family of ARM® AMBA® AXI control interfaces

to APB4 [4] bridge verification and simulation. We can utilize the discussed framework approach for CI integration
for a way of communication system as shown in Figure 3. The experiment was done on the design to follow the
given approach of using CI in the hardware design, so it
was done on different levels from block level to system
level. The AXI4-Lite to APB4 bridge has multiple
blocks that can be considered as a CI loop (Unit-
testing/Sub-system Level) and for each loop seamlessly
we used the CI system and collated all these results in
UCDB files and then plotted and visualized using any CI
platforms (i.e., Questa VIQ [6], Jenkins, etc.).

As depicted in Figure 6, the graphic illustrates the
primary module of the block diagram, enabling us to
segment the CI analysis based on these individual blocks.
Before delving into the specifics of defining the principal
CI loop, it's essential to understand the tools used in our
approach.

A. Source Control
We utilized Git as our source code manager, deploying it through an in-house GitLab setup. Our choice was

influenced by Git's widespread popularity and its plethora of plugins, which facilitated the implementation of
webhooks and gated commits techniques in our experiment. For our CI platform, we selected Jenkins, hosted on an
in-house server to enhance security and
maintain control. Jenkins' extensive
plugin support ensured smooth
integrations throughout our process. In
the grander scheme, the CI tool acts as the
central brain, regulating executions and
communications, making its stability
paramount. Choosing an apt CI tool
hinges on several factors including
scalability, user-friendliness,
customization capabilities, feedback
efficiency, orchestration, and cost
considerations. Assessing our options,
Jenkins emerged as the ideal choice for
our needs. Consequently, our primary
objective was to develop a pipeline project to
generate diverse pipeline versions, catering to
various CI loops as determined by the user.

Looking at Jenkins, we chose to implement our
flow using Jenkins Pipeline project, so we used
Jenkins Pipeline with Groovy syntax. This pipeline
file delineates our procedural directives and
orchestrates interactions between various
components in the CI system. Recognizing that
verification and design engineers often manage their
scripts and make targets, our goal was to minimize
reliance on the Jenkins pipeline file. As such, our
approach, depicted in Figure 3 and actualized in
Figure 7, was to primarily invoke the make targets
via the pipeline file, awaiting feedback to ascertain
a pass or fail status. The pipeline file also played a vital role in behavior modulation. As previously highlighted, we
have two operational modes: "Light Mode" and "Full Mode". The decision of which mode to initiate is based on
specific conditions. Within our pipeline file, we adopted a mechanism utilizing certain variables. Depending on
analysis outcomes, these variables are adjusted, determining whether tools operate in "Full Mode" or "Light Mode".

Figure 6: Block diagram for AXI4Lite to APB bridge

Figure 7: Jenkins Pipeline file and make targets

Figure 8: Conditional runs in Pipeline-file

This flexibility in tool operation, influenced by variable conditions, can be visualized as conditional execution in the
pipeline, further illustrated in Figure 8.

We aim to enhance our current system to make it dependent on specific CI loops or, more aptly, to be dependent on
different design levels. This is achieved by merging the "Multi Branch Pipeline Project" methodology with
parameterized runs in the Jenkins Pipeline file. Put simply, if a digital designer is working on the RTL for the "Master
Interface", they would initiate a branch, proceed with their development, and upon completion, would want to review
the results.
B. Configurable runs

Given this scenario, there are multiple versions of the primary pipeline file, each tailored for distinct design levels.
When committing changes, git hooks can prompt
the designer about the specific design block
they've been working on. Based on their
response, the appropriate Jenkins pipeline file,
tailored to that particular design level, will be
sourced. This efficient setup ensures that if a
user's work is confined to a branch and hasn't yet
been merged to the main branch, analysis can be
performed at the subsystem level. This means
there's no need for time-consuming formal
analysis on the top module, which might not yield the results we're looking for. Instead, we can channel our efforts
into a focused formal analysis of just that block, resulting in a faster process and more accurate outcomes. This
efficiency isn't just limited to formal analyses but extends to static verification and simulation as well. Figure 9
illustrates this concept, depicting conditional execution based on the specific design block or, equivalently, the
particular design level being worked on.
C. Smart Analysis

 In this design, we conducted
experiments to explore advanced CI
functionalities. By intelligently
identifying which module in the
design was modified and cross-
referencing it with our list of design
files, we could ascertain that, for
certain modules, it's possible to
bypass the CDC analysis if the
changes are exclusive to that module.
This technique considerably reduces
the time required and accelerates the
CI analysis, especially for
preliminary runs. Algorithm 2 shows a pseudocode illustrating the implementation of such a feature.

Also, in the smart analysis features we can define some policies to define the analysis based on which design level
we are on as discussed before. For this design, we could add some policies to precisely verify our design modules. For
FIFO RTL, if you are on the module design level we utilized our QFL1 with Questa PropCheck to use the verification
assertions IP to have an exit criterion for this module design level. This policy can be applied using the naming
convention of the submitted RTL module (branch) if it contains any info about a FIFO implementation. Also, if we
are on some defined sub-module level our exit criteria can be extended to add CDC analysis to verify crossing in this
submodule. Also, if we are working on the top module then we have a strict set of analyses as this can present the
work of integration so at this level, we utilize most of our static, formal, and simulation verification tools.
D. Archive the results

After exploring the CI tool and demonstrating how to utilize the system for intricate analysis steps while connecting
the architecture, our focus now shifts to elucidating the concept of preserving our work. Various methods exist for
archiving data, and in this section, we will elucidate how to select the most suitable approach for this task. Several
factors come into play when determining the technique for archiving data. Beginning with simplicity, using Groovy
scripts within the Jenkins framework is a straightforward method for data preservation. Alternatively, more
sophisticated techniques like SQL databases and other forms of databases can be employed, but they inherently
introduce a level of complexity. This brings us to the second criterion—considering the nature of the data. Jenkins and
simpler techniques are apt for archiving items such as logs, test reports, and binaries, while more intricate methods

1 Questa Formal Library is a set of comprehensive protocol assertions that allow Questa Formal users to
exhaustively prove design correctness

ALGORITHM2:SMARTANALYSIS USING DESIGNAWARENESS

Input: DesignerCode (The new code provided by the designer)
Output: Which pipeline stages will be skipped or run

1 Begin
2 IF changed(src) is in lint_skip_defined(sources) THEN
3 Set the variable with Lint Skip
4 Else IF changed(src) is in CDC_skip_defined(sources) THEN
5 Set the variable with CDC Skip …
5 End IF
6 End

Figure 9: Conditional execution of different pipelinefiles

are better suited for data with structured, complex relationships. Additional criteria for consideration include ease of
integration with the CI platform, performance, and scalability. In our experiment, data archived from static and formal
tools primarily took the form of binary databases (DBs), logs, UCDB, and CSV. For our experiment, we opted to
utilize the straightforward Jenkins technique for archiving our data. The size of these databases was relatively small,
as we will illustrate in the results, mitigating potential memory issues. Furthermore, utilizing these databases enabled
us to efficiently retrieve logs, reports, and files representing sophisticated metrics (i.e., UCDBs and CSV), optimizing
storage usage. This approach simplifies the archival process, requiring only the preservation of the databases for static
and formal tool analyses, with the ability to regenerate and reproduce the necessary data.

The archives prove invaluable in performing diverse and intricate tasks. In our experiment, we utilized the archives
to distinguish between two builds – the one that failed and the last one that succeeded. This technique enables us to
generate reports illustrating these distinctions. Such an approach significantly expedites the debugging process and
enhances overall productivity.
E. Visualization and Notification

Leveraging Jenkins as our platform, we
successfully integrated diverse methods for
visualizing data and metrics. Utilizing Jenkins
plot functionality, we trended essential metrics
from various static, formal, and simulation
tools, as depicted in Figure 10. The proposed
architecture allowed us to generate metrics in
different formats, enabling the creation of a
prototype for interactive visualization through
Questa Verification IQ plugins. interactive
visualization through Questa Verification IQ
plugins. Figure 10 shows multiple and
different ways to show the metrics using the CI
system proposed in this paper.

Having a good system with good feedback
requires a good notification system. So, using
Jenkins and Jenkins pipeline file we were able
to generate an email notification system with
the high-level details of the Jenkins job run.
The email contains the main resolution of the
build for each tool and each analysis step. The
email can contain also the required logs if there
is a failure that could help the Design and
Verification engineer to accelerate their work
and increase productivity.
F. Using Verification Run Manager

As discussed in the CI infrastructure, we
were able to conduct the same experiment with
the same configuration using Questa Verification
Run Manager and we were able to use RMDB2 to
run our make targets and achieve the same infrastructure proposed before. The aim of using VRM was to orchestrate
the parallel runs in our flow and using this layer we were able to achieve the same results but with better parallel
orchestration.

In summary, in this experiment using the different methods and techniques proposed we were to create a full CI
system that can suit the design nature itself and create a re-usable and
easy integration environment. In the following section, we will show
how such an architecture was able to help Design and Verification
engineers accelerate and increase productivity.

VII. RESULTS & CONCLUSION
Using the above CI flow, we were able to parallelize the

process and reduce the analysis time with the same
configuration to achieve a 2x reduction in total time. Working up
from the block level towards the top

2 RMDB is a run manager configuration file that is used by Questa VRM.

a) Questa Verification IQ Dashboard

Figure 10: Visualization of the CI results

b) Jenkins Plots Dashboard

also saves the hardware verification engineers from “integration hell”. In the paper, we will share specific case
studies from our end-users in the context of the AMBA DUT
example.

The paper presents a CI architecture implementation aimed at enhancing hardware functional verification using
static, formal, and simulation tools. The primary goal is to achieve close integration and supply essential metrics for
verification tracking. This verification process can be applied at various points in the digital design flow, from the
initial to the sign-off stages. An optimized functional verification flow allows for the early detection of bugs, reducing
the need for later adjustments. With our proposed architecture, we successfully incorporate multiple tools into a single
pipeline, including Lint, CDC, RDC, CDC Protocol Verification, CDC Simulate Effects3, Sim CDC Protocols/FX,
and Functional simulation. Achieving such an integrated process is complex, yet it allows for a seamless verification
procedure and offers a visual representation of each step.

In the previous chapter, we introduced an experiment let’s look closer at the results as shown in Table 1
Design/Run

Step
Compile

stage time
(s)

Lint time
with

compile
(s)

Lint time
without

recompiling(s)

Lint Stage
(Light

Mode) (s)

Formal/CDC
Stage time

(s)

Sim
regular

(s)

AXI4Lite-to-
APB bridge

(Without VRM)

3 13 10 8 42 20

AXI4Lite-to-
APB bridge
(With VRM)

3 13 10 8 42 20

Table 1: Execution time example
looking at these results we can see that using the conditional runs as discussed in our example can save the designer
and verification engineer a lot of analysis time. Let’s take into consideration for example a failure in the Lint stage in
a particular part, in this case, we won’t need to go through all these analysis steps instead we can skip some of the
formal verification which saves us in this experiment about 23s which is about 25% analysis time. This percentage
can be huge in big designs that take longer analysis time so with small and smart tricks we can save a lot of analysis
time and increase productivity. Also, we didn’t find any change in run-time between running using Questa VRM and
without using it. This gives us the intuition of the integrability between Questa VRM and the Questa Static and formal
solutions.

Despite the numerous stages in the pipeline and the intricate analysis, the architecture introduced simplifications
that promoted ease of reuse and expedited the implementation phase. The suggested Jenkins pipeline file transforms
the runs into make targets, executes the wrapper TCL scripts, and awaits the generation of the status. This level of
abstraction simplifies deployment, as changes can be made to the target or run scripts without the need to overhaul
the pipeline file. Such a framework has facilitated the architecture's expansion across various projects and streamlined
deployment in our customers' environments. This resulted in the ease of choosing which stage to run and when as
shown before so if we are skipping CDC for some design parts because of a clean Lint this will save a lot of time up
to 50% of the analysis time.

The system was able to communicate with different version control systems seamlessly as we chose to do the
deployment using Jenkins as a CI tool/platform, so we were able to integrate with Git easily. Given these numbers we
can easily integrate the commit gating techniques as the feedback is smart and fast so with just a commit you can get
your feedback analysis and the system can determine if this commit can pass or not.

Through the workflows and experiments conducted, the CI system demonstrated the capability of executing parallel
runs utilizing various methods. One is employing the Questa Verification Run Manager flow, management becomes
straightforward using the VRM, after we define the RMDB file for such parallel operations. Also, a Jenkins resource
pool facilitates this parallelism. With the Jenkins pipeline file, resources can be easily allocated for specific stages,
aiding in efficient parallel execution and time-saving. For instance, running all tools sequentially for the AXI4Lite to
APB4 bridge example leads to 95s execution time. However, using parallel execution in the pipeline reduces this
duration to 48s which means ~2x of reduction in the analysis time which can accelerate the analysis significantly.
Such strategies not only save considerable analysis time but also ensure rapid feedback for digital design/verification
engineers. This leads to enhanced productivity and early bug detection in the design phase.

From the previously discussed experiment, it's evident that Jenkins artifacts can be conveniently used to archive
analysis databases. In our trial using
Questa Static and Formal solutions, we
successfully archived the tool-
generated DBs. As illustrated in Table

3 Questa CDC Simulate Effects: This is for metastability injection.

Tool Used Questa Lint Questa CDC Questa Autocheck
Database Size 729 KB 521 KB 560 KB

Table 2: DBs sizes

Figure 11: Email Notification

2, these databases are merely several megabytes in size, yet they allow us to retrieve all the debugging data efficiently
and easily. The relatively small size of the databases provides us with the capability to efficiently archive results across
various runs and long time frames. This not only allows for archiving more databases through different runs but also
enables the maintenance of a larger history of databases. This, in turn, provides designers and verification engineers
with better insights into the performance of their designs. Additionally, the small-sized databases facilitate the
seamless execution of tools' APIs to generate reports and retrieve debugging details. This eliminates the necessity of
archiving these reports and debugging details, resulting in storage savings and efficient achievement of debugging
goals on a larger scale. Moreover, this CI flow readily supports the integration of more sophisticated database
techniques, including SQL, MySQL databases, and so on.

Utilizing the CI infrastructure and the APIs, we generated various types of trendable data. This facilitated the
creation of multiple visualization and trending data solutions. One such solution was realized through Jenkins plugins,
as demonstrated in the Jenkins Pipeline file. Furthermore, with Questa VRM, we effortlessly employed the plugin
supported by Jenkins to produce trends using UCDB files. The versatility of the CI infrastructure didn't just allow
integration via Jenkins plugins; its capability to generate metrics in diverse formats streamlined our integration
process. This allowed us to prototype with Questa Verification IQ and craft an engaging visual representation of the
required metrics for our static, formal, and simulation results, as shown in Figure 11 this shows an email with the
abstract details of the Jenkins run that can easily help the user to understand the results of running the job and give
him a starting point for debugging. Such trends and visualizations can help the verification/design engineers build an
insight into the code quality.

The introduced CI architecture marks a significant leap in hardware functional verification. Through its efficient
parallelization, seamless tool integration, and adept data archiving via Jenkins, we've realized considerable time
savings and enhanced analysis precision. The system's adaptability, evident in its diverse metric generation and
intuitive visualizations, streamlines processes for verification and design engineers. Coupled with real-time feedback
mechanisms, this architecture ensures swift and informed responses to issues, underscoring its transformative potential
in the realm of digital design verification.

This work also has been approved in a customer environment. Through this work, we have been working closely
with the customer and thanks to their work they were able to help us to approve these results and ideas on a larger
industrial scale. They were able to have the same architecture on their site which showed them a great value for
accelerating the analysis time and increasing the productivity of the engineers. This also approved the scalability of
this architecture as our experiment was on the medium-to-small design they were able to do the same on a larger scale
with larger teams and a more complex environment.

ACKNOWLEDGMENT

REFERENCES
[1] Wilson Research Group, 2020 Wilson Research Group functional verification study: IC/ASIC functional verification trend report, Mentor,

A Siemens Business, 2020.
[2] Engblom, J. Continuous Integration for Embedded Systems using Simulation. Wind River, Kista, SwedenJ.
[3] Duvall, Paul M., Steve Matyas, and Andrew Glover. Continuous Integration: Improving Software Quality and Reducing Risk.
[4] ARM Ltd., "AMBA AXI and ACE Protocol Specification," ARM Limited, 2013.
[5] Dickol John. "Advanced Usage Models for Continuous Integration in Verification Environments." Samsung, DVCon US, 2015
[6] Questa Verification IQ, user manual

	I. Introduction
	II. Continuous Integration Framework
	III. CI System Infrastructure
	IV. Requirements for EDA Vendor Tools to Support CI
	A. Pass/Fail Status API mechanism
	B. Common Output Data Format to be Processed by CI Tools
	C. Fine Granularity of Tool Configurations

	V. Configurability, Adaptability, and Tightness
	VI. Experiment
	A. Source Control
	B. Configurable runs
	C. Smart Analysis
	D. Archive the results
	E. Visualization and Notification
	F. Using Verification Run Manager

	VII. Results & Conclusion

