
Functional Verification from Chaos to Order:
Using Continuous Integration for Hardware Functional Verification

Kirolos Mikhael, Abdelouahab Ayari

Siemens EDA

Agenda

• Introduction

• Continuous Integration Framework (Concepts)

• CI Infrastructure

• Choose CI platform

• Requirements for EDA vendors

• Experiment

• Results & Conclusion

Introduction
Basic concepts for Continuous integration and delivery in hardware flow

Introduction

• History
• Used extensively in software development in late 90’s
• Starts to have more usage in hardware design and verification
• Used for projects with various contributors (design, verification, and system/concept

engineers)

• Goals
• Traditionally, several check-ins over several days are verified very late (usually in weekend

regressions)
• Failures/inconsistencies introduced in new check-ins become complex and time-costly to fix
• CI enables the frequent and reliable release of new features
• Code changes are integrated in a way that is

• Automated
• Efficient
• Correct
• Transparent

Introduction
• Benefits of using CI flow in hardware

• Reduce build and test time

• Increase the visibility and awareness of the build results

• Support automated testing flow

• Support working in parallel for different teams

Introduction
• What are the differences between Continous Integration and Continuous Delivery

• Continous Integration:
This contains the stages of building and testing the code automatically.

• Continous Delivery
This describes the process of automatic production. This may be a little bit risky but it can be
deployed after gaining enough confidence in the pipeline.

Continuous Integration Framework

Continuous Integration Framework

• Continuous Integration (CI) Framework Overview:
• Designed for automated code testing.

• Implemented at both subsystem and chip levels in modern SoCs.

• Enables integration of code into larger subsystems and systems.

• CI Framework Structure:
• Involves multiple loops, each representing a larger subsystem.

• Code passes through these loops until it achieves stability for
integration into the main chip/SoC streamline.

Designer’s new code

Build System

CI Loop 1: Unit Testing

CI Loop 2: Sub-system Level Testing

CI Loop 3: System Level Testing

Continuous Integration Framework

• Unit Testing:
• Validates the smallest parts of the RTL.
• Benefits include early bug detection, improved code quality, support for refactoring, accelerated

development, and enhanced collaboration.

• Sub-system Level Testing:
• Involves integrating units into larger sub-systems.
• Example: Processor design with units like Address Unit (AU), Execution Unit (EU), Bus Unit (BU),

and Instruction Unit (IU).
• Unit testing on IU decoder, followed by integration into IU for sub-system testing.
• Subsequent integration with all other units for system-level testing.

• Extended Testing Loop:
• If the processor is part of another system, extend the testing loop
• Automation enhances testing efficiency, providing faster results early in the design stage.
• Mitigates challenges associated with integration difficulties, commonly known as "Integration

Hell."

Continuous Integration Framework

• Looking on the algorithmic part of the
framework:
• Build: is the basic step to make sure that the

code is ok to go. (Compile & Lint)

• Unit Testing

• Sub-system

• System

• To have a full integration all the steps should
pass successfully

CI System Infrastructure

CI System Infrastructure
Functional Units in CI System:
Repository Project Data:

• Overseen by version control system.
• Essential for code changes and tracking.

CI Tool:
• The functional brain of the CI system.
• Interfaces with the run process and repository.

Run Process:
• Involves Digital Verification process (static, formal, and simulation verification procedures).
• Delivers pass/fail metrics as results.

Database:
• Generated from the analysis tools and contains the analysis results.

Data Visualization:
• Method for visualizing CI system data.
• Enhances understanding and transparency.

CI System infrastructure

• Communication Pathways in CI System (Black Arrows):
• Data flow in CI system (Repo->CI Tool-> Run Process -> Data -> CI Tool -> Visuals).

• Source Code Management (SCM) and CI Tool Connection:
• Utilizes APIs provided by the SCM.

• "git" SCM allows straightforward webhook implementation.

• Webhooks detect code modifications and trigger associated tests on CI tool.

• CI Tool and Visualization Connection:
• Execution phase yields varied outputs from processes.

• Data produced in formats like CSV, UCDB, XML, and JSON.

• APIs of functional verification tools utilized to generate these types of reports.

• Visualization through plugins or specialized tools (i.e. Questa VIQ)

CI System Infrastructure
• Run Process communication line

• CI tool activates Makefile in the run process.

• Makefile is where we configure the tools run options.

• Makefile targets contains the configurations for the regression runs

• CI Wrapper Script
• Through wrapper script we added a level of abstraction

• Wrapper script will invoke Questa Design Solutions, Formal tools given
the TCL configuration.

• The CI wrapper script will handle Pass/Fail status generation and
trendable data generation.

• The CI wrapper will use APIs to generate data and send it back to the CI
tool.

• This level of configurability enables scalability and configurability.

Requirements for EDA Vendors

Requirements for EDA Vendors

• A. Pass/Fail Status API Mechanism
• In the CI integration system, the test status is

crucial for exchanging information between
the CI modules.

• In the CI integration system, the test status is
crucial for exchanging information between
the CI modules

• The status generation is configurable

Requirements for EDA Vendors

• B. Common Output Data Format to be Processed by CI Tools
• It is essential to have a standardized way of outputting data in a CI

system because it integrates multiple tools

• The CSV format is a suitable way to exchange data, as it is simple and
can be integrated with various tools.

• UCDB is more integrated with simulation results

• So, EDA vendors should add support for different metrics report
format (CSV, Json, and UCDBs)

Requirements for EDA Vendors

• C. Fine Granularity of Tool Configurations
• The EDA vendor should introduce the full support for different tool

modes

• Full functional mode, light functional mode, and user mode

• These modes helps in adding a lot of configurability to the pipeline
and broaden the use model

Choose CI Platform

Choose CI Platform
Criteria Jenkins Travis CI CircleCI GitLab CI/CD

Ease of Setup Flexible, but manual Quick and straightforward Quick and straightforward Integrated with GitLab

Configuration as Code Yes (Jenkinsfile) Yes (.travis.yml) Yes (.circleci/config) Yes (gitlab-ci.yml)

Community Support Large and active Good Active Good

Extensibility Huge variety of plugins Limited, but extensible Rich ecosystem Built-in features

Container Support Docker and Kubernetes Docker Docker Docker

Parallel Builds Supported Limited Supported Supported

Ease of Maintenance Requires upkeep Low maintenance Low maintenance Integrated with GitLab

Scalability Scalable Limited scalability Scalable Scalable

Pricing (Cloud-based) N/A Freemium Freemium Included with GitLab

Integration with Other
Tools

Extensive Limited Good Integrated with GitLab

Security Features Requires configuration Good Good Integrated with GitLab

Experiment

Experiment
• Design

• Has 2 primary modes of operation
• Single-clock mode
• The AXI4Lite and the APB4 will use the same clock

• The multi-clock mode
• The AXI4Lite and the APB4 run with different frequency (use two

asynchronous clocks)
• An APB interface is used to configure the design

• Verification
• Simulation environment (Questa Sim)
• Design Solutions (Static analysis): Lint, AutoCheck, Xcheck, CDC,

RDC
• Formal Solutions: PropCheck, CoverCheck

Experiment

• Experiment files

Experiment

• Experiment implemented features
• Source Control Integration with GitLab

• Configurable runs based on the design

• Smart analysis based on the RTL changes

• Archiving results and analysis based on design history

• Visualization of the results

• Send notification for the results

• Integration with Verification Run Manager

Results & Conclusion

Results

• Running all tools sequentially for the AXI4Lite to APB4 bridge example leads to 95s
execution time. However, using parallel execution in the pipeline reduces this duration to
48s which means ~2x of reduction in the analysis time

• The experiment shows significant time savings using conditional runs.

• Smart tricks save up to 50% of analysis time.

• Tests are re-usable

• Small-sized databases provide efficient archiving, better insights, and support integration
with more sophisticated database techniques.

Conclusion

• Achieve close integration and provide essential metrics for verification tracking.

• Applicable across various stages in the digital design flow, from initial to sign-off stages.

• Early bug detection with an optimized flow.

• Time savings, enhanced analysis precision, and adaptability with diverse metric
generation and visualizations

• Results showed great value in accelerating analysis time and increasing productivity on
an industrial scale.

Questions

• Finalize slide set with questions slide

	Untitled Section
	Slide 1: Functional Verification from Chaos to Order: Using Continuous Integration for Hardware Functional Verification
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: Continuous Integration Framework
	Slide 8: Continuous Integration Framework
	Slide 9: Continuous Integration Framework
	Slide 10: Continuous Integration Framework
	Slide 11: CI System Infrastructure
	Slide 12: CI System Infrastructure
	Slide 13: CI System infrastructure
	Slide 14: CI System Infrastructure
	Slide 15: Requirements for EDA Vendors
	Slide 16: Requirements for EDA Vendors
	Slide 17: Requirements for EDA Vendors
	Slide 18: Requirements for EDA Vendors
	Slide 19: Choose CI Platform
	Slide 20: Choose CI Platform
	Slide 21: Experiment
	Slide 22: Experiment

	Untitled Section
	Slide 23: Experiment
	Slide 24: Experiment
	Slide 25: Results & Conclusion
	Slide 26: Results
	Slide 27: Conclusion
	Slide 28: Questions

