(2024

DESIGN AND VERIFICATION ™

DVLCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

Functional Veritication from Chaos to Order:
Using Continuous Integration for Hardware Functional Verification

Kirolos Mikhael, Abdelouahab Ayari
Siemens EDA

Agenda

* Introduction

* Continuous Integration Framework (Concepts)
* Cl Infrastructure

* Choose Cl platform

* Requirements for EDA vendors

* Experiment

* Results & Conclusion

2924

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

(2024

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

Introduction

Basic concepts for Continuous integration and delivery in hardware flow

SYSTEMS INITIATIVE

Introduction

* History
* Used extensively in software development in late 90’s
 Starts to have more usage in hardware design and verification
» Used for projects with various contributors (design, verification, and system/concept
engineers)
* Goals

. Traditio_nally, several check-ins over several days are verified very late (usually in weekend
regressions

* Failures/inconsistencies introduced in new check-ins become complex and time-costly to fix
* Cl enables the frequent and reliable release of new features
e Code changes are integrated in a way that is
e Automated
e Efficient
* Correct
* Transparent

= . 2024

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION

Introduction

* Benefits of using Cl flow in hardware
* Reduce build and test time
* Increase the visibility and awareness of the build results
e Support automated testing flow
e Support working in parallel for different teams

System Specs |
cl @?| Architectural Design

Func./Logic Verify

Front-End _ _ —
—_— . Simulation/Static | . __ . _| Chip Integ e — . — Manufacture

Verification/Formal
Back-End

Physical Design
cl Jﬁ F 4 g
Circuit Design

Functional Spec

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

Introduction

 What are the differences between Continous Integration and Continuous Delivery
* Continous Integration:
This contains the stages of building and testing the code automatically.
e Continous Delivery

This describes the process of automatic production. This may be a little bit risky but it can be
deployed after gaining enough confidence in the pipeline.

Code

Planning

Continuous Deployment

Feedback
Feedback

_| Deployment R . R]
" Mest » Staging » Production

I
I
Build » Test :
I

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

(2024

DESIGN AND VERIEICATION™

DVLCON

CONFERENCE AND EXHIBITION

Continuous Integration Framework

Continuous Integration Framework

e Continuous Integration (Cl) Framework Overview:
* Designed for automated code testing.
* Implemented at both subsystem and chip levels in modern SoCs. S

* Enables integration of code into larger subsystems and systems. |
Build System

 Cl Framework Structure: |

ClI Loop 1: Unit Testing

ClI Loop 2: Sub-system Level Testing

* Involves multiple loops, each representing a larger subsystem.

* Code passes through these loops until it achieves stability for
integration into the main chip/SoC streamline.

Cl Loop 3: System Level Testing

2024

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION

Continuous Integration Framework

* Unit Testing:
* Validates the smallest parts of the RTL.

* Benefits include early bug detection, improved code quality, support for refactoring, accelerated
development, and enhanced collaboration.

e Sub-system Level Testing:
* Involves integrating units into larger sub-systems.

» Example: Processor design with units like Address Unit (AU), Execution Unit (EU), Bus Unit (BU),
and Instruction Unit (1U).

* Unit testing on IU decoder, followed by integration into IU for sub-system testing.
* Subsequent integration with all other units for system-level testing.

e Extended Testing Loop:
* |f the processor is part of another system, extend the testing loop
* Automation enhances testing efficiency, providing faster results early in the design stage.

. Mi’lcligates challenges associated with integration difficulties, commonly known as "Integration
Hell."

2024

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION

Continuous Integration Framework

Input: DesignerCode (The new code provided by the designer)
Output: Status of the CI system
Sfunction BUILD(DesignerCode)

‘ return DesignerCode is valid ? Compile and Test () . Error
end function

Sfunction UNIT TEST(DesignerCode)
‘ for each unit in it the DesignerCode: if not test(unit) then return Failure else return Success
end function

Sfunction SUBSYSTEM TEST(DesignerCode)

for each submodile in System that contains the DesignerCode: if not test(sub) then return Failure else
Success.

end function

Sfunction SYSTEM TEST(DesignerCode)
‘ For the DesignerCode integrated in the full system; if not test(system) then return Failure else Success
end function

if BUILD(DesignerCode) is Error: Quiput "Build failed"; Stop

if UNIT _TEST(DesignerCode) is Failure: Qutput "Unit test failed"; Stop

if SUBSYSTEM _TEST (DesignerCode in SubSystem) is Failure: Output "Sub-system test failed"; Stop
if SYSTEM TEST(DesignerCode in FullSystem) is Failure: Output "System test failed"; Stop

* Looking on the algorithmic part of the ALCORITHM 1: CONTINOUS INTECRATION FOR DESIGNER'S CODE
framework:
* Build: is the basic step to make sure that the ’
code is ok to go. (Compile & Lint))
* Unit Testing :
e Sub-system 7
* System j
* To have a full integration all the steps should i
pass successfully 2

Qutput "All CT steps passed!"

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

(2024

DESIGN AND VERIEICATION™

CONFERENCE AND EXHIBITION
SAN JOSE, CA, USA
MARCH 4-7, 2024

Cl System Infrastructure

Tools:
+ Jenkins

Cl System Infrastructure

Functional Units in CI System: -+ Bamaac

Circle CI

+ TravisCl

Repository Project Data: . e 1T 3
* Overseen by version control system. ' w1000 f———

. N control for check-in's
* Essential for code changes and tracking.

CI TOOl: Techn;Iog :
* The functional brain of the Cl system. o Sib
* Interfaces with the run process and repository. ket

Run Process:
* Involves Digital Verification process (static, formal, and simulation verification procedures).
» Delivers pass/fail metrics as results.

Database:
* Generated from the analysis tools and contains the analysis results.

Data Visualization:
* Method for visualizing Cl system data.
* Enhances understanding and transparency.

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

Cl System infrastructure

 Communication Pathways in Cl System (Black Arrows):
* Data flow in Cl system (Repo->Cl Tool-> Run Process -> Data -> Cl Tool -> Visuals).

* Source Code Management (SCM) and ClI Tool Connection:

» Utilizes APIs provided by the SCM.
e "git" SCM allows straightforward webhook implementation.
* Webhooks detect code modifications and trigger associated tests on Cl tool.

* Cl Tool and Visualization Connection:

Execution phase yields varied outputs from processes.

Data produced in formats like CSV, UCDB, XML, and JSON.

APIs of functional verification tools utilized to generate these types of reports.
Visualization through plugins or specialized tools (i.e. Questa VIQ)

2024

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION

Cl System Infrastructure

* Run Process communication line
* Cl tool activates Makefile in the run process.
* Makefile is where we configure the tools run options.
« Makefile targets contains the configurations for the regression r ST e

! + References tool configuration files
Cl Tool

Run Process

» References design configuration files
+ Targets for tool single runs
+ Targets for regression runs

 Cl Wrapper Script

* Through wrapper script we added a level of abstraction

* Wrapper script will invoke Questa Design Solutions, Formal tools given R oot st
|

th e TC L CO nf| g u rat | O n. + Extract pass/fail status (UCDB)

+ Extract trendable data (CSV)

* The Cl wrapper script will handle Pass/Fail status generation and RS I
trendable data generatlon. .\\ + User-define tasks to run . gcl\)’?gg;lration files for RM (i.e. /};

* The Cl wrapper will use APIs to generate data and send it backtothe CI }
tool.

* This level of configurability enables scalability and configurability.

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION

(2024

DESIGN AND VERIEICATION™

Requirements for EDA Vendors

Requirements for EDA Vendors

| namespace import -force :: CDC::*
4 ciosoo o

* A. Pass/Fail Status APl Mechanism Vs e e

set status 0
if {1 [file exists 3SDB]}
set status 3

* In the Cl integration system, the test status is A e o
crucial for exchanging information between @ - e

gat checks [GetChecks]
the CI n |Od u |eS. User Status Wiils ([set check [Gattext Schacks]] t= " } (
T i == CetType chee!
Configuration Set sigtus (CatStatus Schack]
File if {$status == "Waived"} {

set severity [GetSeverity S$check]
switch Sseverity

* In the Cl integration system, the test status is YAMLXML/TEXT) artas] e
L J—

crucial for exchanging information between) Hofaion 1555 BEESER o)
th e CI mod u Ies [Wrapper Script |) ‘Iizggzgléusiva anr nr_inconclusives}
i

} elseif { $STATUS_BY_VIOLATION } {
if | Snr_violations > 0f

* The status generation is configurable \ N

set status 2

. _ } elseif (%nr_cautions > 0j H
0: ok Clean code set status 1 (i

1: Warning — Warnings founds (no Errors found)

i
} elseif { $STATUS_BY_CAUTION } {
2: Error — Errors found if

{ fexpr Snr_violations + $nr_cautionsj » 0jf
set status 2

3: Fatal - No results available ; 1 =
return Sstatus -

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

Requirements for EDA Vendors

* B. Common Output Data Format to be Processed by Cl Tools

* Itis essential to have a standardized way of outputting data in a Cl
system because it integrates multiple tools

* The CSV format is a suitable way to exchange data, as it is simple and
can be integrated with various tools.

* UCDB is more integrated with simulation results

* So, EDA vendors should add support for different metrics report
format (CSV, Json, and UCDBs)

2024

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION

Requirements for EDA Vendors

e C. Fine Granularity of Tool Configurations

* The EDA vendor should introduce the full support for different tool
modes

* Full functional mode, light functional mode, and user mode

* These modes helps in adding a lot of configurability to the pipeline
and broaden the use model

2924

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

(2024

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

Choose Cl Platform

SYSTEMS INITIATIVE

Choose Cl| Platform

Criteria

Ease of Setup
Configuration as Code
Community Support
Extensibility
Container Support

Parallel Builds

Ease of Maintenance
Scalability

Pricing (Cloud-based)

Integration with Other
Tools

Security Features

Jenkins

Flexible, but manual
Yes (Jenkinsfile)

Large and active

Huge variety of plugins
Docker and Kubernetes

Supported

Requires upkeep
Scalable

N/A
Extensive

Requires configuration

Travis CI

Quick and straightforward
Yes (.travis.yml)

Good

Limited, but extensible

Docker
Limited
Low maintenance

Limited scalability

Freemium
Limited

Good

CircleCl
Quick and straightforward

Yes (.circleci/config)
Active
Rich ecosystem

Docker
Supported

Low maintenance
Scalable

Freemium
Good

Good

GitLab CI/CD
Integrated with GitLab

Yes (gitlab-ci.yml)
Good
Built-in features

Docker
Supported
Integrated with GitLab

Scalable

Included with GitLab

Integrated with GitLab

Integrated with GitLab

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION

(2024

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

Experiment

SYSTEMS INITIATIVE

Experiment

* Design
* Has 2 primary modes of operation
e Single-clock mode
* The AXl4Lite and the APB4 will use the same clock
* The multi-clock mode

* The AXl4Lite and the APB4 run with different frequency (use two
asynchronous clocks)

* An APB interface is used to configure the design

 Verification
* Simulation environment (Questa Sim)

* Design Solutions (Static analysis): Lint, AutoCheck, Xcheck, CDC,
RDC

* Formal Solutions: PropCheck, CoverCheck

2024

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

Experiment

e Experiment files

AXI4LITE To Run
APB Bridge Session

Makefile

J\Jd

2024

DESIGN AND VERIEICATION™

Experiment

* Experiment implemented features

Source Control Integration with GitLab

Configurable runs based on the design

Smart analysis based on the RTL changes

Archiving results and analysis based on design history
Visualization of the results

Send notification for the results

Integration with Verification Run Manager

2024

DESIGN AND VERIEICATION™

DV

CONFEREMNCE AND EXHIBITION

(2024

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

Results & Conclusion

SYSTEMS INITIATIVE

Results

* Running all tools sequentially for the AXI4Lite to APB4 bridge example leads to 95s
execution time. However, using parallel execution in the pipeline reduces this duration to
48s which means ~2x of reduction in the analysis time

* The experiment shows significant time savings using conditional runs.
e Smart tricks save up to 50% of analysis time.
* Tests are re-usable

* Small-sized databases provide efficient archiving, better insights, and support integration
with more sophisticated database techniques.

2024

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION

Conclusion

* Achieve close integration and provide essential metrics for verification tracking.
* Applicable across various stages in the digital design flow, from initial to sign-off stages.
* Early bug detection with an optimized flow.

* Time savings, enhanced analysis precision, and adaptability with diverse metric
generation and visualizations

* Results showed great value in accelerating analysis time and increasing productivity on
an industrial scale.

2024

DESIGN AND VERIEICATION™

DVGCON

CONFEREMNCE AND EXHIBITION

Questions

* Finalize slide set with questions slide

2024

DESIGN AND VERIEICATION™

	Untitled Section
	Slide 1: Functional Verification from Chaos to Order: Using Continuous Integration for Hardware Functional Verification
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: Continuous Integration Framework
	Slide 8: Continuous Integration Framework
	Slide 9: Continuous Integration Framework
	Slide 10: Continuous Integration Framework
	Slide 11: CI System Infrastructure
	Slide 12: CI System Infrastructure
	Slide 13: CI System infrastructure
	Slide 14: CI System Infrastructure
	Slide 15: Requirements for EDA Vendors
	Slide 16: Requirements for EDA Vendors
	Slide 17: Requirements for EDA Vendors
	Slide 18: Requirements for EDA Vendors
	Slide 19: Choose CI Platform
	Slide 20: Choose CI Platform
	Slide 21: Experiment
	Slide 22: Experiment

	Untitled Section
	Slide 23: Experiment
	Slide 24: Experiment
	Slide 25: Results & Conclusion
	Slide 26: Results
	Slide 27: Conclusion
	Slide 28: Questions

