
Expediting SoC Design Verification Closure

by Accelerating Gate Level Simulations using

Streamlined Smart Decentralized Testbench

Harshal Kothari, Staff Engineer, Samsung Semiconductor India Research, Bengaluru, India

(harshal.k1@samsung.com)

Eldin Ben Jacob, Staff Engineer, Samsung Semiconductor India Research, Bengaluru, India

(eldin.jacob@samsung.com)

 Chandrachud Murali, Staff Engineer, Samsung Semiconductor India Research, Bengaluru, India

(chandru.m@samsung.com)

Sriram Kazhiyur Sounderrajan, Associate Director, Samsung Semiconductor India Research, Bengaluru,

India (sriram.k.s@samsung.com)

Somasunder Kattepura Sreenath, Director, Samsung Semiconductor India Research, Bengaluru, India

(soma.ks@samsung.com)

Abstract- Gate level simulations (GLS) are an integral part of the ASIC verification cycle to verify the impact of

synthesis, insertion of power elements and placement & routing by running functional datapaths using dynamic

simulations. It is imperative to run timing gate level and power aware simulations with Standard Delay Format (SDF) back-

annotation to validate that the hardware designs function as intended in the best and the worst PVT corner delays on the

post PnR netlists. This however, comes with a trade-off of huge simulation times, especially when run at a full chip netlist

level. Streamlined Smart Decentralized Testbench (SSDT) addresses these vulnerabilities with its robust and flexible

architecture. The testbench environment is self-aware and capable of auditing the logs, failures and test plan status,

reporting all issues, timing violations and intelligently identifying erroneous environment which will need reruns at later

stages. This paper highlights how SSDT, a holistic approach to expedite gate level simulation, resulted in achieving 100%

pass rate closure well ahead of metal tapeout. Audits and automations result in early capture of environment issues even

ahead of a simulation being run. Smart modular hybrid testbench setup can be reused across all flavours of simulations -

unit delay GLS, timing GLS, unit delay power aware GLS and timing power aware GLS across projects. Furthermore,

with Dynamic Save and Restore (DSNR), Capture and Replay (CNR) and LSF optimizations integrated across simulation

flavours, SSDT which is deployed on AR/VR SoC and HPC 3DIC SoC delivered up to 65% savings on simulation time and

35% less resources without compromising on quality.

I. INTRODUCTION

SSDT employs a few techniques, which are a mix of traditional, innovative and novel processes to expedite and

automate the GLS cycle (Figure 1). The traditional techniques are common testbench for different flavours of DUTs

resulting in environment variable based version control for RTL/PRENET/POSTNET/PGNET/SDF, on the fly hybrid

elaboration and simulation and timing violation parser. GLS audit of elaboration and simulation logs, test plan status

audit, label on label timing violation mapper employ a mix of traditional and novel methods. The innovative and

novel methods involve improving simulation time by optimizing environment on which the simulation is run and

accelerating the tool and compute along with scaling up the methodologies and deploying them across simulation

flavours. All these methodologies work in tandem under the SSDT hood.

mailto:harshal.k1@samsung.com
mailto:eldin.jacob@samsung.com
mailto:sriram.k.s@samsung.com
mailto:soma.ks@samsung.com

Figure 1. SSDT Implementation Strategy

II. SSDT TRADITIONAL TECHNIQUES

Common TB: To develop the common testbench for different flavoured DUTs, the testbench is architected on UVM

that provides high standardization with respect to skeleton architecture, file/directory structure, naming rule,

Verification IP (VIP) configuration, register model and general access sequences. The environment (Figure 2) is

scalable to any IP/Sub-system/SoC that bolsters the reusability aspect or different flavours of DUTs

(RTL/PRENET/POSTNET/PGNET). An internal tool utility dumps out this skeleton testbench based on excel input

containing top level DUT spec. The power intent of the SOC is defined using UPF2.0/3.0 and liberty files for standard

library cells and hard macros. The testbench was developed by compiling the power information for the design by

loading UPF files containing design power information and the liberty files containing power information for library

cells. The elaboration tool requires the appropriate IEEE power defines and tool dependent power defines. The

testbench was architected to mimic the behavior of the PMIC. The SOC power up/down was achieved by simulating

the power balls at the DUT top using a System Verilog model. The power ports are driven with a combination of

$supply_on/off system tasks and CPU firmware masters which controls the power domains of the IPs based on the

use case by the Power manager IP. To reinforce the through verification, additional checkers for isolation strategies,

level shifter strategies, retention strategies, power switches of the power domains and power state table were

developed. While simulating timing enabled power aware gate level netlists, block wise SDF files in min (ffpg) and

max (sspg) corners are passed at elaboration stage via -sdf_cmd_file option.

Figure 2. Traditional SSDT testbench architecture

Hybrid DUT: Traditionally, by replacing non-targeted block netlist with black-box or RTL and employing fast boot

using forces, time saving of around 6-10% can be achieved by bringing down the gate count. Apart from the simulation

time, the hybrid verification method (Figure 3) helps in saving precious engineer’s time due to the reduced volume of

errors originating from a block/IP which is not the point of interest. PERL macro based configuration offers the

flexibility to pick simulator options [1], switches, the model type (RTL/Netlist/Fake) and the DUT version of each

block on the fly for elaboration/simulation. The combinations of configuration results in creation of a unique Design

Environment (DE) and Verification Environment (VE). The environment also supports the combinational usage of

DE/VEs resulting in faster simulation of cross functional datapaths. Using a hybrid DUT for simulation helps save

tremendous amount of run time when a functional datapath does not traverse all the blocks. For example, when running

a camera stream datapath to DRAM, only the blocks containing CPU, DPHY, Camera Serial Interface, system network

fabric and memory controller are needed as netlists. Remaining blocks can either be stubbed out by fake blackbox

driving a known output or RTL. Similarly, for 3DIC, if top die is running DMA transfers to local SRAM, bottom die

is stubbed out to save half the total gate count. The multi-step incremental elaboration and simulation flow eliminates

recompile of DUT due to VE changes.

Figure 3. IP wise on the fly Hybrid Verification Environment

Violation Parser: Timing GLS simulation aids in identifying all hold/setup/recovery/removal violations of the DUT.

The violation parser utility comprises of a set of Python scripts with artificial intelligence to map the violation type

and reports the timing violation analysis using machine learning with in depth details about the block, violation type,

scope, violation time in the run at the end of the simulation automatically (Figure 4). It can also be run on multiple

simulations or regression in parallel.

Figure 4. Final output of timing violation parser utility

III. SSDT ENHANCED AUTOMATION TECHNIQUES

ENV Audit: While running simulations with a highly hybrid yet complex environment to get faster turnaround, the

probability of an oversight occurring increases. GLS environment configuration requires an in depth understanding of

functional path spanning across blocks failing which may result in a fake pass, where a block of concern or importance

might be run as non-netlist. SDF files, accurate timing checks off files for asynchronous flops/false path/multicycle

path and incorrect file version control also impact the result of simulation and warranting reruns. With the Python

based environment audit script (Figure 5), such mistakes which results in vast simulation rerun times can be caught

even before starting the simulation, ensuring first time correctness of GLS environment and runs as per design

requirement. This project agnostic utility checks for annotation percentage as well as ascertains the genuineness of

passing test in the most optimum conditions. This audit utility brings down the number of iterations before stable

environment convergence from 4 or 5 to 1 (Table 1).

Figure 5. GLS environment audit script output

Plan Audit: In order to save time on GLS runs, it is prudent to have a historical data of the test progress and reference

to narrow down on the failures. This utility audits the verification plan status based on the inputs from the engineers

and checks for errors in the logs, existence of test database for a particular release version/flavour as required. When

SoC is nearing tapeout, it might get difficult to procure a regression manager license as thousands of RTL and netlist

simulations would be running in parallel. In such scenario, it can mimic that functionality without needing an

additional costly license. The utility is capable of saving at least 1.5 – 2 man months with audit ensuring correctness

of the databases across different flavour of DUT over different releases (Figure 7).

Figure 6. Sample input test plan status xls

Figure 7. Audit output based on DUT type and release label

Violation Mapper: Simulation free of timing violations is key to successful silicon results. Debugging the violation

on GLS is very time consuming and has a direct impact on valuable engineer’s time. This calls for an efficient and

methodical approach to map the violations over different DUT versions, grouping similar violations across blocks to

avoid duplicate efforts from engineers working on the SoC and to dynamically track the resolution of the violation in

subsequent release and in the JIRA or bug tracker system. The Violation Mapper script (Figure 8) with artificial

intelligence built-in, reduced not just the turn-around time for the resolution of the issues but also improved the

efficiency of the team by avoiding duplicate/rework resulting in a saving of at least 10 – 15 months for bigger SoCs

with efficient tracking of all the violations.

Figure 8. Utility output

Violation Mapper

Identify timing violation

Check for uniqueness

Report occurrence: Line
number & sim time

Identify violation type,
violating time

Check for label on label
support ticket mapping

Check for first
occurrence in present

release

Compare against
previous label and ticket

update

With a mix of traditional and enhanced audit automation techniques combined with erstwhile pure traditional

techniques, around 4x-5x performance improvement is observed for a GLS suite of around 120 tests (Table 1).

Table 1. Initial v/s improved GLS metrics

IV. SSDT FAST CONVERGENCE INNOVATION TECHNIQUES

A. Custom Simulation Strategies (CSS)

The simulations for the current DUT takes approximately 60 hours to complete a basic SoC boot with full chip netlist

which can go up to 200+ hours for timing PG net simulations. The internal methods via CSS to curtail these simulation

times include the design and sequence based changes that regulates the load on the simulator. SSDT employs Skip

Initialization Analysis to retain the intent of simulation by eliminating irrelevant clock/firewall/controller/DRAM

initialisations. Upon further analysis, a matrix was developed for skipping power up based on block/IP function

resulting in further saving of simulation time. X propagation originating from non-resettable flops which was

optimized at zero time with library cell hack deposits instead of tcl initialisation. Additionally, with CSS deployed

across the project, savings on disk space became notably visible with reduction in build/simulation sizes. The CSS

techniques resulted in saving close to 8000 man-hours (Table 2) over the course of the project.

Table 2. SSDT improvement metrics via CSS

B. Simulation Performance Optimization Wrapper (SPOW)

SPOW deploys combination of simulation tool methods and Load Sharing Facility (LSF) optimizations to deliver up to

5x simulation improvements:

Capture and Replay (CNR): CNR is a mechanism by which the simulation result is captured first and run on a

different version of the same (Figure 9). In SSDT architecture, this flow is deployed to capture stimulus from RTL to

replay at GLS for the first time. It additionally optimizes runs for the targeted block and aids VCD generation for power

estimation and IR drop analysis.

Block
Total

Tests

No. of

netlist

labels

Avg

Iterations

for first

pass

Avg run

time (hrs)

Total

runtime

(hrs)

Avg

Iterations

for first

pass

Avg run

time (hrs)

Improved

Total

runtime

(hrs)

Net

Improvement

(X times)

A 19 8 4 85 51680 1 78 11856 4.4

B 12 8 4 76 29184 1 68 6528 4.5

C 4 8 2 94 6016 1 84 2688 2.2

D 3 7 3 63 3969 1 57 1197 3.3

E 2 8 2 67 2144 1 55 880 2.4

F 14 8 4 78 34944 1 69 7728 4.5

G 8 8 3 163 31296 1 145 9280 3.4

H 22 8 4 102 71808 1 97 17072 4.2

I 13 6 3 73 17082 1 62 4836 3.5

J 17 8 4 68 36992 1 60 8160 4.5

K 6 8 5 152 36480 1 129 6192 5.9

L 10 8 3 79 18960 1 74 5920 3.2

Improved Metrics via Traditional+Audit techniquesInitial Metrics

Scenario Compile Boot test Mem test CPU test Power test Disp test PCIE test

Traditional 23hrs 38hrs 71hrs 60hrs 62hrs 66hrs 72hrs

Skip Init runs 23hrs 28hrs 45hrs 42hrs 38hrs 40hrs 55hrs

Skip Power up runs 23hrs 24hrs 38hrs 36hrs 34hrs 46hrs 53hrs

GLS + RTL runs 13hrs 24hrs 38hrs 36hrs 34hrs 46hrs 53hrs

GLS + FAKE runs 12hrs 20hrs 29hrs 30hrs 26hrs 32hrs 38hrs

Improvement 1.9x 1.9x 2.4x 2x 2.3x 2x 2.2x

Figure 9. Capture and replay from RTL to GLS

Incremental Checkpoint Utility - Save and Restore (ICU - SNR): SNR is a method in which the common sequences

of a SoC level test can be saved and any other test can be restored from the end of previous simulation snapshot. SSDT

additionally enhances the simulation time savings with extending the save timeframe to IP specific sequences with ICU.

Every IP has its own set of initialization sequences that are required to be executed after the common sequences.

Adding it as a part of the SoC common sequences will be counterproductive. ICU enables the creation of checkpoints

at the end of the IP specific initialization sequences by leveraging the SoC snapshot (Figure 10).

Figure 10. Before and after incremental snapshot implementation

Table 3. Runs with and without ICU

Automatic Periodic Checkpoint Generation (APCG): APCG plugin periodically saves the simulation snapshot of

the run based on simulation time or wall clock time. The plugin has flexibility to program the number of snapshots to

be saved to get rid of redundant snapshots. The periodic checkpoint generation (Figure 11) setting is based on the

analysis of simulation kill, user mistakes, failure stop & rerun scenarios and regression run times. In Figure 11, the

periodic checkpoint generation is represented by picking the number of snapshots that are stored at any time to be 3.

Here, the parallel running tcl script spawns 3 individual breakpoints and each breakpoint maintains its own checkpoint.

Another add-on to APCG plugin ensures that restarted simulations and their status are accurately represented in the

HTML regression dashboards. This custom script ensures that the correct test command is replaced by the older test

command so that when the abruptly ended run is restarted, it will appropriately modify the regression dashboard to

reflect the correct number of tests and their run status.

Criteria

Memory

overhead

(For 1 IP)

Avg Run

time

 (For 1 IP)

Without ICU 0 86.1hrs

With ICU 31GB 28.4hrs

Improvement - 3.02x

Figure 11. Automatic Periodic Checkpoint Generator flow

Table 4. Normal v/s runs with APCG

Profiling & Access: Simulation profiling and further analysis of the weight each component had resulted in modifying

the testbench and RTL coding styles for optimal performance. The profiling activity resulted in tweaking the simulator

with appropriate switches that are custom suited for the database resulting in up to 20% simulation speed

improvements. The simulation tool debug permission across the full compiled database was tweaked due to the

confidence resulting from other SSDT checks. Optimization at signals level were carried with AI and ML scripts that

restricts the debug access to signals that explicitly require permissions. Experiments, including dedicated machine

runs, were carried out to understand, analyze and optimize the machine (LSF) on which the simulation is executed.

Table 5. SSDT improvement metrics for external methods via SPOW

V. RESULT

SSDT’s modularity and ease to deploy across any projects and different abstraction of the testbench resulted in huge

savings in terms of manual effort the engineer spends, simulation run time and performance enhancement in the range

of 6x-10x (Table 6). It has been implemented in 3 recent SoC DV projects for Mixed Reality (AR/VR/XR), HPC 3DIC

and Generative AI 2.5DIC applications and it has provided consistent improvement in GLS execution.

Criteria for 1 IP
Memory

overhead

No. of

abruptly

killed

runs

Time spent

on rerun of

abruptly

killed runs

Without APCG 0 5 157h

With APCG 90GB 7 84h

Improvement (%) - - 46

Scenario Boot test Mem test CPU test Power test Disp test PCIE test

Access +RWC 50hrs 75hrs 69hrs 72hrs 73hrs 85hrs

Access +R 38hrs 71hrs 60hrs 62hrs 66hrs 72hrs

Afile 32hrs 65hrs 56hrs 57hrs 60hrs 65hrs

Dedicated 31hrs 63hrs 52hrs 54hrs 54hrs 63hrs

Improvement 1.4x 1.2x 1.3x 1.4x 1.4x 1.3x

With SNR 31hrs 29hrs 33hrs 25hrs 28hrs 40hrs

Improvement 1x 2.2x 1.7x 2.1x 2.1x 1.7x

w/o ICU & APCG

Avg time for 100 tests
31hrs 156hrs 120hrs 98hrs 186hrs 264hrs

w/ ICU & APCG

Avg time for 100 tests
31hrs 45hrs 43hrs 30hrs 49hrs 60hrs

Improvement 1x 3.4x 2.8x 3.2x 3.8x 4.4x

Table 6. Improvement metrics with SSDT per IP test

VI. CONCLUSION

With increasing size and complexity of the chip, the total number of tests to be verified and net run time rise

exponentially. With time to market and adherence to schedule being critical parameters for the success of a product,

the need to strategize optimal selection of tests to be run without compromise on quality while simultaneously

obtaining quicker results without doing multiple iterations is of paramount importance. SSDT has provided consistent

improvement in GLS execution by guaranteeing first run correctness and fast convergence to meet stringent timelines

with its automated plug-ins saving both precious man months and the costlier licensing, storage and infrastructure costs

(Table 7). Future scope with integration of emulation into SSDT, n-die distributed simulation strategies for multi-

chiplet based SoCs and leveraging AI and ML tools for wavemining and automated debugs have already been

evaluated and are under development stage.

Table 7. Consolidated initial v/s final SSDT GLS metrics

REFERENCES

[1] Harshal Kothari, Vinay Swargam, Sriram Kazhiyur Soundarrajan, Somasunder Kattepura Sreenath, “A Novel

Approach to Expedite Verification Cycle using an Adaptive and Performance Optimized Simulator Independent

Verification Platform Development”, DVCON Europe 2022.

[2] Harshal Kothari, Eldin Ben Jacob, Sriram Kazhiyur Sounderrajan, Somasunder Kattepura Sreenath, “Centralized

Regression Optimization Toolkit (CROT) for expediting Regression Closure with vManager & Xcelium

Performance Optimization”, CadenceLive India 2021.

Scenario Boot test Memory tests CPU tests Power tests Display tests PCIE tests

Initial avg 50hrs 156hrs 120hrs 98hrs 186hrs 264hrs

FCMAST Optimized avg 18hrs 26hrs 25hrs 24hrs 28hrs 29hrs

Improvement 2.7x 6x 4.8x 4.1x 7x 9.1x

Block Total Tests
No. of netlist

labels

Avg Iterations

for first pass

Avg run

time (hrs)

Total runtime

(hrs)

Avg

Iterations

for first

pass

Avg run time

(hrs)

Improved Total

runtime (hrs)

Net Improvement

(X times)

A 19 8 4 85 51680 1 48 7296 7.1

B 12 8 4 76 29184 1 33 3168 9.2

C 4 8 2 94 6016 1 42 1344 4.5

D 3 7 3 63 3969 1 35 735 5.4

E 2 8 2 67 2144 1 31 496 4.3

F 14 8 4 78 34944 1 38 4256 8.2

G 8 8 3 163 31296 1 101 6464 4.8

H 22 8 4 102 71808 1 44 7744 9.3

I 13 6 3 73 17082 1 24 1872 9.1

J 17 8 4 68 36992 1 28 3808 9.7

K 6 8 5 152 36480 1 86 4128 8.8

L 10 8 3 79 18960 1 31 2480 7.6

FCMAST Improved MetricsInitial Metrics

