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Abstract- Gate level simulations (GLS) are an integral part of the ASIC verification cycle to verify the impact of 

synthesis, insertion of power elements and placement & routing by running functional datapaths using dynamic 

simulations. It is imperative to run timing gate level and power aware simulations with Standard Delay Format (SDF) back-

annotation to validate that the hardware designs function as intended in the best and the worst PVT corner delays on the 

post PnR netlists. This however, comes with a trade-off of huge simulation times, especially when run at a full chip netlist 

level. Streamlined Smart Decentralized Testbench (SSDT) addresses these vulnerabilities with its robust and flexible 

architecture. The testbench environment is self-aware and capable of auditing the logs, failures and test plan status, 

reporting all issues, timing violations and intelligently identifying erroneous environment which will need reruns at later 

stages. This paper highlights how SSDT, a holistic approach to expedite gate level simulation, resulted in achieving 100% 

pass rate closure well ahead of metal tapeout. Audits and automations result in early capture of environment issues even 

ahead of a simulation being run. Smart modular hybrid testbench setup can be reused across all flavours of simulations - 

unit delay GLS, timing GLS, unit delay power aware GLS and timing power aware GLS across projects. Furthermore, 

with Dynamic Save and Restore (DSNR), Capture and Replay (CNR) and LSF optimizations integrated across simulation 

flavours, SSDT which is deployed on AR/VR SoC and HPC 3DIC SoC delivered up to 65% savings on simulation time and 

35% less resources without compromising on quality. 

 

I. INTRODUCTION 

SSDT employs a few techniques, which are a mix of traditional, innovative and novel processes to expedite and 

automate the GLS cycle (Figure 1). The traditional techniques are common testbench for different flavours of  DUTs 

resulting in environment variable based version control for RTL/PRENET/POSTNET/PGNET/SDF, on the fly hybrid 

elaboration and simulation and timing violation parser. GLS audit of elaboration and simulation logs, test plan status 

audit, label on label timing violation mapper employ a mix of traditional and novel methods.  The innovative and 

novel methods involve improving simulation time by optimizing environment on which the simulation is run and 

accelerating the tool and compute along with scaling up the methodologies and deploying them across simulation 

flavours. All these methodologies work in tandem under the SSDT hood. 
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Figure 1. SSDT Implementation Strategy 

 

II. SSDT TRADITIONAL TECHNIQUES 

Common TB: To develop the common testbench for different flavoured DUTs, the testbench is architected on UVM 

that provides high standardization with respect to skeleton architecture, file/directory structure, naming rule, 

Verification IP (VIP) configuration, register model and general access sequences. The environment (Figure 2) is 

scalable to any IP/Sub-system/SoC that bolsters the reusability aspect or different flavours of DUTs 

(RTL/PRENET/POSTNET/PGNET). An internal tool utility dumps out this skeleton testbench based on excel input 

containing top level DUT spec. The power intent of the SOC is defined using UPF2.0/3.0 and liberty files for standard 

library cells and hard macros. The testbench was developed by compiling the power information for the design by 

loading UPF files containing design power information and the liberty files containing power information for library 

cells. The elaboration tool requires the appropriate IEEE power defines and tool dependent power defines. The 

testbench was architected to mimic the behavior of the PMIC. The SOC power up/down was achieved by simulating 

the power balls at the DUT top using a System Verilog model. The power ports are driven with a combination of 

$supply_on/off system tasks and CPU firmware masters which controls the power domains of the IPs based on the 

use case by the Power manager IP. To reinforce the through verification, additional checkers for isolation strategies, 

level shifter strategies, retention strategies, power switches of the power domains and power state table were 

developed. While simulating timing enabled power aware gate level netlists, block wise SDF files in min (ffpg) and 

max (sspg) corners are passed at elaboration stage via -sdf_cmd_file option. 

 



  

Figure 2. Traditional SSDT testbench architecture 

Hybrid DUT: Traditionally, by replacing non-targeted block netlist with black-box or RTL and employing fast boot 

using forces, time saving of around 6-10% can be achieved by bringing down the gate count. Apart from the simulation 

time, the hybrid verification method (Figure 3) helps in saving precious engineer’s time due to the reduced volume of 

errors originating from a block/IP which is not the point of interest. PERL macro based configuration offers the 

flexibility to pick simulator options [1], switches, the model type (RTL/Netlist/Fake) and the DUT version of each 

block on the fly for elaboration/simulation. The combinations of configuration results in creation of a unique Design 

Environment (DE) and Verification Environment (VE). The environment also supports the combinational usage of 

DE/VEs resulting in faster simulation of cross functional datapaths. Using a hybrid DUT for simulation helps save 

tremendous amount of run time when a functional datapath does not traverse all the blocks. For example, when running 

a camera stream datapath to DRAM, only the blocks containing CPU, DPHY, Camera Serial Interface, system network 

fabric and memory controller are needed as netlists. Remaining blocks can either be stubbed out by fake blackbox 

driving a known output or RTL. Similarly, for 3DIC, if top die is running DMA transfers to local SRAM, bottom die 

is stubbed out to save half the total gate count. The multi-step incremental elaboration and simulation flow eliminates 

recompile of DUT due to VE changes.  

 

   
Figure 3. IP wise on the fly Hybrid Verification Environment 

 



Violation Parser: Timing GLS simulation aids in identifying all hold/setup/recovery/removal violations of the DUT. 

The violation parser utility comprises of a set of Python scripts with artificial intelligence to map the violation type 

and reports the timing violation analysis using machine learning with in depth details about the block, violation type, 

scope, violation time in the run at the end of the simulation automatically (Figure 4). It can also be run on multiple 

simulations or regression in parallel. 

 

 
Figure 4. Final output of timing violation parser utility 

 

III. SSDT ENHANCED AUTOMATION TECHNIQUES 

ENV Audit: While running simulations with a highly hybrid yet complex environment to get faster turnaround, the 

probability of an oversight occurring increases. GLS environment configuration requires an in depth understanding of 

functional path spanning across blocks failing which may result in a fake pass, where a block of concern or importance 

might be run as non-netlist. SDF files, accurate timing checks off files for asynchronous flops/false path/multicycle 

path and incorrect file version control also impact the result of simulation and warranting reruns. With the Python 

based environment audit script (Figure 5), such mistakes which results in vast simulation rerun times can be caught 

even before starting the simulation, ensuring first time correctness of GLS environment and runs as per design 

requirement. This project agnostic utility checks for annotation percentage as well as ascertains the genuineness of 

passing test in the most optimum conditions. This audit utility brings down the number of iterations before stable 

environment convergence from 4 or 5 to 1 (Table 1). 

 

 
Figure 5. GLS environment audit script output 

 

Plan Audit: In order to save time on GLS runs, it is prudent to have a historical data of the test progress and reference 

to narrow down on the failures. This utility audits the verification plan status based on the inputs from the engineers 

and checks for errors in the logs, existence of test database for a particular release version/flavour as required. When 



SoC is nearing tapeout, it might get difficult to procure a regression manager license as thousands of RTL and netlist 

simulations would be running in parallel. In such scenario, it can mimic that functionality without needing an 

additional costly license. The utility is capable of saving at least 1.5 – 2 man months with audit ensuring correctness 

of the databases across different flavour of DUT over different releases (Figure 7). 

 

 
Figure 6. Sample input test plan status xls 

 
Figure 7. Audit output based on DUT type and release label 

 

Violation Mapper: Simulation free of timing violations is key to successful silicon results. Debugging the violation 

on GLS is very time consuming and has a direct impact on valuable engineer’s time. This calls for an efficient and 

methodical approach to map the violations over different DUT versions, grouping similar violations across blocks to 

avoid duplicate efforts from engineers working on the SoC and to dynamically track the resolution of the violation in 

subsequent release and in the JIRA or bug tracker system. The Violation Mapper script (Figure 8) with artificial 

intelligence built-in, reduced not just the turn-around time for the resolution of the issues but also improved the 

efficiency of the team by avoiding duplicate/rework resulting in a saving of at least 10 – 15 months for bigger SoCs 

with efficient tracking of all the violations.      

 

 
Figure 8. Utility output 
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With a mix of traditional and enhanced audit automation techniques combined with erstwhile pure traditional 

techniques, around 4x-5x performance improvement is observed for a GLS suite of around 120 tests (Table 1). 

 
Table 1. Initial v/s improved GLS metrics 

 
 

IV. SSDT FAST CONVERGENCE INNOVATION TECHNIQUES 

A. Custom Simulation Strategies (CSS) 

The simulations for the current DUT takes approximately 60 hours to complete a basic SoC boot with full chip netlist 

which can go up to 200+ hours for timing PG net simulations. The internal methods via CSS to curtail these simulation 

times include the design and sequence based changes that regulates the load on the simulator. SSDT employs Skip 

Initialization Analysis to retain the intent of simulation by eliminating irrelevant clock/firewall/controller/DRAM 

initialisations. Upon further analysis, a matrix was developed for skipping power up based on block/IP function 

resulting in further saving of simulation time. X propagation originating from non-resettable flops which was 

optimized at zero time with library cell hack deposits instead of tcl initialisation. Additionally, with CSS deployed 

across the project, savings on disk space became notably visible with reduction in build/simulation sizes. The CSS 

techniques resulted in saving close to 8000 man-hours (Table 2) over the course of the project.  
 

Table 2. SSDT improvement metrics via CSS 

 
 

 

B. Simulation Performance Optimization Wrapper (SPOW) 

SPOW deploys combination of simulation tool methods and Load Sharing Facility (LSF) optimizations to deliver up to 

5x simulation improvements: 

 

Capture and Replay (CNR): CNR is a mechanism by which the simulation result is captured first and run on a 

different version of the same (Figure 9). In SSDT architecture, this flow is deployed to capture stimulus from RTL to 

replay at GLS for the first time. It additionally optimizes runs for the targeted block and aids VCD generation for power 

estimation and IR drop analysis. 

Block
Total 

Tests

No. of 

netlist 

labels

Avg 

Iterations 

for first 

pass

Avg run 

time (hrs)

Total 

runtime 

(hrs)

Avg 

Iterations 

for first 

pass

Avg run 

time (hrs)

Improved 

Total 

runtime 

(hrs)

Net 

Improvement  

(X times)

A 19 8 4 85 51680 1 78 11856 4.4

B 12 8 4 76 29184 1 68 6528 4.5

C 4 8 2 94 6016 1 84 2688 2.2

D 3 7 3 63 3969 1 57 1197 3.3

E 2 8 2 67 2144 1 55 880 2.4

F 14 8 4 78 34944 1 69 7728 4.5

G 8 8 3 163 31296 1 145 9280 3.4

H 22 8 4 102 71808 1 97 17072 4.2

I 13 6 3 73 17082 1 62 4836 3.5

J 17 8 4 68 36992 1 60 8160 4.5

K 6 8 5 152 36480 1 129 6192 5.9

L 10 8 3 79 18960 1 74 5920 3.2

Improved Metrics via Traditional+Audit techniquesInitial Metrics

Scenario Compile Boot test Mem test CPU test Power test Disp test PCIE test

Traditional 23hrs 38hrs 71hrs 60hrs 62hrs 66hrs 72hrs

Skip Init runs 23hrs 28hrs 45hrs 42hrs 38hrs 40hrs 55hrs

Skip Power up runs 23hrs 24hrs 38hrs 36hrs 34hrs 46hrs 53hrs

GLS + RTL runs 13hrs 24hrs 38hrs 36hrs 34hrs 46hrs 53hrs

GLS + FAKE runs 12hrs 20hrs 29hrs 30hrs 26hrs 32hrs 38hrs

Improvement 1.9x 1.9x 2.4x 2x 2.3x 2x 2.2x



 
Figure 9. Capture and replay from RTL to GLS 

 

Incremental Checkpoint Utility - Save and Restore (ICU - SNR): SNR is a method in which the common sequences 

of a SoC level test can be saved and any other test can be restored from the end of previous simulation snapshot. SSDT 

additionally enhances the simulation time savings with extending the save timeframe to IP specific sequences with ICU. 

Every IP has its own set of initialization sequences that are required to be executed after the common sequences. 

Adding it as a part of the SoC common sequences will be counterproductive. ICU enables the creation of checkpoints 

at the end of the IP specific initialization sequences by leveraging the SoC snapshot (Figure 10). 

 
Figure 10. Before and after incremental snapshot implementation 

 
Table 3. Runs with and without ICU 

 
 

 

Automatic Periodic Checkpoint Generation (APCG): APCG plugin periodically saves the simulation snapshot of 

the run based on simulation time or wall clock time. The plugin has flexibility to program the number of snapshots to 

be saved to get rid of redundant snapshots. The periodic checkpoint generation (Figure 11) setting is based on the 

analysis of simulation kill, user mistakes, failure stop & rerun scenarios and regression run times. In Figure 11, the 

periodic checkpoint generation is represented by picking the number of snapshots that are stored at any time to be 3. 

Here, the parallel running tcl script spawns 3 individual breakpoints and each breakpoint maintains its own checkpoint. 

Another add-on to APCG plugin ensures that restarted simulations and their status are accurately represented in the 

HTML regression dashboards. This custom script ensures that the correct test command is replaced by the older test 

command so that when the abruptly ended run is restarted, it will appropriately modify the regression dashboard to 

reflect the correct number of tests and their run status. 

Criteria

Memory 

overhead 

(For 1 IP)

Avg Run 

time

 (For 1 IP)

Without ICU 0 86.1hrs

With ICU 31GB 28.4hrs

Improvement - 3.02x



 
Figure 11. Automatic Periodic Checkpoint Generator flow 

Table 4. Normal v/s runs with APCG 

 
 

Profiling & Access: Simulation profiling and further analysis of the weight each component had resulted in modifying 

the testbench and RTL coding styles for optimal performance. The profiling activity resulted in tweaking the simulator 

with appropriate switches that are custom suited for the database resulting in up to 20% simulation speed 

improvements. The simulation tool debug permission across the full compiled database was tweaked due to the 

confidence resulting from other SSDT checks. Optimization at signals level were carried with AI and ML scripts that 

restricts the debug access to signals that explicitly require permissions. Experiments, including dedicated machine 

runs, were carried out to understand, analyze and optimize the machine (LSF) on which the simulation is executed. 

 
 

Table 5. SSDT improvement metrics for external methods via SPOW 

 

 

V. RESULT 

SSDT’s modularity and ease to deploy across any projects and different abstraction of the testbench resulted in huge 

savings in terms of manual effort the engineer spends, simulation run time and performance enhancement in the range 

of 6x-10x (Table 6). It has been implemented in 3 recent SoC DV projects for Mixed Reality (AR/VR/XR), HPC 3DIC 

and Generative AI 2.5DIC applications and it has provided consistent improvement in GLS execution.  

 

Criteria for 1 IP
Memory 

overhead

No. of 

abruptly 

killed 

runs 

Time spent 

on rerun of 

abruptly 

killed runs

Without APCG 0 5 157h

With APCG 90GB 7 84h

Improvement ( %) - - 46

Scenario Boot test Mem test CPU test Power test Disp test PCIE test

Access +RWC 50hrs 75hrs 69hrs 72hrs 73hrs 85hrs

Access +R 38hrs 71hrs 60hrs 62hrs 66hrs 72hrs

Afile 32hrs 65hrs 56hrs 57hrs 60hrs 65hrs

Dedicated 31hrs 63hrs 52hrs 54hrs 54hrs 63hrs

Improvement 1.4x 1.2x 1.3x 1.4x 1.4x 1.3x

With SNR 31hrs 29hrs 33hrs 25hrs 28hrs 40hrs

Improvement 1x 2.2x 1.7x 2.1x 2.1x 1.7x

w/o ICU & APCG

Avg time for 100 tests
31hrs 156hrs 120hrs 98hrs 186hrs 264hrs

w/ ICU & APCG

Avg time for 100 tests
31hrs 45hrs 43hrs 30hrs 49hrs 60hrs

Improvement 1x 3.4x 2.8x 3.2x 3.8x 4.4x



Table 6. Improvement metrics with SSDT per IP test 

 
 

VI. CONCLUSION 

With increasing size and complexity of the chip, the total number of tests to be verified and net run time rise 

exponentially. With time to market and adherence to schedule being critical parameters for the success of a product, 

the need to strategize optimal selection of tests to be run without compromise on quality while simultaneously 

obtaining quicker results without doing multiple iterations is of paramount importance. SSDT has provided consistent 

improvement in GLS execution by guaranteeing first run correctness and fast convergence to meet stringent timelines 

with its automated plug-ins saving both precious man months and the costlier licensing, storage and infrastructure costs 

(Table 7). Future scope with integration of emulation into SSDT, n-die distributed simulation strategies for multi-

chiplet based SoCs and leveraging AI and ML tools for wavemining and automated debugs have already been 

evaluated and are under development stage. 

 

 

 

 
Table 7. Consolidated initial v/s final SSDT GLS metrics 
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Scenario Boot test Memory tests CPU tests Power tests Display tests PCIE tests

Initial avg 50hrs 156hrs 120hrs 98hrs 186hrs 264hrs

FCMAST Optimized avg 18hrs 26hrs 25hrs 24hrs 28hrs 29hrs

Improvement 2.7x 6x 4.8x 4.1x 7x 9.1x

Block Total Tests
No. of netlist 

labels

Avg Iterations 

for first pass

Avg run 

time (hrs)

Total runtime 

(hrs)

Avg 

Iterations 

for first 

pass

Avg run time 

(hrs)

Improved Total 

runtime (hrs)

Net Improvement  

(X times)

A 19 8 4 85 51680 1 48 7296 7.1

B 12 8 4 76 29184 1 33 3168 9.2

C 4 8 2 94 6016 1 42 1344 4.5

D 3 7 3 63 3969 1 35 735 5.4

E 2 8 2 67 2144 1 31 496 4.3

F 14 8 4 78 34944 1 38 4256 8.2

G 8 8 3 163 31296 1 101 6464 4.8

H 22 8 4 102 71808 1 44 7744 9.3

I 13 6 3 73 17082 1 24 1872 9.1

J 17 8 4 68 36992 1 28 3808 9.7

K 6 8 5 152 36480 1 86 4128 8.8

L 10 8 3 79 18960 1 31 2480 7.6
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