
GraphCov: RTL Graph Based Test Biasing for 
Exploring Uncharted Coverage Landscape

Debarshi Chatterjee, Spandan Kachhadia, Chen 
Luo, Kumar Kushal, Siddhanth Dhodhi 

Nvidia Corporation



Introduction
• Coverage Closure is one of the most tedious phases of 

Design-Verification (DV)
• Towards end-of-project, coverage asymptomatically 

converges to a number less than 100% 
• How do we cover the last mile?

• Directed Tests
• Fix Test-Bench (TB) Bugs
• Waivers

• Can we expedite coverage closure time?

Coverage Percentage

100K 200K

C2
C1

300K

C3

100%

Number of tests 
2M

98%



Background
• For this paper, Functional Coverage will 

be measured in percentage of Cover 
Properties (CP) that were hit

• CCP = Covered Cover Property
• UCP = Uncovered Cover Property

• Coverage% ே಴಴ು∗ଵ଴଴

ே಴಴ುାேೆ಴ು

• Is there an automated way in which we 
can improve End-Of-Project coverage 
numbers by running a small set of tests?

Block ABlock A

req

ack

clk

DUT

Primary 
inputs



Previous Work
• Considerable previous work exists on accelerated coverage closure
• Design2Vec: Uses RTL Control Data Flow Graph (CDFG) to generate 

GNN based model that predicts test coverage based on input knobs 
(NeurIPS, 2021)

• ML based techniques require collecting lot of data for building models
• Challenges:

• Keep model updated with design changes
• Learnings are not readily transferable from one unit to another

• This paper: Presents a simple heuristic for hitting Uncovered CPs 
without training models with huge amount of data



High Level Overview
• Identify Covered CP (CCPs) that meet three criterion:

1. Overall hits to the CCP is relatively low compared to other CCPs in the 
design

2. The CCP has large number of UCPs in its neighborhood 
3. The CCP is closely tied to the UCPs in its neighborhood

• Assign scores to identify CCPs that meet these criteria
• Call CCP with highest score as Target-CP
• High Level Idea: If we can bias a set of tests towards the Target-CP, 

then we could possibly hit UCPs in its neighborhood



Trace Driver Graph
• Every node in TDG is either a CP or a Signal. 
• A directed edge from source node (S) to a destination node (D) in TDG, implies one of the following: 

• 1) S is a driver for D
• 2) S is a guard condition for the driver for D



Colored-TDG from a Unit Level Design
Legend:

Uncovered CP
Covered CP
Other Signals

• Force Directed Layout for Colored-TDG



N-Hop Neighborhood

• N-hop neighborhood of a CCP:
• Set of nodes (Signals and CPs) that can be reached within N consecutive hops, 

starting from the CCP in the TDG 

• Alternative Definition:
• Starting from the CCP, if one is allowed to make N clicks to either Trace-Load 

or Trace-Driver button on Verdi, then all the signals and CPs that can be 
possibly reached, belongs to the N-hop neighborhood of the CCP 



Sample Target-CP

Sample CCP

6-Hop Neighborhood example of a CCP

Selected 6-hop 
neighborhood 
around Sample CCP

Legend:
Neighbor UCP
Neighbor CCP/Other
non-Neighbor UCP 
non-Neighbor CCP
non-Neighbor Other



Some Stats

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1000000 10000000 100000000 1E+09 1E+10

Co
ve

re
d 

CP
 %

Hit Count Sum in a Neighborhood

Ellipse enclosing CCPs which 
have relatively low hit rate 
and percentage coverage in 
their neighborhood – possible 
candidates for test biasing



Assigning Scores to CCPs
• More shared ancestors means higher 

association

• Less distance of the UCP from the ancestors 
mean higher association

• Association between CCP and UCP = (A / d)

• Overall score is sum of associations

Score_C1 = ଵ

ଵ
+

ଵ

ଶ
= 1.5  Score_C2 = ଵ

ଵ
+

ଶ

ଵ.ହ
= 2.33  



GraphCov Algorithm
Step 1a:

Collect baseline coverage data
by running regressions

Step 6:
Exit Criteria

• No Low-Hit CCPs left
• No UCPs left
• Max Target-CP list size 

reached (user defined)
• Any other criteria

Step 2:
Generate Colored TDG

Step 3:
Assign scores to each CCP

(Filter out CCPs with high Hit count)

Legend:
Uncovered CP
Covered CP
Other

Step 7:
Bias tests to hit Target-CPs list by 
using automated BayOpt tool or 
by manually setting test knobs

Step 5:
Remove CCP with highest score 

and all UCPs in its N-hop 
neighborhood from TDG

Step 1b:
Collect Signal Src-dest Map 

from RTL

DestSrc

Loop to build 
Target-CP list 

with maximum 
UCP reach & 
association

TDG

CCP3’s N-hop 
Neighborhood

UCP1

UCP8

UCP5

UCP6

UCP7

UCP4

UCP2UCP3

UCP9

Step 4:
Select CCP with highest score 

and save it in Target-CP list
> > …>CCP3 CCP5 CCP2

CCP3
CCP2

CCP4

CCP6 CCP5

CCP1



Biasing Towards Target-CP
• How do we bias tests towards a Target-

CP?
• Use in-house tool at Nvidia that uses 

Bayesian Optimization (BayOpt)
• Alternative Approach: Ask DV engineers if 

there exists a set of $plusargs that can bias 
a set of tests towards a Target-CP

• BayOpt Limitations: Does not work well 
for large number of $plusargs

• No new $plusargs were added for the 
experiments

$value$plusarg 1 $value$plusarg 2

CP Hit Rate (per test)



Runtimes

Steps Runtime

Extracting Raw Data file for TDG ~1hr

Raw Driver Information to TDG ~3min

Run GraphCov to find top-M Target-CP ~5min

Total Time ~1hr8min



Results
Target-CPs Tests 

Run
Boost

CP Hit per test
Number of UCPs 

hit
Number of UCPs hit 

in 6-hop of Target-CP

Target-CP1 10000 23x 7 6

Target-CP2 5000 390x 24 22

Target-CP3 4000 20x 15 6

Summary: In 3 set of experiments using GraphCov, we were able to hit 46 UCPs and waive-off 44 UCPs. The 
number of CPs which were unhit and deemed reachable went down from 609 to 519, a 15% reduction.



Conclusion

• GraphCov shows promise in identifying UCPs which were unhit due to 
test biasing issues in the TB

• Future Work: Automate the process of knob selection. Current 
BayOpt approach cannot handle more than 20 $plusargs

• Limitations: Cannot hit UCPs which were unhit due to inherent 
limitations in TB code such as:

• Over-constraints
• In-built timing limitations in sequences etc.



Thank You!


