
ahmed.allam@icpedia.com

Ahmed M. Allam

AMS Verification Consultant, ICpedia

Register Access by Intent: Towards
Generative RAL based Algorithms

Multi-View RAL

INTRODUCTION Flexible RAL

Generic RAL based algorithm for Release/IP variations

Results

META-RAL Framework proposal

Design updates (Flexible RAL)

• Access fields by a unique func_tag.
• Access fields by associative

properties.
RAL performance penalty (Multi-View RAL)

• RAL is organized into different views,
can be chosen by the UVM test
through scope.

• Each view comprises one or more
scopes.

• A register or field can belong to
multiple scopes.

Design dependent (Generic Events) :

• Register events in uvm event pool
• Wait on generic events.
• Trigger events in a separate task or

monitors.

 This work introduces the META-RAL framework.

 Meta RAL consists of three frameworks.

 Flexible RAL.

 Multi-View RAL.

 Generic RAL events.

 Lookups are built to track RAL fields (Function, Associative)

 Testcases are immune to RAL structural changes.

 Easy to generate RAL algorithms regardless reg/field name.

 Testcases select ral_view which builds registers on purpose

 Attempting to access the field outside of ral_view will result in an
access error.

 Minimize the memory and performance impact of the build process
by eliminating unnecessary registers.

CONCLUSIONS

task meta_ral_pll_cal(serdes_ral_model ral_model);

 uvm_reg_field pll_cal_flds[$];
 uvm_reg_field fld;
 uvm_status_e status;
 uvm_event cal_event;

 repeat(n) begin
 fld = ral_model.get_field_by_func(PLL_CAL_CODE);
 fld.write(status,pll_code);
 fld = ral_model. get_field_by_assoc(PLL_CAL_CODE,TRIG_CLK);
 trigger_clk(fld);
 cal_event = uvm_event_pool::get_global(“pll_cal_code_updated");
 cal_event.wait_trigger();
 pll_code = next_pll_code();
 end

endtask

virtual function void rf_reg_block ::build();
..
..
 if(check_reg_build(ral_view,“m_pll1_ctrl”) begin
..
 m_pll1_ctrl = reg_pll1_ctrl ::type_id::create(" m_pll1_ctrl ");
 tag_field_by_function(m_mpll1_ctrl.enable,ENABLE_PLL1);
 end
endfunction

 Flexible RAL reduces testcases maintenance effort due to RAL structural

changes.

 MV-RAL can get rid of unwanted registers.

 Removing 10,000 registers reduced simulation memory by 30-40 %.

 Accessing registers out of scope/view would result in an error.

 Generic UVM events make RAL sequences reusable across different IP releases.

scope/reg pll_pwrup vreg_pwrup pll_cal pll_fsm

control

startup_cal

pzvt_cal

vreg_cal

powerup basic_cal adv_cal

2

UVM RAL MV-RAL

additional created

registers

10,000 10

 Memory size during

simulation (Mb)

375-397 250-280

Simulation wall time (S) 63.5 51.2

rf_rb.set_ral_view(rf_reg_block_pkg::POWERUP);

Problem statement
 RAL is a verification tool that abstracts DUT registers,

providing stable APIs for consistent access despite
address changes, ensuring adaptability and stability in
testing environments.

 Registers and fields may change, necessitating test
case updates. This challenge promotes enhancing
abstraction and hiding capabilities in RAL.

 This proposal presents META-RAL, enabling field
access through names, functions, and implemented
lookups effectively.

Execution challenges

 Design churn: During early design and cross-release

phases, RAL fields shift across registers, requiring
updates to test cases.

 Performance degradation: One-time RAL
construction for the entire RAL, but test access few
registers.

uvm_reg_block

uvm_reg

uvm_reg_field

uvm_reg_map

uvm_reg_file

uvm_reg_mem

pll_pwrup

pll1_en

pll2_en

pll1_ctrl
enable

cal_en

cal_code

pll_cal
pll1_cal_en

pll2_cal_en

pll2_cal_code

pll2_ctrl
enable

cal_en

cal_code

test

 release 1 release 2

ENABLE_PLL1

EN_PLL2_CAL

ENABLE_PLL1

EN_PLL2_CAL

virtual function void rf_reg_block ::build();
 ..
 tag_field_by_function(.fld(m_pll1_ctrl.enable),.func_tag(ENABLE_PLL1));

 tag_field_by_function(.fld(m_pll1_ctrl.cal_code),.func_tag(PLL1_CAL_CODE));

 tag_field_by_function(.fld(m_pll1_ctrl.cal_en),.func_tag(ENABLE_PLL1_CAL));

 tag_field_by_assoc(.fld_tag(PLL1_CAL_CODE),.assoc(CAL_LS_CLK_EN)
 ,.fld(m_clks.clk50m_en)); // Static associativity

 tag_field_by_assoc(.fld_tag(PLL1_CAL_CODE),.assoc(CAL_HS_CLK_EN)
 ,.fld(m_clks.clk200m_en)); // Static associativity

endfunction

task rf_pll_cal_seq::body();
 uvm_reg_field pll1_en;
 pll1_en= rf_rb.get_field_by_func(ENABLE_PLL1);
 cal_hs_clk = rf_rb.get_field_by_assoc(PLL1_CAL_CODE,CAL_HS_CLK_EN);
 cal_hs_clk.set(1’b1);
endtask : body

 RAL-based algorithms face challenges due to waiting for IP-dependent signaling. In this proposal, each
IP release will have its design-specific signal event handler.

 With the Multi-View RAL approach, RAL sequences can be written independently of IP
design details.

 Algorithm and sequences are more compact and understandable.

pll1_cal_code

class event_handler_ip1
extends meta_event_handler;

virtual event_if e_vif;

virtual task event_trigger;

 fork
 begin

 @(posedge e_vif.pll_code_updated);
 trig_event("pll_cal_code_updated");

 end
 // other events
 join

endtask
endclass

 Lookups are implemented to keep track of RAL internal fields and
can be accessed using a unique identifier known as func_tag.

 RAL structure changes across releases, but the test can still access
fields regardless of field names or parent register names.

 The RAL model consists of a
single unit.

 All registers and fields are built
regardless of test scenario.

 The build-up of all registers
leads to decreased performance
and increased resource
consumption.

 Each ral_scope can select
which registers and fields to
build.

 Memory can only be allocated
to the test-accessed registers
and fields.

 The Multi-View RAL framework addresses this problem by
building registers for test purposes using a RAL hierarchical
architecture with ral_view and ral_scope.

 Here we have 3 ral_views (powerup, basic_cal, adv_cal) and

4 ral_scopes (control, startup_cal, pvt_cal, vreg_cal)

