
ahmed.allam@icpedia.com

Ahmed M. Allam

AMS Verification Consultant, ICpedia

Register Access by Intent: Towards
Generative RAL based Algorithms

Multi-View RAL

INTRODUCTION Flexible RAL

Generic RAL based algorithm for Release/IP variations

Results

META-RAL Framework proposal

Design updates (Flexible RAL)

• Access fields by a unique func_tag.
• Access fields by associative

properties.
RAL performance penalty (Multi-View RAL)

• RAL is organized into different views,
can be chosen by the UVM test
through scope.

• Each view comprises one or more
scopes.

• A register or field can belong to
multiple scopes.

Design dependent (Generic Events) :

• Register events in uvm event pool
• Wait on generic events.
• Trigger events in a separate task or

monitors.

 This work introduces the META-RAL framework.

 Meta RAL consists of three frameworks.

 Flexible RAL.

 Multi-View RAL.

 Generic RAL events.

 Lookups are built to track RAL fields (Function, Associative)

 Testcases are immune to RAL structural changes.

 Easy to generate RAL algorithms regardless reg/field name.

 Testcases select ral_view which builds registers on purpose

 Attempting to access the field outside of ral_view will result in an
access error.

 Minimize the memory and performance impact of the build process
by eliminating unnecessary registers.

CONCLUSIONS

task meta_ral_pll_cal(serdes_ral_model ral_model);

 uvm_reg_field pll_cal_flds[$];
 uvm_reg_field fld;
 uvm_status_e status;
 uvm_event cal_event;

 repeat(n) begin
 fld = ral_model.get_field_by_func(PLL_CAL_CODE);
 fld.write(status,pll_code);
 fld = ral_model. get_field_by_assoc(PLL_CAL_CODE,TRIG_CLK);
 trigger_clk(fld);
 cal_event = uvm_event_pool::get_global(“pll_cal_code_updated");
 cal_event.wait_trigger();
 pll_code = next_pll_code();
 end

endtask

virtual function void rf_reg_block ::build();
..
..
 if(check_reg_build(ral_view,“m_pll1_ctrl”) begin
..
 m_pll1_ctrl = reg_pll1_ctrl ::type_id::create(" m_pll1_ctrl ");
 tag_field_by_function(m_mpll1_ctrl.enable,ENABLE_PLL1);
 end
endfunction

 Flexible RAL reduces testcases maintenance effort due to RAL structural

changes.

 MV-RAL can get rid of unwanted registers.

 Removing 10,000 registers reduced simulation memory by 30-40 %.

 Accessing registers out of scope/view would result in an error.

 Generic UVM events make RAL sequences reusable across different IP releases.

scope/reg pll_pwrup vreg_pwrup pll_cal pll_fsm

control

startup_cal

pzvt_cal

vreg_cal

powerup basic_cal adv_cal

2

UVM RAL MV-RAL

additional created

registers

10,000 10

 Memory size during

simulation (Mb)

375-397 250-280

Simulation wall time (S) 63.5 51.2

rf_rb.set_ral_view(rf_reg_block_pkg::POWERUP);

Problem statement
 RAL is a verification tool that abstracts DUT registers,

providing stable APIs for consistent access despite
address changes, ensuring adaptability and stability in
testing environments.

 Registers and fields may change, necessitating test
case updates. This challenge promotes enhancing
abstraction and hiding capabilities in RAL.

 This proposal presents META-RAL, enabling field
access through names, functions, and implemented
lookups effectively.

Execution challenges

 Design churn: During early design and cross-release

phases, RAL fields shift across registers, requiring
updates to test cases.

 Performance degradation: One-time RAL
construction for the entire RAL, but test access few
registers.

uvm_reg_block

uvm_reg

uvm_reg_field

uvm_reg_map

uvm_reg_file

uvm_reg_mem

pll_pwrup

pll1_en

pll2_en

pll1_ctrl
enable

cal_en

cal_code

pll_cal
pll1_cal_en

pll2_cal_en

pll2_cal_code

pll2_ctrl
enable

cal_en

cal_code

test

 release 1 release 2

ENABLE_PLL1

EN_PLL2_CAL

ENABLE_PLL1

EN_PLL2_CAL

virtual function void rf_reg_block ::build();
 ..
 tag_field_by_function(.fld(m_pll1_ctrl.enable),.func_tag(ENABLE_PLL1));

 tag_field_by_function(.fld(m_pll1_ctrl.cal_code),.func_tag(PLL1_CAL_CODE));

 tag_field_by_function(.fld(m_pll1_ctrl.cal_en),.func_tag(ENABLE_PLL1_CAL));

 tag_field_by_assoc(.fld_tag(PLL1_CAL_CODE),.assoc(CAL_LS_CLK_EN)
 ,.fld(m_clks.clk50m_en)); // Static associativity

 tag_field_by_assoc(.fld_tag(PLL1_CAL_CODE),.assoc(CAL_HS_CLK_EN)
 ,.fld(m_clks.clk200m_en)); // Static associativity

endfunction

task rf_pll_cal_seq::body();
 uvm_reg_field pll1_en;
 pll1_en= rf_rb.get_field_by_func(ENABLE_PLL1);
 cal_hs_clk = rf_rb.get_field_by_assoc(PLL1_CAL_CODE,CAL_HS_CLK_EN);
 cal_hs_clk.set(1’b1);
endtask : body

 RAL-based algorithms face challenges due to waiting for IP-dependent signaling. In this proposal, each
IP release will have its design-specific signal event handler.

 With the Multi-View RAL approach, RAL sequences can be written independently of IP
design details.

 Algorithm and sequences are more compact and understandable.

pll1_cal_code

class event_handler_ip1
extends meta_event_handler;

virtual event_if e_vif;

virtual task event_trigger;

 fork
 begin

 @(posedge e_vif.pll_code_updated);
 trig_event("pll_cal_code_updated");

 end
 // other events
 join

endtask
endclass

 Lookups are implemented to keep track of RAL internal fields and
can be accessed using a unique identifier known as func_tag.

 RAL structure changes across releases, but the test can still access
fields regardless of field names or parent register names.

 The RAL model consists of a
single unit.

 All registers and fields are built
regardless of test scenario.

 The build-up of all registers
leads to decreased performance
and increased resource
consumption.

 Each ral_scope can select
which registers and fields to
build.

 Memory can only be allocated
to the test-accessed registers
and fields.

 The Multi-View RAL framework addresses this problem by
building registers for test purposes using a RAL hierarchical
architecture with ral_view and ral_scope.

 Here we have 3 ral_views (powerup, basic_cal, adv_cal) and

4 ral_scopes (control, startup_cal, pvt_cal, vreg_cal)

