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Abstract – Reset tree checks should be viewed thoroughly before reset domain crossing analysis. Static verification tools 

have many checks for reset tree analysis. This paper discusses the usage of non-resettable registers (NRRs) in reset paths. 

NRRs can cause metastability in the reset paths and hence thorough verification is a must. The paper discusses reduction 

of false failure reporting noise strategies in RDC analysis. Stable paths and functional false paths are the focus of the 

discussion in noise reduction, and we discuss various scenarios and how static verification tool should report these paths. A 

large semiconductor company we partnered with on this project.   
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 I.  INTRODUCTION  

  

Static verification, including Clock Domain Crossing (CDC) and Reset Domain Crossing (RDC), is 

imperative to finding issues in complex SoCs.  A decade ago, static verification technologies were a “nice to have.”  

Today, in an environment of ever-increasing design complexity, static verification is now so non-trivial that design 

and verification teams along with EDA vendors continue investigating newer checks and methodologies for static 

analysis.  The cost and schedule impact of design issues caught late in the design cycle have made engineers focus on 

RDC analysis of RTL designs.  RDC analysis is challenging in a sense that it involves careful consideration of design 

reset strategies. Fixing RDC bugs properly often requires changing the reset architecture which can be very costly at 

late stage in the design cycle. Additionally, a poorly architected reset strategy can lead to reset bugs escaping to silicon 

thereby leading to prejudicial wastage of thousands or even millions of dollars, design re-spins and project schedule 

slippage.  

It is often observed that engineers jump past analyzing RDC results without reviewing the setup checks. 

Setup check results must be analyzed. A RDC analysis run is initiated by compiling and elaborating the design thereby 

performing a detailed analysis of clock and reset trees. A good RDC analysis engine will do the analysis 

pessimistically so that it covers all the domain crossing signals and related issues, if any. Pessimism in the analysis 

may lead to creation of new clock and reset domains which can increase the noise in the results. Engineers can control 

the level of pessimism by using proper constraints. RDC analysis tools carve out analysis on clock and reset trees and 

provide a set of pointed/focused issues a designer can focus on before doing analysis on the actual domain crossing 

signals. There are many checks that need to be performed on the clock and reset trees and this paper will discuss few 

such issues related to reset trees.  

We have seen design engineers regularly use non-resettable registers (NRRs) in RTL designs.  Resettable 

registers may be used on the periphery of the design while NRRs are generally used on internal paths. Using NRRs 

have many advantages, including reduced area and lower power consumption.  Using non-resettable registers also 

comes with some challenges. We will highlight one such disadvantage of non-resettable register usage on reset paths.   



RDC analysis results can be noisy because of the previously mentioned inherent pessimism in the analysis.  

RDC analysis methodologies need to provide a noise management strategy which requires minimal extra work for 

engineers.  If noise management is not done properly it may lead to serious RDC issues being incorrectly masked, or 

not reported.  We have investigated RDC analysis results on many designs and have found that often the analysis 

results are noisy because the analysis engine may not account for stable constraints applied on various signals on 

clock, and control paths.  Using knowledge of system behavior and architecture, an engineer may apply constants and 

stables on certain signals; configuration registers are usually perfect examples of stable signals. These registers usually 

don’t toggle during the functional operation of a chip and hence are not candidates for CDC/RDC analysis. It is 

expected that EDA tools consider these signals to be static and report paths associated with these signals as safe 

crossings.  For RDC analysis we have observed that the tools report these “safe” paths as “unsafe” leading to noisy 

results.  This paper investigates how RDC tool should report such paths as safe RDC crossing. 

Engineers tend to use constraints (i.e. setting false paths) to eliminate paths from analysis completely, but 

this is no better than a waiver and can result in bugs.  It is our recommendation that design rules should strictly disallow 

usage of such constraints. It is our belief that any RDC tool should automatically recognize functional false paths and 

report them.  Functional false path reporting by the tool has many advantages. The first and foremost is that all the 

domain crossing paths are analyzed by the tool.  EDA tools may apply formal verification technology to report these 

types of paths (even if unconstrained by the user).  Doing so provides confidence that all the paths are analyzed. 

Additionally, engineers can make necessary changes to the design at an early stage of design development to address 

domain crossing issues identified by the tools.  The proposal we support in this paper is to analyze these paths under 

a different RDC scheme. 

  

 

II.  NRRs ON ASYNCHRONOUS RESET PATHS MAY LEAD TO RDC ISSUES IN THE DESIGN 

  

Engineers sometimes use NRRs on asynchronous reset paths.  There are many reasons engineers use this 

design technique, adding delays on a reset path and using NRRs to reduce power and area are two examples.  This 

design style incurs a risk of creating RDC issues between a transmit source with an asynchronous reset and the receive 

destination having the same asynchronous reset with NRRs on the reset path.  During RDC, EDA tools generally 

don’t flag problems between the source/destination registers because the delays caused by the NRR's on the reset 

path are not taken into. EDA tools tend to assume that both transmit source and receive destination registers belong 

to the same reset domain; the path is ignored.  To correctly address this issue, engineers need to define a new reset on 

the last NRR output.  The tools will then correctly flag a RDC violation between the transmit source register and the 

receive destination register.  It is a cumbersome, time consuming and tedious process for engineers to define a new 

reset in the setup file for every path that exists in the design. We present two such cases below. 

Case 1: Consider the schematic in Fig. 1. Here the receive destination register “rx” has NRRs on its 

asynchronous reset path. An RDC path exists between the transmit source register ”tx” and receive destination register 

“rx”.  The NRR path delays on the reset path of the “rx” register, may cause the reset at the “rx” register to assert 

asynchronously relative to the “tx” reset. 

If we do not account for the time delays from the NRR’s (f2, f3) the data path between “tx” and “rx” could 

be incorrectly identified as a synchronous reset data path.  We must take the NRR delays into account, which manifests 

a behavior of the “rx” reset asserting after the “tx” reset asserts.  Which is a condition where metastability could be 

sampled across the data path.  

One attempted solution could be to use a reset ordering constraint, but this type of constraint assumes that 

the “rx” reset asserts first before the “tx” reset.  In this case reset ordering would not address this circuit condition. 

Because the “rx” reset would assert after the “tx” reset due to the time delays from the NRRs in the reset path. 

This is an example of why the presence of the NRRs in the reset path should be addressed. They should be 

reviewed and understood in the context of the design’s functional behavior and the time delay caused by the NRRs 

creating an asynchronous reset behavior must be addressed. 

 

To aid the design engineers, an analysis check is required to identify these conditions (e.g. NRRs in the reset 

path) so a design team can address this condition, and remove the risk of metastability sampling due to the 

asynchronous reset behavior caused by the delays in the reset path.  

 



 

 
 

Figure 1 NRR on Reset Path with same async reset on both TX and RX sides 

  

 Case 2: Consider the schematic in Fig. 2. Here the receive destination register “rx” is driven by an 

asynchronous reset “rstn2” and source register “tx” is driven by an asynchronous reset “rstn1”. Destination register 

“rx” has NRRs on its asynchronous reset path. Even with correct reset order constraint, this may cause RDC 

metastability problem between source and destination registers due to the “rx” reset path delay. 

 

 

 
 

Figure 2 NRR on Reset Path with different async reset on both TX and RX sides 

  

 

III.  NOISE MANAGEMENT IN RDC ANALYSIS 

 

RDC analysis on SoC designs can have thousands or even millions of violations, some of them may be false 

violations. Engineers often use wild cards and regular expressions to write generic waivers which may be applied to 

many violations at the same time. This is a clever way of writing waivers or constraints, but it may also lead to waiving 

real and potential issues.  For this reason, constraints are always preferred over waivers.  For an RDC path, engineers 

generally constrain the Rx data and clock paths through isolations or through specification flows where they mark or 

specify the receive register clock as “off”.  

Constant and stable constraints applied on control paths (e.g., register enables) and clock paths (e.g., clock 

pins or clock nets) of the source transmission register in the RDC path are often not accounted for by an RDC analysis 

tool and hence a user may see noise. It is important to understand that when a user disables a register via an enable 

pin using a constant (most often 0 value) as a constraint for RDC analysis, the user is generally referring to the fact 

that the register is at some known state and will not sample the value at input D pin.  RDC analysis is supposed to be 

done on the operational modes of a design which happens after reset sequencing.  This implies that the register will 



be either at set value by virtue of set pin, or at reset value, by virtue of clear pin. Hence the assertion event at the reset 

signal (set/clear) will have no effect on the register whose enable pin is marked constant by a constraint.  This means 

that if the register is a source transmission register in an RDC path, this will be a safe crossing and EDA tool should 

report it as a safe RDC path. RDC analysis tools mark these paths as safe.  Here the RDC tool infers the stable path 

and thus reports it in a separate RDC category/scheme. This improves the quality of results and hence the results are 

less noisy. 

Similar logic applies to stable or constant constraints applied to clock paths.  When the operational mode of 

the design is under analysis, the user wants to set a constraint during the analysis that the register doesn’t sample any 

value.  We present three such cases below. 

Case 1: Consider the schematic in Fig. 3.  The “en” pin of the source transmission register is tied to a constant 

“0”, making this register stable.  RDC analysis tool infers these types of paths as stable and puts them in a separate 

RDC scheme. 

 

 

Figure 3 Constant 0 applied at control path  

 

Case 2: Consider the schematic in Fig. 4. The clock pin of the source transmission register, “clk1” is tied to 

a constant “0”, meaning this register will not sample any value. Hence, the “tx” register is in stable condition. RDC 

analysis tool infers these types of paths as stable and puts them in a separate RDC scheme. 

 

 

 

Figure 4 Constant 0 applied on clock  

Case 3: - Consider the schematic in Fig. 5. Clock pin of source transmission register, “clk1” has been marked 

stable via constraint. The source transmission register is not going to register any value as the clock is not switching. 

This also means that the source transmission register is at stable value. RDC analysis tool infers this path as stable and 

puts it in a separate RDC scheme. 

 



 

 

Figure 5 Stable constraint applied on clock  

 

 

 IV.  AUTOMATIC RECOGNITION OF FUNCTIONAL FALSE PATH IN RDC 

 

Engineers writing RTL often don’t realize that some paths, which may cause RDC paths between a transmit 

source and a receive destination, are functionally false.  These paths may not cause any functional failure in the design, 

and these false paths can be ignored in functional verification.  Synthesis tools also don’t have a way to identify these 

functionally false paths, but during RDC analysis, these paths will appear as RDC violations if a reset domain crossing 

exists between the transmit source and receive destination. These RDC violations are considered noise in RDC analysis 

result.  Depending on how many such paths exist in a design, reviewing and addressing these issues can be an 

inefficient, time-consuming effort, that wastes valuable time.  In this paper we will show how a RDC tool will be able 

to identify these paths automatically as functionally false path and identify them as safe paths.  This reduces the amount 

of time and effort an engineer must spend analyzing and debugging RDC results.  

 
Case 1 – Consider the schematic in Fig. 6.  There is an RDC crossing between the transmit source “t1” and 

the receive destination “out”.  These two registers are driven by same clock but different asynchronous resets.  
Looking at the path between the two registers, there are multiple muxes on the path. When the select pin is set to “0” 
for the first mux the “D0” pin is selected which is connected to the output pin of the transmit source register “t1”.  
For the second mux, the “D0” pin is not connected to the “t1” register but is connected to a different transmit source 
“in2”.  When the select pin is set to “1” for the first mux, “D1” is selected which is set to a constant “0”.  Hence path 
between “t1” and “out” can be considered as a functionally false path and no RDC violation should be reported. If a 
design has hundreds or even thousands of these functionally false paths, engineers won’t spend their time 
unnecessarily debugging them.  Solutions without this capability will report these paths as domain crossing errors 
that will require time and effort to debug.  

 

 

 
Figure 6 Functional False Path for RDC   



  
 

  Case 2 – Consider the schematic in Fig. 7.  There are two possible RDC crossings between the transmit source 

“d1”, the receive destination “s0” and the transmit source “d2” and receive destination “s0”. All the registers are driven 

by the same clock.  But the “d1” and “d2” registers are driven by the asynchronous reset “rstn1” and the “s0” register 

is driven by a different asynchronous reset “rstn2”.  If we write the Boolean expression for the combinatorial logic 

between the transmit source and receive destination registers, it is ((!din1 & din2) + (din1 & din2)). This expression 

can be written as ((!din1 + din1) & din2). Which can further be simplified as “din2” only.  So, the RDC path between 

“d2” and “s0” is a valid RDC path that needs to be evaluated.  The RDC analysis tool classifies the path between “d1” 

and “s0” as a functionally false path. 

 

 
        Figure 7 Functional False Path for RDC   

 

 

 VI.  CONCLUSION  

  

In this paper, we have highlighted specific issues that must be addressed by designers to improve RDC results 

and to ensure the highest fidelity in identifying real design issues. The use of NRR’s in a design have many benefits, 

however it can come with the risk of metastability.  Identifying and addressing the presence of NRRs in the reset tree 

are critical to identifying issues for analysis. When NRRs are present in the reset tree, they pose a risk due to timing 

delays in the reset tree that can manifest themselves by creating an asynchronous reset behavior even though the reset 

at the TX register, and the RX register are sourced from the same reset tree.   

Evaluating the results from RDC analysis can take a significant amount of time to both understand, and 

recognize the specific fault highlighted in the identified paths. The benefits, of the analysis tool reducing the number 

of paths to review, through FFP detection, and stable path inference reduces the time spent by the reviewer, while 

allowing a more directed focus on the identified, real issues that should be addressed in the design.   
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