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Abstract-Parameterized IP is a fundamental building block in System-On-Chip design. Although parameters work 

seamlessly with SystemVerilog modules and interfaces (HDL), the class based (HVL) side poses numerous challenges. 

These include issues with the HDL to HVL connection via the virtual interface, the UVM factory and parametric 

coverage. Various publications already exist that touch on one or another of these issues. The motivation of this work is 

not only to consolidate the existing knowledge on these topics but also to delve deeper into them and provide additional 

recommendations and solutions where possible. 

 

I.   INTRODUCTION 

Modern SoC designs are composed of a large number of IP blocks, which are typically a mix of internal and third-

party vendor provided IP. In order to manage the complexity, not only is the reuse of existing IP essential, but 

modern platform-based design goes one step further in churning out multiple derivatives of a product by reusing a 

single configurable base design of those IP. Parameterization is at the heart of this reuse methodology. Parameters 

are well supported in the most widely used Hardware Description Languages (HDL), namely VHDL, Verilog and 

SystemVerilog.  However, on the HVL side in SystemVerilog, the user must contend with various challenges when 

working with parameterized interfaces, classes and coverage. Before understanding the challenges, we must first be 

able to comprehend various aspects of the SystemVerilog language. Hence a short primer on the relevant features is 

presented first. The various challenges faced with parameters are then explained. The first issue is with the 

parameterized interface. The virtual interface abstraction is a useful means to access the Device Under Test (DUT) 

interface signals from the HVL part of the testbench. However, special handling is required for parameterized 

interfaces. This paper explains these challenges and presents and compares various known workarounds. The 

existing solutions are not able to effectively support parameterized interfaces in an emulation context which results 

in different VIPs being used for simulation and emulation. In the spirit of reuse, we propose a new emulation 

compatible solution, that does not trade off flexibility and genericity for synthesis compatibility, and hence can be 

used for both use cases. The next problem area highlighted is the UVM factory. Whilst working with non-

parameterized classes, the UVM factory abstraction (base class & macros) is easy to use without understanding its 

inner workings. However, to effectively use the factory design pattern with parameterized classes, we need to dig 

deeper. The final challenge described is related to parametric functional coverage. Parameterized classes make 

parametric coverage handling very easy, but as we will see, there are drawbacks to this. Special care is required to 

handle parametric coverage without the use of parameterized classes. Various solutions to this problem are 

presented.  

 

II.   SYSTEMVERILOG PRIMER 

A. Background 

SystemVerilog, the predominant hardware verification language in the industry, was first released as an Acellera 

standard in 2002. A significant part of the language was influenced by Superlog and Vera, which in turn had links to 

Verilog, C/C++ and Java [1]. The interface construct was inherited from Superlog and the object-oriented 

programming (OOP) framework from Vera. Unlike classes, interfaces do not support dynamic polymorphism. As 
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we will see, to solve challenges with parameterized interfaces, we must employ some tricks to make the interface 

pseudo-polymorphic. Our motivation to trace the origins of these SystemVerilog constructs was to understand if the 

complexity involved in parameter handling already existed in the precursor languages. We believe that for the large 

part, this complexity is unavoidable. However, we see potential for improvements with virtual interface handling 

that we have proposed later in this work.  

 

B. Polymorphism 

In programming languages, polymorphism is the ability to represent different types of objects via a single 

interface. Although there are various types of polymorphism, we shall limit ourselves to parametric and sub-type 

polymorphism. These can be further classified into static and dynamic polymorphism. In static polymorphism, the 

object type is resolved at compile time. On the other hand, dynamic polymorphism uses inheritance and virtual 

methods to resolve function calls at run time. 

 

SystemVerilog parameterized classes and interfaces are examples of parametric polymorphism. As the 

parameters, which can themselves define a generic data type (type parameter), or be literals of various types, e.g., 

integrals or real are resolved at compile time, these fall under the static polymorphism category. 

 

Each specialization (unique parameter values) of a parameterized class or interface represents a unique type. 

Hence a parameterized class is a generic template, and apart from the default parameters specialization, does not 

represent a concrete type. Concrete specializations are only established when specialized parameters are used to 

declare a class variable, or the type is defined via a “typedef”. Once the types have been statically defined, 

parameterized classes do support dynamic polymorphism.   

 

The parameterized class type specificity has implications on sub-type (dynamic) polymorphism. In this type of 

polymorphism, a base class handle is used to call virtual methods overridden in the class's sub-types dynamically. 

To achieve dynamic polymorphism with parameterized classes, it is required to extend the parameterized class from 

a non-parameterized base class. This technique is exemplified in Section III-D. There is another use-case for this. 

SystemVerilog supports static properties and methods, which can be accessed without instantiating a class object. 

However, to share member variables among different specializations of a parameterized class, they must be placed 

in a non-parameterized base class. This is because, in SystemVerilog, each specialization of a parameterized class 

has a unique set of static properties.  
 

 

III.   THE PARAMETERIZATION PROBLEM 

We begin describing the parameterization problem by understanding the parameterized interface. Interfaces are 

typically instantiated in the top testbench HDL module or bound directly inside the DUT. Although the interface is 

physically instantiated on the HDL side, a handle or reference to the interface is required on the HVL side in order 

to drive or monitor signals. This is achieved by declaring a virtual interface variable on the HVL side. This variable 

defaults to a null value and must be assigned with an actual interface instance before being referenced. The UVM 

recommended way is to use the configuration (uvm_config_db) or resource (uvm_resource_db) databases to make 

this assignment [2,3]. However, the reference to the physical interface retrieved from either of the databases, must 

be assignment compatible to the virtual interface variable. The only allowed assignments are either the null constant, 

a virtual interface or an interface instance of the same type.  This creates challenges for parameterized interface 

handling which are now discussed. 

 

A. Parameterized Class Approach 

For a parameterized virtual interface variable to point to various interface specializations, the encapsulating class 

component can be parameterized. On the face of it, this is a straightforward and elegant solution. However, this 

technique has both its pros and cons. On the plus side, multiple class specializations can easily be created in a single 

environment to handle different parameters. Furthermore, this technique supports parametric functional coverage out 

of the box, and as we shall see in Section III-E, without this, specific workarounds are required in place of it. 

 

The first drawback of parameterized class components is the parameter ripple effect [4-6]. A parameterized agent 

requires a parameterized UVC environment, which in turn requires a parameterized testbench environment, if the 

testbench is intended to be reused. There are implications to using parameterized classes, and due to this ripple 

effect, these cannot be isolated in one place. 



 

Before explaining these implications, it must be noted that parameterized classes are very effective if used correctly. 

The ideal use case for these is as base classes, as exemplified in various UVM classes. The register adapter and 

predictor classes allow type overriding for the bus transaction type. Similarly, the register front-door read and write 

sequence types are configurable. The base classes are typically overridden with a specific type and integrated in a 

testbench as a non-parameterizable specialization. The same is true for the UVM driver, sequencer and monitor.  

 

The main drawback for parameterized classes is that the UVM utility macros only support the type and not name 

based factory. This is because the macros neither declare the string type name, nor the “get” accessor method for it. 

Although this is not complicated to fix manually, it can be unclear for the novice user. The string name is not 

required when overriding by type, but it makes debugging more difficult. Consider the type overrides in the 

following figure.  

 

 

Figure 1. Factory type override example 

 

As can be seen in the factory.print() debug method output below, the override type is not printed correctly.  

 

 

Figure 2. Factory debug with parameterized classes. 

 

The missing string type name also has implications outside the factory. The type name for a uvm_component 

instance is typically used to tag debug messages e.g. with the ID argument of the `uvm_info macro. The 

get_type_name() is used for this, and due to the missing type name string, it returns “<unknown>”.  

 

 

Figure 3. Using Get_type_name() with parameterized classes.  

 

 

Figure 4. Parameterized classes registration fix example 



In the code snippet in Figure 4, the uvm component utility macro for paramterized classes has been commented out, 

and in addition to the standard registration code, the string type name and corresponding get accessor method have 

been added. With this addition, not only is overriding by string name possible, but debugging the factory is much 

easier when overriding by type.  

 

B. Maximum Footprint Approach 

The maximum footprint approach defines signals with a maximum width to cover all desired signal sizes. The 

maximum size can be defined using a macro to allow resizing if required. A clear advantage of this approach is that 

different signal widths can be supported without the need of parameterizing the interface and class-based 

components, hence avoiding the parameter ripple effect and UVM factory issues. The disadvantages are the 

overhead to specify which part of the interface connects to the DUT and to tie off the unused part of the bus [6]. 

Additionally, if a large part of the signal is not utilized, debugging becomes more difficult.  

 

C. Polymorphic Interface  

The polymorphic interface approach realizes the testbench to DUT connection via APIs rather than direct signal 

referencing. Instead of a specific virtual interface, an abstract class handle is used to reference any concrete class 

that extends from it using OOP polymorphism. The abstract class defines an API to pass information to and from the 

BFM. The concrete class implements the accessor/mutator methods for the interface and resides in the HDL BFMs. 

As shown in Figure 5, these APIs interact with those defined in the BFM in order to drive and monitor the interface 

signals.  

 

 

Figure 5. Polymorphic Interface 

A clear advantage of this approach is the decoupling of the class-based side from the SystemVerilog interface 

which results in a high flexibility. The generic HVL API can be used to connect to different interface types, which 

can not only be different specializations of a parameterized interface, but also varying flavors of a protocol. As the 

concrete class is scoped inside the BFM, it can upwards reference the BFM parameters without itself being 

parameterized. This means we are immune to the parameter ripple effect as well as the UVM factory issues 

described previously.  

 

The disadvantages of this approach are emulation incompatibility as classes in BFMs are not synthesizable and 

that all members of the interface need to be accessed via the accessor/mutator methods in the API and never by 

direct reference [7]. 

 



D. Emulation Compatible Polymorphic Interface    

The polymorphic interface approach requires the concrete class to be built inside the BFM on the HDL side. As 

synthesizable code is a requirement for emulation, this is a problem. This paper proposes a new flavor of the 

polymorphic interface that removes the concrete class object from the BFM, hence making it emulation compatible.  

 

In this approach, the concrete class is kept solely on the HVL side. The first consequence of this relocation is that 

the concrete proxy class must be parameterized. In the original polymorphic interface approach, the proxy class is 

scoped within the parameterized interface and hence does not need to be parameterized itself. As the concrete class 

is no longer inside the interface, it uses a virtual interface handle to communicate with it. The setting of this virtual 

handle requires some steps which are described at the end of this section. The abstract base class handle within 

verification component classes remains parameter free, as otherwise, we cannot use polymorphism to point to 

multiple concrete class specializations with a single interface.   

 

 

Figure 6.Parameterized concrete class with virtual interface handle. 

 

Now that the concrete class is parameterized, we do have to deal with the UVM factory issues that were described 

in Section III-A. However, we do not need to parameterize the verification component environment class itself, and 

hence are immune to the parameter ripple effect. The second consequence of descoping the proxy class from the 

parameterized interface is that the top testbench environment must now build each specialized proxy class instance 

and set the corresponding verification component abstract class handles. The UVM factory is an ideal candidate to 

automate these steps. However, we would like to highlight that registering abstract classes with the factory is not 

possible in UVM 1.2. For those who are unable to migrate to the latest version, a brief explanation of the limitation 

and some workarounds are presented here. The root of the problem lies inside a method in the UVM component and 

object registry classes [9]. As can be seen in the create_component() method for UVM 1.2 in Figure 7, the 

constructor of the class to be registered is called. The corresponding method for UVM objects is similar.  

 

 

 

Figure 7. Abstract class registration class. 

 



As virtual class construction is not allowed by the UVM LRM, this results in a compile error by most EDA tools. 

In UVM 2020-2.0, a dedicated registration class is introduced for abstract components where the 

create_component() method does not construct any components but raises an error if an abstract class override is 

unsuccessful. 

 

We can recommend two workarounds to this problem for UVM 1.2. The simplest solution is to make the abstract 

class non-virtual. Although the base class does not provide any functionality and simply serves as a generic 

interface, as a non-virtual class cannot contain pure virtual functions, the API methods need to be implemented. As 

these base APIs should not be called directly by the user, these can be embedded with an error message. The only 

other case when these can trigger, is when the factory override is not specified correctly. The occurrence of such 

errors can be mitigating by generating the overrides.  

 

 

Figure 8. Non-virtual base proxy class. 

 

An alternate workaround to the factory abstract registration limitation is to keep the abstract base class virtual, and 

instead of using the factory for overriding, to manually create the required specialized concrete proxies in the base 

test and assign the abstract class proxy handles. We lose the automation of the factory, but these steps can also be 

automated with a generator. As the required specialized types are explicitly instantiated in the testbench, this can be 

simpler for junior engineers to understand. Furthermore, unlike the factory-based approach described below, no type 

casts are required to set the virtual interface handle in the proxy. For comparison, a short example of this simplified 

version is presented after the factory-based approach.  

 

 

 

Figure 9. Factory override example. 

 



To use the factory to create the concrete proxies, the instance-based factory override methods must be used. This 

is because multiple specialized instances of the class component can co-exist in an environment. This is illustrated in 

Figure 9. In this example, a verification component environment containing an array of agents is being integrated 

into a testbench. Before specifying the instance overrides for the factory to create the required parameterized 

concrete proxy classes, the specialized types are defined using typedefs. The factory instance override method is 

then used to override the abstract proxy handle within each agent as required.  
 

Now that the concrete proxy handles have been assigned, the encapsulated virtual interface handle is still null. 

Setting this handle involves more steps in the factory approach and is simpler when creating the concrete proxy 

directly in the base test. In the latter case, we have class objects of the specialized type and can directly set the 

virtual interface handle via the configuration database. In the factory approach however, as the agents hold a handle 

to the abstract proxy type, a dynamic cast is required to reference the virtual interface handle. However, these steps 

can be abstracted away and automated in a generic way, as illustrated in the static method in Figure 10.  

 

 

 

Figure 10. Generic virtual interface setting utility method.  

 

As all types including the abstract and concrete proxy, as well as the virtual interface, are parameterized, this utility 

function can be reused in any UVC that uses this architecture. The virtual interface pointers can be set in the connect 

phase as shown in the following figure.  
 

 

 

Figure 11. Virtual interface setting example. 

 

Up till this point we have only shown the driver, as the monitor is identical. The one aspect where it does differ 

though, is that the HDL monitor BFM must communicate in the reverse direction with the HVL side. Although 

classes cannot be constructed within an emulator, class objects that have been constructed on the HVL side can be 

referenced. Emulators allow the setting of such class handles via function calls. This is illustrated in Figure 12. The 



HDL BFM monitor passes a struct to the proxy, which converts it into a class transaction item and hands it over to 

the HVL monitor for publishing.  

 

 

 

Figure 12. Monitor BFM 

 

Figure 13 illustrates the complete emulation compatible polymorphic interface architecture. 

 
 

 

Figure 13. Emulation compatible polymorphic interface. 

For comparison, the simplified factory-free approach is exemplified in Figure 14. The concrete proxy class 

instance is created in the HVL top testbench and the virtual BFM handle is set before registering the proxy with the 

uvm_resource_db. No factory overrides are required as the abstract proxy handles can be set by retrieving the 

required concrete specializations from the uvm_resource_db.  

 



 

Figure 14. Emulation compatible polymorphic interface without using the factory. 

 

As can be seen in Figure 13, the interface to be monitored is passed to the monitor BFM as a port argument. 

Similarly, it is also passed to the driver BFM. However, if a parameterized interface is passed to a BFM interface, 

most EDA tools flag this as a warning due to the following IEEE-1800-2017 specification: Although an interface 

may contain hierarchical references to objects outside its body or ports that reference other interfaces, it shall be 

illegal to use an interface containing those references in the declaration of a virtual interface [12]. Although this 

style of parameterized interface passing through interface ports has worked for us despite the warning, we request 

the SystemVerilog working group to revise this pessimistic restriction, and specifically clarify which scenarios 

should not be allowed. To be future proof, we have restructured the connection of the interface by using the harness 

approach instead [5]. This technique is exemplified in Figure 15. The BFMs and interfaces are encapsulated in a 

harness that gets bound into the DUT. Instead of passing the interface into the BFM ports, we rely on 

SystemVerilog’s upwards referencing resolution. As the harness gets bound into each target specialized instance, the 

BFMs can reference the adjacent interface.  

 

 

Figure 15. Harness approach to avoid passing interface through BFM ports. 

Figure 16 illustrates the harness concept. The HVL to HDL connection is the same as shown in Figure 13.  

 

Figure 16. Bound harness 



 

E.  Parameterized Functional Coverage 

As mentioned in Section III-A, coverage defined as a parameterized class does not require any special handling. 

However, to avoid the inherent parameter ripple effect, alternative solutions are recommended. As we have seen, 

handling parameters comes with its challenges, and should be avoided if possible. As functional coverage is built 

and sampled on the HVL side, our first recommendation is to convert static design parameters to dynamic 

configuration fields and pass these as arguments to the constructor of generic cover groups [11]. However, if we 

want to pass fields from a configuration object, we must deal with the configuration phasing problem [10]. There is 

a restriction on the creation of the cover group, which can only be created in the constructor of the encapsulating 

class.  For encapsulating classes of the uvm_component type, the configuration object is only available after the 

calling of the new constructor and hence cannot be used as cover group generics. As uvm_objects can be constructed 

anytime, one solution could be to encapsulate cover groups inside objects instead of components and call the new 

constructor after the configuration is available. The problem here is that the new constructor prototype is fixed for 

uvm_objects and cannot be extended to pass in cover group generics. This can be solved by encapsulating the cover 

group in an arbitrary class instead of uvm_object, where the constructor can be prototyped at will. Another solution 

is to pull the configuration object in the constructor via a redundant call to the configuration database. An alternative 

method that uses parameters, similar to the strategy employed in the emulation compatible polymorphic interface 

from the previous section, is to use the UVM factory to override a non-parameterized base coverage class with the 

desired parameter specialized child class [10].  

 

IV.   CONCLUSION 

Parametric IP design is a fundamental technique in modern SoC development. Although developing and 

integrating such IP using SystemVerilog is straightforward, parameter handling on the class-based side is complex 

and introduces significant challenges for verification.  

 

The virtual interface is the fundamental link between the HDL and HVL sides, and although it works smoothly 

without parameters, its non-polymorphic nature makes parameterized virtual interface handling difficult.  A 

comparison of the various existing solutions to this problem is presented in this paper. Although each approach has 

its pros and cons, none of them effectively supports the emulation use case. In our experience, we have either seen 

dedicated VIPs being used for simulation and emulation, or a common one that greatly sacrifices genericity for 

synthesizability. We have extended the polymorphic approach to solve this problem. The presented approach has not 

only been successfully applied to emulation compatible parameterized VIP in our company, but it has also enabled 

us to provide a single generic sideband UVC for both simulation and emulation [13].  

 

Finally, we have discussed the effect of parameterization on functional coverage. Again, there are various 

solutions, each with its own benefits and drawbacks, but for us the polymorphic approach that uses the factory 

stands out for its simplicity.  

 

With this work we have covered various challenges that we faced using SystemVerilog parameters and hope that 

it guides others who find themselves in a similar situation. 
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