
Working within the Parameters that System Verilog
has constrained us to

Salman Tanvir, David Crutchfield, Markus Brosch

Motivation

• Parameterized IP is a fundamental building Block in SOCs

• Parameter handling challenging in System Verilog

• DUT to TB connection for Parameterized IP
• Compare known approaches

• Propose improvements for emulation compatibility

• UVM Factory

• Coverage

DUT to TB Connection for Parametrized IP

• The parameterized VIF problem
• HVL VIF handle is type specific

• Each specialization of a parametrized interface is a new type

• Parameterized class approach

• Maximum Footprint approach

• Polymorphic Interface

• Emulation Compatible Polymorphic Interface

Parameterized Class Approach

• VIF encapsulating class component is parameterized
✓Multiple class specializations can easily be created in a single environment
✓Supports parametric functional coverage out of the box
 Parameter ripple effect
 UVM Factory limitations

• Not recommended to solve the parameterized VIF problem
• Powerful tool when used as base classes

Parameterized Class Approach
UVM Factory Limitations

• Utility macros do not support name-
based factory

• String type name not declared

• Debug difficult with type-based
factory

• Tagging debug messages by type not
possible

Maximum Footprint Approach

• Size interfaces to a max width without parameterization

• Use a subset as required in each environment

• Max width defined by macro and can be increased if needed

✓Avoids the parameter ripple effect and UVM factory issues

✓Simple and pragmatic

Overhead to specify which part of the interface connects to the DUT

Debug can become difficult if a large part of signal is not utilized

Polymorphic Interface
• Connection via APIs
• Abstract class handles instead of

VIF
• Concrete class implements APIs

and resides inside the BFMs
• Concrete class is parameter free

✓Decoupling of class-based side
from SV Interface
• Encapsulation and separation of

concerns (OOP)
• Reusability and extendibility

Not Emulation compatible

Comparison
Approach ✓ 

Parameterized class
Solving parametrized VIF
and functional coverage

problem

Parameter ripple effect

UVM Factory limitations

Maximum Footprint
Simple and pragmatic

Overhead for DUT
connection

Debug can become
difficult

Polymorphic Interface

Decoupling of class-based
side from SV Interface

Reusability and
extendibility

Not Emulation compatible

Emulation Ready Polymorphic Interface

• Emulation requires synthesizable
BFMs

• Concrete proxy class relocated to
HVL side
• Contains a VIF handle to the BFMs

• Needs to be parameterized

• Abstract handle remains
parameter free

• Concrete proxy class parameters
not exposed to encapsulating
components

Emulation Ready Polymorphic Interface

• Each specialized proxy must be built
and VIFs set

• UVM Factory is an ideal candidate
• Parameterization challenges remain

• UVM 1.2 is does not support abstract
class registration

Emulation Ready Polymorphic Interface

Emulation Ready Polymorphic Interface

• Factory only creates concrete
proxies

• VIF setting required
• Can be generically automated

Emulation Ready Polymorphic Interface

• UVM 1.2 Workarounds
• Make abstract class non-virtual

• APIs can no longer be pure and must be
implemented

• Base class APIs must not be called directly

Emulation Ready Polymorphic Interface

• Alternative factory free approach

✓Avoids the UVM factory issue

✓Simpler for novice users

✓Easy VIF setting

Lose factory automation

Parameterized Virtual Interface

• Parameterized DUT interface
passed to BFMs as a port
argument
• Works with most EDA tools but

with a warning
• LRM: “Although an interface may

contain hierarchical references to objects
outside its body or ports that reference
other interfaces, it shall be illegal to use
an interface containing those references in
the declaration of a virtual interface”

• This rule should be revised to
specify concrete restrictions

• Harness approach proposed as a
solution to be future proof

Parameterized Virtual Interface

• Harness approach
• Encapsulate BFMs and interfaces in a

harness

• Use upwards references to access
interface

• Bind harness into DUT

Coverage for Parameterized IP

• Parameterized classes
• Out of the box coverage

• Ripple effect

• Dynamic fields instead of static design parameters
• Pass to constructor of generic cover groups

• Must deal with configuration phasing problem

• Cover groups must be created in the encapsulating class’s constructor

• A possible solution is to encapsulate coverage in an arbitrary class

• Polymorphic coverage using the UVM factory
• Use UVM Factory to override a non-parameterized base coverage class

Conclusion

• Parameter handling comes with significant challenges for verification

• Special care required with UVM Factory

• Non-polymorphic VIF complicates parameterized interface handling

• The polymorphic interface approach stands out
• Encapsulation and separation of concerns (OOP)

• Reusability and extendibility

• Enhanced to support Emulation

• Parameters have implications on coverage
• Polymorphic coverage approach recommended

Questions?

	Slide 1: Working within the Parameters that System Verilog has constrained us to
	Slide 2: Motivation
	Slide 3: DUT to TB Connection for Parametrized IP
	Slide 4: Parameterized Class Approach
	Slide 5: Parameterized Class Approach UVM Factory Limitations
	Slide 6: Maximum Footprint Approach
	Slide 7: Polymorphic Interface
	Slide 8: Comparison
	Slide 9: Emulation Ready Polymorphic Interface
	Slide 10: Emulation Ready Polymorphic Interface
	Slide 11: Emulation Ready Polymorphic Interface
	Slide 12: Emulation Ready Polymorphic Interface
	Slide 13: Emulation Ready Polymorphic Interface
	Slide 14: Emulation Ready Polymorphic Interface
	Slide 15: Parameterized Virtual Interface
	Slide 16: Parameterized Virtual Interface
	Slide 17: Coverage for Parameterized IP
	Slide 18: Conclusion
	Slide 19: Questions?

