
Don’t Go Changing:

How to Code Immutable UVM Objects
William L. Moore

WilliamL33Moore@gmail.com

Abstract – In object-oriented programming (OOP), immutable objects enhance the simplicity, reliability, and
performance of software. This paper introduces immutable objects, explains how to create them in SystemVerilog, and
addresses challenges in incorporating them within the Universal Verification Methodology (UVM).

INTRODUCTION

Design verification (DV) engineers develop code for testbenches that simulate integrated circuits (ICs). High-

quality testbench code is critical for reliable and thorough verification of an IC project. Like any software, testbenches

must satisfy requirements, have no defects, and be maintainable. Commercial projects are invariably time-sensitive,

so DV engineers also strive to write code efficiently, taking advantage of best practices for architecture, design,

implementation, and collaboration. To realize these goals, DV engineers can adopt techniques that arose to improve

enterprise software development. In particular, Domain-Driven Design (DDD) propounds strategies and patterns for

creating accurate and appropriate software models of application domain elements. The concept of immutable value

objects is a fundamental building block of DDD. For the DV engineer, the device under test (DUT) is the domain. The

engineer can improve testbench code by identifying its domain-specific value objects and making them immutable.

The SystemVerilog language readily supports immutable classes, but some aspects of their creation are non-obvious.

UVM base classes and creational patterns are less conducive to immutability. This paper offers best practices for

implementing immutable objects in SystemVerilog, proposals for overcoming the challenges of UVM, and illustrative

examples from the domain of IC verification methodology.

IMMUTABLE OBJECTS IN OOP

An immutable object is a value object whose values are initialized atomically when the object is created, and whose

public interfaces always return the same values throughout the lifetime of the object. In short, it’s a value object whose

values never change. A value object is an object defined by its values, not its identity; if two value objects have the

same values, then the value objects are equal. In contrast to immutable objects, mutable objects have public mutating

methods, and their values can change over time. Many OOP languages provide built-in or standard libraries of

primitive immutable classes such as numbers, strings, and tuples. This paper is more concerned with higher-level

domain-specific value objects, often recursively composed of primitives and other objects. In this paper, “developers”

refers to the creators of the immutable class, and “users” signifies those who use the class in their “user code.” User

visibility into the class is limited to the public interfaces exposed by the developers.

Immutable objects simplify user code since they are effectively constants. Processes can share an immutable object

by reference without the risk of its contents changing, avoiding the cost of passing by value. In some applications,

immutable objects can save memory and improve efficiency because it is unnecessary to make an immutable copy of

an immutable object; just keep using the same instance. In contrast, shared mutable objects are a well-known source

of defects in OOP. If multiple processes each have a reference to a shared mutable object, there is a risk that one could

intentionally or inadvertently change a value, with unwanted consequences for subsequent processes. One standard

remedy is so-called defensive copying, where user code makes a copy of received mutable objects to ensure a stable

snapshot. Such copies incur memory, performance, and complexity costs. Immutable objects improve communication

and increase understanding among software developers, testers, and users because such objects have simpler

interfaces. Immutable objects have no mutating “setter” methods or side effects to document, and their use cases after

initialization often reduce to simply “getting” values. Immutable objects model real-life immutable domain concepts

well, such as geographical coordinates, date ranges, and revision control commits. Immutable objects enhance code

cohesion and clarity. For starters, immutability creates a demarcation between an object’s sole creator and any number

of consumers. Only the creator can set the object’s values for all the consumers to consume. Once it is determined that

a class should be immutable, the developer may purge it of mutable fields and methods, which results in greater

cohesion. These benefits potentially contribute to cleaner user code with fewer defects.

There are disadvantages. It takes developer effort to ensure that the object is truly immutable—to rid the class of

mutating “leaks” rigorously. There is no standard automated test for immutability. Developers can only apply their

best effort to create a class that is immutable by design, and convey that declaration to users via documentation. It

may be inevitable that a developer or user needs to make a mutable copy of an immutable object or vice versa, and

both operations are costly in terms of code, memory, and performance, compared to operating on a mutable object in

place. This paper demonstrates that introducing immutable objects into systems that weren’t designed for them

requires significant rework. Legacy code that freely modifies mutable objects must change when the objects become

immutable. It is easier to design immutability into systems from the beginning.

Developers can mimic immutable behavior with mutable objects whose mutating methods are disabled depending

on the state of the object or environment at run-time. For example, UVM’s uvm_get_to_lock_dap data access

policy allows the user to set a value any number of times, but then locks the value once it is retrieved via “get,” such

that any subsequent attempt to “set” results in an error. This paper strives for true immutable objects that present no

public mutating methods. Some objects may be considered hybrid objects, containing both immutable and mutable

fields. This paper includes examples of such objects in use in UVM.

Immutability is not the same as persistence. User code can create and destroy immutable objects freely.

IMMUTABLE OBJECTS IN SYSTEMVERILOG

Use these guidelines when designing classes for immutable objects in SystemVerilog. It’s up to the developer’s

discretion which guidelines to follow, but omitting certain ones opens the class up to possible mutation.

1. Declare all variables as local.

2. Provide public “getter” functions for private variables.

3. Do not provide public or protected “setters.”

4. Provide the constructor new() enough parameters to initialize every variable.

5. Qualify new() as local.

6. Provide a static factory method.

7. Do not modify variables after the constructor finishes.

8. Check the entire chain of parent classes for inherited mutable members and mutating methods.

9. Do not retain or share references to mutable objects.

10. Do not qualify any variables as random.

Guideline details follow.

Declare all variables as local.

Public variables can be mutated freely by any user code that has a reference to the object. Protected variables are

safe from outside mutation, but subclasses can mutate the superclass’ protected variables, which means that user code

can have what appears to be a reference to an immutable superclass object that actually refers to a mutable subclass

object. Therefore, the safest solution is to declare all variables as private with the SystemVerilog local keyword.

Variables can also be declared as instance constants with the const keyword. This is not recommended because

the syntax is quite restrictive; instance constants can only be assigned once, inside the constructor.

Provide public “getter” functions for private variables.

Private variables are not visible to user code, so provide public “getter” functions that directly or indirectly return

any desired private values. Not all local variables need to be exposed publicly.

Do not provide public or protected “setters.”

A “setter” is a function that changes the value of a class variable, so immutable classes must not have any public or

protected setters that user code or subclasses could use to mutate an object. An immutable class may safely have

private local setters solely for the purpose of initializing values in the constructor.

In OOP, it is common practice for mutable classes to have private variables and public getters and setters. In contrast,

immutable classes have private variables and public getters, but setters are omitted or kept private.

Provide the constructor new() enough parameters to initialize every variable.

Immutable objects are initialized atomically when they are created. The natural way to initialize values is to pass

them as arguments to the constructor, new(). Often there is a one-to-one relationship between local class variables

and the constructor parameters that initialize them, but other cardinal relationships are possible. For example, multiple

variables could be initialized by members of a single aggregate parameter, e.g., an array, struct, or object. Conversely,

one variable could be initialized by a function of multiple parameters, such as a calculation or concatenation.

Regardless, the object must be completely initialized by the constructor, so the constructor must receive enough data

through its arguments, or other means, to do so. (A subsequent section of this paper discusses alternative strategies

for the constructor to receive initializing values.)

Qualify new() as local.

As explained earlier, a user subclass of an immutable superclass can mutate protected variables and add new mutable

variables, resulting in a mutable object. A drastic measure to prevent this is for the developer to disallow extension.

SystemVerilog provides an indirect way to block class extension: qualify the constructor new() as private with the

local keyword. Subclasses must be able to call super.new() explicitly or implicitly. If the superclass constructor

is local, any subclass will result in a compilation error.

IEEE 1800-2023 introduces a direct way to block class extension: the class :final specifier, including the colon.

Ref. [2] states: “An attempt to extend a class that was specified as final shall result in an error.” The :final specifier

can also be applied to individual methods. Older simulator versions may not support the :final specifier, so it is

more compatible and portable to make the constructor local.

Provide a static factory method.

If the constructor is private, then the class must have at least one static factory method. The simplest approach is

for the factory method to have the same parameters as the constructor, to pass its arguments along to the constructor,

and to return the result. This paper consistently uses the name create_new() for such a pass-through factory

function. The class may have additional factory functions, perhaps with different parameters, such as a static copy

creator that takes a single object parameter as the “source.” Or, different factory functions may return different types.

For example, one function may return a concrete object handle, and another may return an abstract superclass handle.

Do not modify variables after the constructor finishes.

All variables must be initialized by the time the constructor finishes. The developer must ensure by design and

inspection that no public or private class methods have the direct or indirect side effect of mutating any immutable

variables. If the class has private setter methods, a prudent rule is that they may only be called by the constructor.

Check the entire chain of parent classes for inherited mutable members and mutating methods.

If an immutable class extends no superclasses and has no subclasses, then the developer has total control over the

class definition and its instances. However, if there is a chain of one or more superclasses, and any of them have

mutable variables or mutating methods, then the developer’s class inherits them all and becomes mutable. Therefore,

the developer should review all parent classes and identify any mutable variables and mutating methods.

If the developer owns a superclass, they have the option of modifying it to remove vulnerabilities. Otherwise, if the

developer is extending a superclass that they cannot modify, they can take steps to mitigate unwanted mutable

incursions. Chiefly, a subclass can override a public variable with a compatible private variable with the same name.

Likewise, a subclass can override a mutating method with a compatible method with the same signature that does not

perform the mutation. The overriding method in the subclass should not call the respective superclass method via

super. The developer can decide the severity of an attempt to call a forbidden setter and respond accordingly, from

quietly ignoring the attempt, to issuing an info, warning, error, or fatal message. Overriding variables and methods is

not a perfect solution because user code can always upcast the object and get access to the mutable variables and

mutating methods through the casted superclass reference. However, if a mutating method in the superclass happens

to be virtual, then the immutable subclass’ override of the method always takes precedence, and user code can no

longer access the mutating version, making the subclass more immutable.

Do not retain or share references to mutable objects.

Consider a class that has a private class variable for holding a reference to a sub-object. The developer intends for

the class to be immutable, so the class initializes the private variable through a constructor argument, and provides a

simple getter that shares a reference to the sub-object with user code. If the user initializes the variable with a reference

to a known immutable sub-object, then there is no issue. The class’ getter always returns a reference to the same

immutable object, which never changes, and the class’ immutability is preserved. However, if the user initializes the

class variable with a reference to a mutable sub-object, then the developer’s class is no longer immutable; the variable

presents a mutable breach. User code can use the getter to get a reference, which can then be used to mutate the sub-

object.

At a high level, the remedy is that an immutable class should not retain or share references to mutable objects. One

common approach is for the immutable class to make a defensive private deep copy of any received objects, and to

ensure that its own private copy never changes. Likewise, every time the getter is called, it must make a fresh deep

copy of the internal mutable object, and return a reference to that, so that its internal object is never shared or exposed.

Do not qualify any variables as random.

Every SystemVerilog class has a built-in randomize() function, with which the user can mutate any object. The

developer can prevent randomization syntactically by not declaring any variables as random (keyword rand); then

randomize() has no effect. There are run-time alternatives for disabling randomization, such as customizing

pre_randomize() or the random constraints.

Randomization is a necessary feature of most SystemVerilog testbenches and applications, so in a later section, this

paper addresses ways to support both randomization and immutability.

IMMUTABLE OBJECTS IN UVM

UVM provides SystemVerilog base classes for integrated circuit verification. Unfortunately, they are not

immutable, not even uvm_object, and UVM’s creational patterns are not conducive to immutability. This section

incorporates immutable objects in UVM and offers solutions to the challenges. Two use cases from the UVM User’s

Guide are examined: configuration objects and sequence items.

AN IMMUTABLE CONFIGURATION OBJECT

Testbench components should be configurable, so UVM recommends configuration classes—uvm_object-based

value objects that encapsulate random build phase parameters. Configuration objects, especially shared ones, shouldn’t

change, so make them immutable. Configuration objects are initialized once in the build phase, then user code can

access their values freely without the possibility of them changing intentionally or inadvertently.

This discussion is presented as a tutorial, in which we imagine a component class called box that is configured with

integer knobs for length, width, and height. As the developer, you will implement an immutable configuration class

called box_config that encapsulates the three integer knobs.

First, create an abstract virtual base class that extends uvm_object, called immutable_object. This need

only be done once per project; immutable_object can serve as a base class for numerous immutable objects.

Override these virtual mutating methods inherited from uvm_object:

• set_name()

• do_copy()

• do_unpack()

• set_int_local()

• set_string_local()

• set_object_local()

Also, override the built-in function pre_randomize(). The override implementations must not perform the

indicated mutations, nor call the mutating superclass versions via super, and they should throw a `uvm_fatal()

error so that if user code tries to call the methods, they fail visibly at runtime, inviting user analysis. Individual

subclasses have the option of overriding these virtual methods if they require a severity lower than fatal. Note that

extending immutable_object does not guarantee that a class is immutable; nothing prevents a subclass from

containing mutable variables and mutating methods. The immutable_object class is for convenience and reuse,

and the name communicates the intent that any subclasses should be immutable.

Code box_config (Fig. 1), following the SystemVerilog guidelines from the earlier section. In addition, follow

these additional steps specific to UVM or to our box domain application. These steps are illustrative but apply

generally to the creation of any prospective immutable class. As with the SystemVerilog guidelines, some of these

steps are syntactic imperatives, and some are optional at the developer’s discretion. Omitting some optional steps risks

opening the class up to mutation.

typedef class box_config_immutable;

typedef class box_config_factory_generic;

// Class extends abstract base class box_config_immutable, which extends

// abstract base class immutable_object and implements box_config_interface

// ==

class box_config extends box_config_immutable;

 // * Typedef "factory_type" associates this class with its own factory class

 typedef box_config_factory_generic#(box_config) factory_type;

 // * Local variables

 // * No const variables

 // * No rand variables

 local int length;

 local int width;

 local int height;

 // * No `uvm_object_utils()

 // * Field utils only

 // * Set field flags "UVM_NOPACK | UVM_NOCOPY | UVM_READONLY" on every variable

 `uvm_field_utils_begin(box_config)

 `uvm_field_int(length, UVM_ALL_ON | UVM_NOPACK | UVM_NOCOPY | UVM_READONLY);

 `uvm_field_int(width , UVM_ALL_ON | UVM_NOPACK | UVM_NOCOPY | UVM_READONLY);

 `uvm_field_int(height, UVM_ALL_ON | UVM_NOPACK | UVM_NOCOPY | UVM_READONLY);

 `uvm_field_utils_end

 // * Local constructor "new()"

 // * First parameter is "string name"

 // * Remaining parameters initialize all variables

 // * All parameters have default values

 local function new (string name="", int length=0, int width=0, int height=0);

 super.new(name);

 this.set_length(length);

 this.set_width(width);

 this.set_height(height);

 endfunction

 // * Static factory method

 static function box_config_immutable create_new (

 string name="", int length=0, int width=0, int height=0

);

 box_config product = new(name, length, width, height);

 return product;

 endfunction

 // * Static copy function

 static function box_config_immutable create_copy (string name="", uvm_object rhs);

 // Non-trivial copy algorithm is provided by a parameterized helper class

 create_copy = box_config_copier#(box_config)::create_copy(name, rhs);

 endfunction

 //* Required implementation of uvm_object::get_type_name()

 virtual function string get_type_name ();

 return "box_config";

 endfunction

 // * Required implementation of uvm_object::create()

 virtual function uvm_object create (string name="");

 box_config object = new(name);

 return object;

 endfunction

 // Public getters required by box_config_interface

 // ---

 virtual function int get_length ();

 return this.length;

 endfunction

 virtual function int get_width ();

 return this.width;

 endfunction

 virtual function int get_height ();

 return this.height;

 endfunction

 // Local setters

 // -------------

 local function void set_length (int length);

 this.length = length;

 endfunction

 local function void set_width (int width);

 this.width = width;

 endfunction

 local function void set_height (int height);

 this.height = height;

 endfunction

endclass

Figure 1. Source code for immutable box_config class.

1. Create an interface class, box_config_interface, that defines your pure virtual getter prototypes.

2. Create a virtual base class, box_config_immutable.

3. Declare immutable class box_config, extending box_config_immutable.

4. Add local variables length, width, and height.

5. Use `uvm_field_utils_* macros instead of `uvm_object_utils_*.

6. Add `uvm_field_*() macros for the variables and set flags that support immutability.

7. Declare constructor new() with parameters for name and all initializing values.

8. Implement a static factory function and a static copy function.

9. Override required uvm_object methods create() and get_type_name() explicitly.

10. Implement the public getters mandated by box_config_interface.

Step details follow.

Create an interface class, box_config_interface, that defines your pure virtual getter prototypes.

The interface class defines pure virtual prototypes for box_config:

• pure virtual function int get_length();

• pure virtual function int get_width();

• pure virtual function int get_height();

We omit protoypes for setters, so this represents the simplified read-only interface of an immutable object. This

interface class is optional, but it lays the foundation for a family of compatible mutable and immutable classes that

share it.

Create a virtual base class, box_config_immutable.

This is an abstract base class that extends immutable_object and implements box_config_interface.

It is optional, but it extends the foundation to a family of specifically immutable classes.

Define default implementations for your static factory functions create_new() and create_copy(),

described below. The default implementations can be placeholders that throw `uvm_fatal() messages, which

forces concrete subclasses to provide their own implementations.

Also, define default implementations for the pure virtual prototypes from box_config_interface. It is

sufficient to copy the pure virtual prototypes into the abstract base class, leaving actual implementations to the concrete

subclasses.

Declare immutable class box_config, extending box_config_immutable.

Finally we can begin coding our target box_config class. It extends base class box_config_immutable,

which means it inherits members from uvm_object, immutability-enforcing implementations from

immutable_object, and box behavior prototypes from box_config_interface. The remaining steps in this

section build out box_config incrementally. Fig. 1 contains the complete code listing for the class.

Add local variables length, width, and height.

Following the guidelines, add private local integer variables length, width, and height. Do not use the

const keyword because it is incompatible with the UVM field utility macros and would result in compilation failure.

The macros assign to field variables outside the constructor; this is illegal for const variables.

Use `uvm_field_utils_* macros instead of `uvm_object_utils_*.

Because our immutable class will have a private constructor, you should not use the `uvm_object_utils_*

macros. They make use of constructors without initializing arguments and the mutating functions that we overrode

with fatal implementations, so the macros are unfortunately unsuitable for use in immutable classes. They rely on a

creational pattern where objects are created and initialized in separate steps, which is antithetical to the requirement

that immutable objects be created and initialized atomically.

Fortunately, UVM provides suitable alternative macros: use `uvm_field_utils_begin() and

`uvm_field_utils_end instead. They expand to a subset of the code of `uvm_object_utils_* without

the parts problematic to immutability.

Without `uvm_object_utils_*, your class is not registered with the UVM factory. An upcoming section

details how to get the creational benefits of the factory even without direct registration.

Add ̀ uvm_field_*() macros for the variables and set flags that support immutability.

Between `uvm_field_utils_begin() and `uvm_field_utils_end, add `uvm_field_*() macros

for the three value fields. In addition to the typical field flags, e.g., UVM_ALL_ON, set the following flags with a

bitwise OR. For UVM 1.2 and earlier, set flags UVM_NO_PACK | UVM_NOCOPY | UVM_READONLY. For UVM

1800-2017 and later, set UVM_NO_PACK | UVM_NOCOPY | UVM_NOSET. These are runtime flags that bypass

the mutating do_unpack(), do_copy(), and set_*_local() methods we overrode and disabled in the

abstract immutable_object base class. These flags are optional and redundant, erring on the side of caution and

clarity. The UVM bypasses issue warnings, which are lower severity than the fatal messages in our overrides.

Declare constructor new() with parameters for name and all initializing values.

Following the guidelines, declare a private local constructor, new(). Your constructor must be compatible with

the uvm_object base class new() function, so the first argument must be string name, and all remaining

arguments must have default values, so that a call to box_config::new("some_string"), with only one

argument, would compile without “missing argument” errors.

The remaining arguments are our three initializing integer values, length, width, and height, all with

reasonable default values, zero. We call private setters from the constructor to initialize the three class variables.

Implement a static factory function and a static copy function.

We adhere to our convention of naming the static factory function create_new(), and give it the same arguments

as the constructor for easy pass-through. Since we are ultimately building a family of box configuration classes, our

factory function returns an abstract base box_config_immutable handle, rather than a concrete box_config

handle. This is a design decision for the developer to make, depending on the application. The developer could even

implement both abstract and concrete static factory functions in the same class.

Next we write a static copy function. This is optional. A user might reasonably want to create an immutable copy

of a mutable object. We cannot use uvm_object::copy() on our immutable object—we disabled it—so instead,

we offer a static copy function called create_copy() that takes string name and uvm_object rhs

arguments, just like uvm_object::copy(). Our implementation is not shown here, but we delegate to a

parameterized copy class that casts rhs to a box_config_interface reference, then uses the interface class

getters to initialize a new box_config object, again opting to return an abstract base box_config_immutable

handle instead of a concrete one. Ref. [15] hosts the complete source code for this example.

We have not implemented a custom uvm_object::clone() function since there is generally no need to clone

an immutable object; one copy can serve all users. An attempt to clone a box_config object with the default

implementation would try to call our immutable_object::do_copy() override and would trigger its fatal

message. A developer may choose to implement clone() explicitly for parity with mutable UVM objects. The

simplest implementation is a virtual function wrapper around the static copy function.

virtual function uvm_object clone ();

 return box_config::create_copy(this.get_name(), this);

endfunction

Override required uvm_object methods create() and get_type_name() explicitly.

The `uvm_object_utils_* macros automatically implement required uvm_object virtual functions

create() and get_type_name(). We do not use `uvm_object_utils_*, so we must implement the two

mandatory functions ourselves. The create() function takes no initializing arguments, so it always returns an

immutable object with default values, in our case all zeroes, so it is not practically useful.

Implement the public getters mandated by box_config_interface.

Finally, implement the three getters for our class variables to satisfy the prototypes in box_config_interface.

We also choose to implement three private local setters.

Our immutable box_config class is ready for use. User code creates an instance with the factory function:

int length = 24;

int width = 18;

int height = 12;

box_config_immutable box_cfg = box_config::create_new("box_cfg", length, width, height);

A TALE OF TWO FACTORIES

The UVM factory allows the user to choose at runtime which UVM object or component to create. Furthermore,

the override facility can replace the hard-coded target class with a compatible subclass. Since you can’t register your

immutable class with the UVM factory, you can’t do runtime overrides. Here is a proposed solution: for each

immutable class, create a small secondary factory class whose sole function is to create that specific type of immutable

object, and which is registered with the UVM factory. The secondary factory is effectively a UVM factory-friendly

creational proxy for the immutable class. The user creates an immutable object in two steps. First they use the UVM

factory to instantiate a secondary factory object, then use that secondary factory to create the target immutable product.

To create an immutable object of a different type, they override the secondary factory type with a different factory

type that is a subclass of the original factory, and that creates the wanted immutable object.

 Our example started with an immutable box_config class with length, width, and height. We now expand that

to a family of immutable classes by also creating two variants: box_config_variant_cube, a cube whose

length, width, and height are always the same, and box_config_variant_rectangle, a flat object whose

height is always zero. All three variants extend box_config_immutable, so they are compatible with each other.

Fig. 2 has a complete listing for box_config_factory, a secondary factory class that has virtual functions for

creating immutable box_config objects. The functions are create_new() and create_copy(). They

delegate to box_config’s respective static functions, and return handles of abstract type

box_config_immutable. User code invokes the UVM factory to create a box_config_factory instance,

which in turn creates a box_config object:

box_config_factory factory = box_config_factory::type_id::create("factory");

box_config_immutable box_cfg = factory.create_new("box_cfg", length, width, height);

We have retained a handle to the factory object so we can use it to create multiple box_cfg objects. Alternatively,

if the user doesn’t need to retain the factory handle, they can chain the two function calls together in one line. The

created factory object is anonymous and is not retained.

box_cfg = box_config_factory::type_id::create("anonymous_factory").create_new("box_cfg", length,

 width, height);

typedef class box_config_immutable;

typedef class box_config;

// Concrete factory base class produces flagship box_config objects

// ==

class box_config_factory extends uvm_object;

 // Register with the UVM factory

 `uvm_object_utils(box_config_factory)

 function new (string name="box_config_factory");

 super.new(name);

 endfunction

 // Virtual factory functions delegate to box_config static factory functions

 // ---

 virtual function box_config_immutable create_new (

 string name="", int length=0, int width=0, int height=0

);

 create_new = box_config::create_new(name, length, width, height);

 endfunction

 virtual function box_config_immutable create_copy (

 string name="", uvm_object rhs

);

 create_copy = box_config::create_copy(name, rhs);

 endfunction

endclass

// Parameterized factory subclass produces any box_config_immutable object

// ===

class box_config_factory_generic#(type PT=box_config) extends box_config_factory;

 // Register with the UVM factory

 `uvm_object_param_utils(box_config_factory_generic#(PT))

 function new (string name="box_config_factory_generic");

 super.new(name);

 endfunction

 // Virtual factory functions delegate to product type static factory functions

 // ---

 virtual function box_config_immutable create_new (

 string name="", int length=0, int width=0, int height=0

);

 create_new = PT::create_new(name, length, width, height);

 endfunction

 virtual function box_config_immutable create_copy (

 string name="", uvm_object rhs

);

 create_copy = PT::create_copy(name, rhs);

 endfunction

endclass

Figure 2. Source code for box_config factory classes.

We want to take advantage of factory overrides so that we can opt to create cubes and rectangles as well as standard

boxes. We create a second secondary factory class, a subclass of box_config_factory called

box_config_factory_generic, parameterized with type parameter PT, for “product type”. Fig. 2 has the

complete listing for this new factory class. The parameterized factory class can create all three box_config variants,

selected by assigning the PT parameter. The user calls uvm_factory::set_type_override_by_type() to

instruct the factory to override the standard box config factory with a specialized cube config factory. Now user code

that requests a box config via a box config factory produces a desired cube config instead.

uvm_factory::get().set_type_override_by_type(box_config_factory::get_type(),

 box_config_factory_generic#(box_config_variant_cube)::get_type());

box_cfg = box_config_factory::type_id::create("anonymous_factory").create_new("box_cfg", length,

 width, height); // Same operation now creates a box_config_variant_cube

A factory_type typedef in the box config classes serves as a convenient alias for the specialized generic factory.

HALF-BAKED ALTERNATIVE CONSTRUCTOR KNOB STRATEGIES1

The secondary factories are required because the default UVM factory cannot pass values to the class constructor.

The UVM factory simply calls new(name) with no additional arguments, so the immutable object is never

initialized. Here are novel alternative ways to initialize an object atomically at creation time. They are unusual and

have limitations that make them impractical and inconvenient for the user to varying degrees, but they all have the

advantage that they work with the UVM factory, so no additional factory classes are required. The developer must

relax some of the SystemVerilog immutability guidelines. First and foremost, all these constructors must be public.

These somewhat tongue-in-cheek methods are included here as a creative sidebar to highlight the lengths required to

work around the limitations of UVM’s object creation implementation.

Pass values to the constructor through global storage.

User code stores initializing values in a global storage location such as the UVM resource database, UVM global

pools, UVM global queues, UVM component tree, a module, or even a file. The immutable class constructor retrieves

the values from the global storage.

This method is potentially inconvenient for users, and poses maintenance and portability challenges since the

constructor and user code must agree on the location of the storage. This method carries the risk that user values could

be corrupted before the constructor receives them, and that values could inadvertently leak between objects, e.g., one

object receives initializing values left in storage from a previous object. Otherwise, this approach is relatively

reasonable and in line with typical usage of global facilities in UVM and SystemVerilog.

Pass values to the constructor through static variables.

User code stores initializing values in static variables inside the class itself. This approach is more cohesive than

external global storage since the variables are encapsulated inside the class definition. However, both approaches share

the same risks of data corruption and leaks.

Encode simple values in the name argument as a whitespace-separated string.

User code stores the object’s name and initializing values in a string formatted as whitespace-separated tokens, and

passes that compound string to the constructor through the name argument. The constructor extracts the values with

SystemVerilog’s $sscanf() function.

// User code

box_config_immutable box_cfg = box_config::type_id::create($sformatf("%s %d %d %d", "box_cfg",

 length, width, height));

// Constructor

function new(string name="");

 string actual_name;

 int length, width, height;

 super.new("");

 void'($sscanf(name, "%s %d %d %d", actual_name, length, width, height));

 set_name(actual_name); // This immutable object must allow name changes

 set_length(length);

 set_width(width);

 set_height(height);

endfunction

This method works best when all the class values are simple scalar integers or single-word strings. Real numbers

might lose precision, string values cannot contain whitespace, and complex values like structs, arrays, and objects

would be difficult to encode and decode.

1 H.A.C.K.S.

Use uvm_packer to pack complex values into the name argument as a non-printable string of bytes.

The uvm_packer policy object can serialize arbitrarily complex UVM objects into an array of bytes. User code

packs initializing values into such a byte array, encodes the byte array into a non-printable string, and passes the string

to the constructor via the name argument. The constructor decodes and unpacks the string to retrieve the values.

SystemVerilog strings may not contain the null byte 8’h00, so a lossless encoding scheme is required to ensure that

the string derived from the byte array is free of zeros.

This method is baroque to the point of absurdity, but it is functional.

Pass constant values as class parameters.

The immutable class is parameterized, and user code passes initializing values as class parameters.

box_config_immutable box_cfg = box_config#(

 .length (24),

 .width (18),

 .height (12))::type_id::create("box_cfg");

A significant limitation is that class parameters must be constants. User code cannot pass variables this way.

Pass values through the uvm_component constructor parent argument.

The default uvm_object constructor takes only one argument, string name. In contrast, the default

uvm_component constructor takes two arguments: string name and uvm_component parent. If the

immutable class extends uvm_component instead of uvm_object, user code can encapsulate initializing values

in a uvm_component object specially devised for that purpose, and pass it to the constructor through the parent

argument. The constructor retrieves the values from parent.

A limitation is that objects derived from uvm_component cannot truly be immutable; for starters, user code can

always mutate a component by adding children to it. Also, we have removed the need for a secondary factory class,

but added the need for a special component class for parent, so there is no savings. Nonetheless, the notion of a

quasi-immutable value object based on uvm_component has merit. For instance, user code could build a

hierarchical component structure of config objects that mirrors the hierarchical structure of configured components.

IMMUTABLE VS. RANDOM

Randomization is mutation, so immutable classes must not have random variables. However, most testbenches rely

on randomization, so the question is how to create an immutable object with random values. One solution is to create

another class: a randomizable uvm_object-based mutable counterpart to the immutable class.

Returning to our example, the mutable version of box_config is called box_config_mutable. This class

implements box_config_interface to ensure polymorphic compatibility with box_config_immutable.

Class box_config_mutable differs from box_config in the following ways:

• It extends uvm_object instead of immutable_object.

• Its instance variables are public and random (keyword rand) instead of private (local) and fixed.

• Its constructor is public instead of local.

• Its setter functions are public instead of local.

• It is registered with the UVM factory with `uvm_object_utils_* macros.

• It does not require the immutable field flags.

User code creates a temporary mutable object, randomizes it, then uses the immutable class’

create_copy()function or equivalent to create a new immutable object with the temporary object’s values.

box_config_mutable temp = box_config_mutable::type_id::create("temp");

void'(temp.randomize());

box_cfg = box_config::create_copy("box_cfg", temp);

The shared box_config_interface implementation makes it simpler to copy values back and forth between

box_config and box_config_mutable objects. The two classes have much behavior in common, so the

developer can use a variety of OOP strategies, such as inheritance and composition, to reuse code between them.

Fig. 3 depicts a class diagram of the complete box_config ecosystem, including box_config_mutable.

Figure 3. UML class diagram of the box_config ecosystem.

COMPOSING A SEQUENCE ITEM

UVM’s uvm_sequence_item base class is for modeling transactions that pass through the DUT. A sequence

item should not be immutable. Rather it is more akin to an entity in that it has a singular identity and naturally mutates

over its lifespan. However, a sequence item can and should be composed partially of immutable value objects. For

example, a bus transaction’s sequence item might contain:

• An immutable bus request object (read/write, size, address, write data, etc.)

• An immutable bus response object (read data, error response, etc.)

Fig. 4 illustrates a proposed sequence item structure in the context of its interactions with a generic sequence,

sequencer, and driver. The figure shows a third member in the sequence item: a mutable, randomizable

random_bus_req value object whose sole purpose is to support randomization of the sequence item with traditional

`uvm_do_* and ̀ uvm_rand_send_* macros. The random_bus_req object has random fields for bus protocol

values, and within the sequence item, random_bus_req is itself declared as rand. As a result, the user’s sequence

can create and randomize the sequence item with a standard macro, which in turn recursively randomizes the mutable

bus request object with optional in-line constraints. The developer can use post_randomize() to copy the newly

randomized request into the sequence item’s immutable request slot automatically. The mutable request has fulfilled

its purpose and should not be used anymore for the lifetime of the sequence item. The sequence sends the sequence

item with a populated bus request and empty bus response to the driver via the sequencer. The driver gets the item and

drives the bus request on the bus. Then the driver samples the bus response, and stores it as an immutable response

object in the appropriate slot in the sequence item, where the initiating sequence can retrieve it when the transfer

completes, and react accordingly.

Fig. 5 illustrates similar connections between input and output monitors and a scoreboard. No mutable bus objects

are required since monitors don’t typically generate random sequence item contents; they populate them based on

observed bus values. The monitors collect transactions from the DUT’s interfaces, create sequence items with

immutable request and response objects, and publish them through analysis ports to the scoreboard for checking.

This modular sequence item design introduces new classes, but it offers advantages. Encapsulating bus request and

response objects in separate classes accurately models the directionality of the bus protocol; the transfer initiator owns

the request, and the transfer target owns the response. The two classes enjoy tight cohesion and separation of concerns.

Breaking up a monolithic sequence item into smaller, simpler classes with cleaner interfaces encourages reuse and

unit-testing, leading to fewer defects. Object immutability underscores the creator/consumer relationship between

components, and adds to model fidelity because the requests and responses represent snapshots of historical state.

Subsequent events cannot change history. Testbench components like sequencers, drivers, monitors, and scoreboards

run as concurrent threads, so any mutable object references that they share are susceptible to hazards like corruption

and race conditions that typically require synchronization solutions. Immutable objects do not carry those same risks.

CONCLUSION

There is a widely accepted computing maxim, supported empirically by [10], that value objects should be

immutable, primarily to avoid aliasing bugs. Certain IC verification concepts such as stable component configurations

and data transfer snapshots benefit from being designed as value objects. Therefore, in a testbench, such items should

be modeled as immutable objects. Effective DDD encompasses both design and process. Once the design decision has

been made to incorporate immutable objects, this paper tackles the process question of how to implement them.

The SystemVerilog language, UVM idioms, and established verification techniques present obstacles to

immutability. This paper identifies and explains the obstacles as they are encountered, and offers solutions that aspire

to be broadly enabling and rigorously functionally correct, with minimal concern for cost, however that might be

measured. As a result, the solutions are somewhat overengineered, but they reveal the contours of the problem space.

Armed with an understanding of the ramifications, the testbench designer can evaluate tradeoffs when considering

different approaches for implementing immutable objects. If the designer doesn’t need UVM factory overrides, then

secondary factories aren’t required. If the designer can live with the risks posed by extending immutable classes, then

public constructors can be used and static factory methods omitted. If the immutable class doesn’t need to descend

from uvm_object, the designer can create a simpler SystemVerilog class instead. Even the H.A.C.K.S. may be

viable. Design decisions will be driven by the requirements of each application.

Reference [15] is a public GitHub repository that contains complete functioning source code for the box_config

and H.A.C.K.S. examples in this paper. In addition, it contains files from the UVM 1.2 reference implementation

UBUS example with sequence items reworked with immutable bus transaction objects. Lastly, it contains a free open-

source SystemVerilog package with the immutable_object base class and other utilities, which can be used as-

is in any UVM project.

Figure 4. UML object diagram of a sequence and driver sharing a sequence item composed of mutable and immutable value objects.

Figure 5. UML object diagram of monitors and a scoreboard sharing a sequence item composed of mutable and immutable value objects.

REFERENCES

[1] Joel, B., "Just the Way You Are," Columbia Records, 1977.
[2] IEEE Standard for SystemVerilog—Unified Hardware Design, Specification, and Verification Language, IEEE Std 1800™-2012, 2013,

p.190.
[3] Universal Verification Methodology (UVM) 1.2 Class Reference, UVM 1.2, Accellera, Napa, CA, USA, Jun. 2014.
[4] Universal Verification Methodology (UVM) 1.2 User’s Guide, Accellera, Elk Grove, CA, USA, Oct. 2015.
[5] Gamma, E., Helm, R., Johnson, R., & Vlissides, J., "Design Patterns: Elements of Reusable Object-Oriented Software," Addison-Wesley,

1995.
[6] Glasser, M., "Next Level Testbenches: Design Patterns in SystemVerilog and UVM," Self-Published, 2024.
[7] Meade, K. and Rosenberg, S., "A Practical Guide to Adopting the Universal Verification Methodology," Cadence Design Systems, 2010.
[8] Evans, E., "Domain-Driven Design: Tackling Complexity in the Heart of Software," Addison-Wesley, 2003.
[9] MIT 6.005, "Immutability," MIT OpenCourseWare. [Online]. Available: https://web.mit.edu/6.005/www/fa15/classes/09-immutability/.

[Accessed: 3-Nov-2024].
[10] C. Marsavina, "Understanding the Impact of Mutable Global State on the Defect Proneness of Object-Oriented Systems," 2020 IEEE 14th

International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 2020, pp. 000105-000110,
doi: 10.1109/SACI49304.2020.9118816.

[11] Oracle, "Immutable Objects," The Java™ Tutorials. [Online]. Available:
https://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html. [Accessed: 3-Nov-2024].

[12] Fowler, M., "Patterns of Enterprise Application Architecture," Addison-Wesley Professional, 2003, Chapter 18.
[13] "Value Objects Should Be Immutable," C2 Wiki. [Online]. Available: https://wiki.c2.com/?ValueObjectsShouldBeImmutable. [Accessed:

7-Apr-2023].
[14] "Immutables," GitHub Repository. [Online]. Available: https://immutables.github.io/. [Accessed: 3-Nov-2024].
[15] W. L. Moore, "Immutables," GitHub Repository. [Online]. Available: https://github.com/williaml33moore/immutables. [Accessed: 3-Nov-

2024].

