
Accelerating Device Sign-off through a Unified
Environment for DV, SV, and ATE with PSS

M. Suckerta, S. Khaikinc, A. Vazhayilq,
N. Devendraq, A. Samudraa, K. Hilligesa, M. Rubinc

a Advantest, c Cadence, q Qualcomm

Break down of very long title

1. Accelerating Device Sign-off

2. through a Unified Environment

3. for DV, SV and ATE

4. with PSS

The struggle to collaborate for device sign-off

• Separate workflows

• Different tools and
formats

• Complex SV benches

• Complex, shared ATEs

• Poor debug on ATE

Sign-off

Test Eng

For SLT
Pattern

Validation

IP/SoC

Validation

Bench

Bring-up

Ramp
and HVM

Electrical

characterization

Silicon Validation

Test Engineering

Design Verification

Prototyping

Emulation

Simulation

Wafer bring-up

System

Validation

Wafer test,

final test,

SLT

Unified environment for device sign-off

• Connected workflows

• Well defined interfaces
and formats

• Bench instrument with
standard interfaces and
unfified software

• Native test execution

• Native software debug

Sign-off

IP/SoC

Validation

Bench

Bring-up

Ramp
and HVM

Silicon Validation

Test Engineering

Design Verification

Prototyping

Emulation

Simulation

System

Validation

Wafer test,

final test,

SLT

✓

✓

✓

See DVCON

Europe 2021

Unified Environment
Consistency, automation,

 collaboration

Test Eng

For SLT
Pattern

Validation

Electrical

characterization

Wafer bring-up

DV on silicon in unified environment

• Increase functional
coverage

• Execute and explore
faster on silicon

• Execute not simulatable
content on silicon

• Debug tests on silicon
without SV expert

Sign-off

IP/SoC

Validation

Bench

Bring-up

Ramp
and HVM

Silicon Validation

Test Engineering

Design Verification

Prototyping

Emulation

Simulation

System

Validation

Wafer test,

final test,

SLT

✓

✓

✓
Unified Environment

Consistency, automation,
 collaboration

Test Eng

For SLT
Pattern

Validation

Electrical

characterization

Wafer bring-up

• Leverage pre-silicon
coverage concepts

• Joint bringup and debug
with DV

• PSS tests correct by
construction and
verified in simulation

Silicon Validation in unified environment

Sign-off

IP/SoC

Validation

Bench

Bring-up

Ramp
and HVM

Silicon Validation

Test Engineering

Design Verification

Prototyping

Emulation

Simulation

System

Validation

Wafer test,

final test,

SLT

✓

✓

✓
Unified Environment

Consistency, automation,
 collaboration

Test Eng

For SLT
Pattern

Validation

Electrical

characterization

Wafer bring-up

See DVCON US’24
“Post-Silicon testing with PSS”

by Prabhat Gupta @AMD

• tests signed-off with
confidence

• well understood
coverage from PSS

• concurrent test
engineering

Test Engineering in unified environment

Sign-off

IP/SoC

Validation

Bench

Bring-up

Ramp
and HVM

Silicon Validation

Test Engineering

Design Verification

Prototyping

Emulation

Simulation

System

Validation

Wafer test,

final test,

SLT

✓

✓

✓
Unified Environment

Consistency, automation,
 collaboration

Test Eng

For SLT
Pattern

Validation

Electrical

characterization

Wafer bring-up

See DVCON Europe’21
“A Novel Approach to Functional Test Development and

Execution using High-Speed IO”
by M. Schulze Westenhorst et al. @AMD, Cadence

Components of the unified environment
Model, solve

test intent

Verify tests Hand over

EDA → bench

Adapt

parameters

Execute test on silicon

Inspect trace,

results

Debug test CorrelateRelease

to HVM

FDAT

seamless

portability

Simulator,

Emulator

shift left

FDAT

well defined,

consistent:

seamless

portability

GUI

ease of use,

automation

GUI

ease of use,

automation

Native

debugger

Observe HW

and SW state

PSS

debugger

analyze in

depth

Bench

instrument

unified,

standard

bootstrap

Light-

weight test

server

well defined,

unified

JTAG

JTAG,

HSIO

DUT

results,

traces

PSS

Abstraction,

Coverage,

Constraint

random

Test

verified,

runtime

parameters,

runtime

coverage

C-API

Native PSS 3.0 API for unified environment

// (1) declare parameter set
struct user_param_set_algorithm_s : psv_base_param_set_s {
 //@tooltip("Algorithm type: Fast = 0, Slow = 1") // doc comment
 rand uint8_t algorithm_p; // name and type
 constraint algorithm_p_min_max { algorithm_p in [0..1]; } // value range

 //@tooltip("Seed")
 rand uint16_t seed_p;
 constraint seed_p_min_max { seed_p in [0..UINT16_MAX]; }
}

// declare parameterized component
component user_algorithm_c {
 // (2) define parameter-set component
 psv_param_set_c<user_param_set_algorithm_s> user_param_set_c;

 action initialize_a {
 activity {
 do psv_param_set_c<user_param_set_algorithm_s>::psv_initialize_param_set_a with {
 comp == this.comp.user_param_set_c;
 // (3) initialize parameter with default value
 param_set.algorithm_p == 0;
 };
 }
 }

 action run_test_pointer_a {
 exec body {
 // (4) retrieve pointer to parameter set and forward to target function
 comp.runAlgorithm(comp.user_param_set_c.get_pointer());
 }
}

}

// instantiate parameterized components
user_algorithm_c a1;
user_algorithm_c a2;

action main_a {
 activity {
 // initialize parameter sets
 do user_algorithm_c::initialize_a with { comp == this.comp.a1 };
 do user_algorithm_c::initialize_a with { comp == this.comp.a2 };

 // generate target code for parameter sets
 do psv_vip_parameters_c::prepare_parameters_a;

 // run test
 do user_algorithm_c::run_test_pointer_a with { comp == this.comp.a1; };
 do user_algorithm_c::run_test_pointer_a with { comp == this.comp.a2; };
 }
}

Example: runtime parameter set

• abstract, portable test model

• correct by construction

• runtime coverage

• tracing

• debug and correlation

FDAT – well defined container for tests

• FDAT = functional test data container

• complete description of functional test

• native binary

• zip format

• well defined directory and file structure

• well defined interface files for test parameters and test results

• open for user extensions

Unified bench instrument

• air cooled

• standard power supply

• bench footprint

• HSIO interfaces: PCIe, USB

• debug interfaces: JTAG, SPI, I2C, UART

• industry standard connectors

• reliability of ATE

Bench software

• ease of use

• automation

• data analytics

• FDAT as input format

• native software debugging

• well-defined HSIO protocol

Use case: Acceleration of device sign-off

Always-on processor Tested CPUUnified

bench HW

and SW

User:

Bootstrapping,

AP init

Generic,

lightweight

test server

User:

test

config,

CPU start

parameterized

binning test

User:

HSIO

driver

PSS tool

User:

Model

parameterized

test

Analyze

in-depth
Analyze

Automate,

execute,

debug

H
S

IO

F
D

A
T

Use case: Acceleration of device sign-off

• flow setup using templates and example code

• seamless integration of PSS API

• seamless handover of tests with FDAT

• debug test with native software debugger

• explore and sign off test with runtime parameters

• re-use in next project

Acceleration of device sign-off

• PSS productivity gain by factor 5

• reduced churn time in DV-SV workflow
• Native binary execution without patter conversion saves hours per iteration

• debug without expert support saves hours to days of meeting organization
per iteration

• higher coverage on silicon for test with poor accuracy in simulation

• collecting coverage on silicon faster by 105 to 106 than on simulation

Questions

• Thanks for joining!

• maximilian.suckert@advantest.com

• skhaikin@cadence.com

• aashokv@qti.qualcomm.com

	Default Section
	Slide 1: Accelerating Device Sign-off through a Unified Environment for DV, SV, and ATE with PSS
	Slide 2: Break down of very long title

	Problem statement
	Slide 3: The struggle to collaborate for device sign-off

	Solution and benefits
	Slide 4: Unified environment for device sign-off
	Slide 5: DV on silicon in unified environment
	Slide 6
	Slide 7

	Components of flow
	Slide 8: Components of the unified environment
	Slide 9: Native PSS 3.0 API for unified environment
	Slide 10: FDAT – well defined container for tests
	Slide 11: Unified bench instrument
	Slide 12: Bench software

	Use case
	Slide 13: Use case: Acceleration of device sign-off
	Slide 14: Use case: Acceleration of device sign-off
	Slide 15: Acceleration of device sign-off

	Mandatory last slide
	Slide 16: Questions

