
Accelerating Pre-Silicon Verification Coverage
with Transaction Sequence Modeling

Jayanth Raman, Jackson Wydra, Ximin Shan, Rahul Krishnamurthy,
Michael Yan, Phyllis Hsia, Vikram Narayan, Samir Mittal

Background and Methodology

Background

• Design Verification (DV) is a crucial phase in the lifecycle of integrated
circuit product development.

• DV primarily employs simulation-based methodologies
• Popular. But time and resource intensive.

• Coverage is a standard DV metric. Quantifies the extent of testing.

• Universal Verification Methodology (UVM) is a standardized
framework used in DV.

• Transaction sequences in UVM generate and manage the flow of data
items, or transactions. It defines the simulation in a test case.

Transaction Sequence Modeling – Main Idea

• As part of running a test case, transaction sequences are generated.

• Determine if a set of transactions for a test case simulation is likely to
increase coverage or not.

• If the set of transactions for a test case are not likely to increase
coverage, skip the simulation to shorten verification time.

Methodology

Two phases:

1. Train: Run simulations to collect data, then use it to train and store
ML models.

2. Infer: (1) Generate transaction sequences as part of running a test
case. (2) Skip the simulation if ML models predict the sequences
are unlikely to increase coverage.

Phase I – Train

(Trained)
ML Models

Run Simulations

Build ML Models

Generate Transaction Sequences

Training Data

Existing/Current DV

Normal DV Flow

Generate Transaction
Sequences

Run Simulation

Phase II – Infer

Generate Transaction
Sequences

Predict +
Filter

Run Simulation

(Trained)

ML Models

Coverage
Increase

Predicted?

Y

N

Results

Lock DUT

• Lock Design-Under-Test (DUT) is an RTL design that accepts a
sequence of code and only unlocks if the sequence matches a
predefined pattern.

• It’s a significant coverage challenge for larger bit-widths of the code.
• E.g., for a sequence length of 3 and 8 bits in the code, the probability of

unlocking is 1 / (256)3 (or one in about 16 million).

Lock DUT: Coverage Acceleration Procedure

• Phase I: Model was trained to predict coverage of the line hitting the
first code.

• Phase II: Trained model used to only keep sequences that were
predicted to hit that line.

• Simulations were run on only these filtered sequences.

Lock DUT: Model Training Setup

• Code length = 8 bits (e.g. 0x42)

• Sequence length = 8 (e.g. [0x12, 0xaa, 0x43, 0xbb, …, 0xcc, …])

• ML Model Input = 8 x 1 vector of integers (range: 0 to 255)

• ML Task = Classification = 1 if state s1 is reached, 0 otherwise

• ML Model = standard XGBoost, LightGBM

• Number of samples = 10K simulations.

• Training/validation split – 70-30.

Lock DUT: Coverage Acceleration Result

• Random simulations: 366K
simulations on average.

• Our method: about 20K
simulations on average.

• Coverage acceleration = 18x

0

50000

100000

150000

200000

250000

300000

350000

400000

Category 1

Line Coverage Acceleration

Our method Random

C
o

ve
ra

ge
A

cc
e

le
ra

ti
o

n

Cache DUT

• Micron internal RTL design.

• Cache Subsystem processes requests received from a Management
Subsystem.

• It supports encryption and decryption.

Terminology and Notes

• Design code is in Verilog.

• Design code is composed of modules.

• Instance = instantiation(s) of a module.

• An (instance, line-number) is a unique coverable line.

• Line coverage: a line is covered if it was executed by a test simulation.

• Covergroup is a construct for functional coverage. A covergroup is
composed of one or more cover points which in turn are composed of
one or more cover bins.

Testbench Instrumentation

Transaction Sequences

Timestamp BufferID Key X Y

–– –– –– –– ––

–– –– –– –– ––

–– –– –– –– ––

Timestamp BufferID Key X Z

–– –– –– –– ––

–– –– –– –– ––

Cmd Timestamp BufferID Key X

0 –– –– –– ––

1 –– –– –– ––

0 –– –– –– ––

0 –– –– –– ––

1 –– –– –– ––

Read Transaction Sequence

Write Transaction Sequence

Merged Transaction Sequence

Flattened binary vector.

Cache DUT: Model Training Setup

• One model per line or cover bin.

• Excludes easy to hit lines (>90% of tests hit these lines) and very hard
to hit (<10%).

• Model Input: Binary vector of length ~22k.

• Model Task: Binary Classification: 1 if line/bin is hit, 0 otherwise.

• ML Model: XGBoost/LightGBM/DummyClassifier/…

Cache DUT Results

Area Under the Curve (AUC) is a standard ML metric. An AUC of 1 indicates
perfect classification, while an AUC of 0.5 suggests random guessing.

Line Coverage
• Models AUC of lines shown

grouped by module.
• Many lines are modeled well

(high AUC). Others are
challenging.

Cache DUT Results
Group Coverage
• Models AUC of cover bins

shown grouped by
Covergroup.

• A Covergroup contains
multiple coverpoints,
contains multiple bins.

• About 28% of the bins are
have high prediction
performance.

Summary

Summary

• Transaction sequences can be used as input to train machine learning
models to predict code and functional coverage.
• Lock DUT.

• Cache DUT.

• Coverage acceleration was demonstrated by using the transaction
sequence ML models.

• More work needed
• Improve methodology on the Cache DUT.

• Apply this methodology on other DUTs.

Questions?

	Slide 1: Accelerating Pre-Silicon Verification Coverage with Transaction Sequence Modeling
	Slide 2: Background and Methodology
	Slide 3: Background
	Slide 4: Transaction Sequence Modeling – Main Idea
	Slide 5: Methodology
	Slide 6: Phase I – Train
	Slide 7: Normal DV Flow
	Slide 8: Phase II – Infer
	Slide 9: Results
	Slide 10: Lock DUT
	Slide 11: Lock DUT: Coverage Acceleration Procedure
	Slide 12: Lock DUT: Model Training Setup
	Slide 13: Lock DUT: Coverage Acceleration Result
	Slide 14: Cache DUT
	Slide 15: Terminology and Notes
	Slide 16: Testbench Instrumentation
	Slide 17: Transaction Sequences
	Slide 18: Cache DUT: Model Training Setup
	Slide 19: Cache DUT Results
	Slide 20: Cache DUT Results
	Slide 21: Summary
	Slide 22: Summary
	Slide 23: Questions?

