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Where to start…?
• Module level proofs

• aka: unit proofs… like 
simulated unit tests

• SWIF Status/Interrupt Checking

• Applicability is TBD

• Eliminate sim cycles• Because
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Method

1. Map each status bit to CTRL/IO
2. Capture a checker strategy/feasibility
3. Build properties to verify each status 

output
4. Document/review the outcome

property status_bit_asserted;

@(posedge i_clk)

disable iff (!i_sresetn)

some_field_seq and

other_field_seq and

an_input_seq |->

status_bit

endproperty

assert property (status_bit_asserted);



SWIF Interrupt/Status Checking

Method

1. Map each status bit to CTRL/IO
2. Capture a checker strategy/feasibility
3. Build properties to verify each status 

output
4. Document/review the outcome

Property When condition… Check this…

status_bit_asserted some_field and 
another_field and 
an_input <do something>

status_bit is asserted



Example Artifacts
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• 15 Status outputs verified
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• Light on infrastructure
• Use helper logic only when necessary
• Keep the entire check simple as possible
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always @(posedge clk) 

begin

// helper logic

end

property p;

// checker logic

endproperty

assert p;
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Lessons Learned

• Assuming checker execution state
• i.e. Overflow on FIFO full && write

• State variables > procedures
• Let the tool figure out how to get there

Reaching execution 
state procedurally

Assuming 
execution state



Lessons Learned

• RTL models for performance
• i.e: multiply vs. pipelined multiply

• Prove the RTL pipelined multiply in isolation
• Use an RTL model everywhere else

• Turned unusably slow into very fast

General recommendation…
• Deep pipelines
• Arithmetic functions
• Fast configurations
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Summary

• Because why?
• Simulation ruts run deep

• Formal is undervalued

• Opportunities for collaborative sim + 
formal approaches
• Software status/interrupts are a 

practical starting point

• Anywhere low-level checking is 
feasible

What else is in the paper?
• Simulation vs. Formal in verification 

thought leadership
• Verilog configurations vs. binding for 

inserting models
• 4-phase checker template

Bonus Points!
• Merging code coverage with sim?


