
A Simulation Expert’s Guide to
Formally Proving SW Status and Interrupts

Neil Johnson

Ciena



Simulation Formal Property Checking

Verify functional correctness What Verify functional correctness

Passing tests How Proven properties

<Simulator> Tool <Formal Tool>

• Test status
• Code coverage
• Functional coverage

Closure 
Metrics

• Proof status
• Code coverage
• Functional coverage

SIMULATION

FORMAL



Simulation Formal Property Checking

Verify functional correctness What Verify functional correctness

Passing tests How Proven properties

<Simulator> Tool <Formal Tool>

• Test status
• Code coverage
• Functional coverage

Closure 
Metrics

• Proof status
• Code coverage
• Functional coverage

• Default/known technology Upsides • Low infrastructure requirement
• Exhaustive proofs
• Implicit code coverage closure*

• Low re-config cost

• High infrastructure requirement
• Constrained random unknowns
• Iterative coverage closure

• High re-config cost

Downsides • Applicability is TBD
• Ramp-up/learning curve
• Technology limitations

• Depth/breadth of logic

SIMULATION

FORMAL



Simulation Formal Property Checking

Verify functional correctness What Verify functional correctness

Passing tests How Proven properties

<Simulator> Tool <Formal Tool>

• Test status
• Code coverage
• Functional coverage

Closure 
Metrics

• Proof status
• Code coverage
• Functional coverage

• Default/known technology Upsides • Low infrastructure requirement
• Exhaustive proofs
• Implicit code coverage closure*

• Low re-config cost

• High infrastructure requirement
• Constrained random unknowns
• Iterative coverage closure

• High re-config cost

Downsides • Applicability is TBD
• Ramp-up/learning curve
• Technology limitations

• Depth/breadth of logic

• Because Motivation • Eliminate sim cycles
• Increase confidence

SIMULATION

FORMAL



Simulation Formal Property Checking

Verify functional correctness What Verify functional correctness

Passing tests How Proven properties

<Simulator> Tool <Formal Tool>

• Test status
• Code coverage
• Functional coverage

Closure 
Metrics

• Proof status
• Code coverage
• Functional coverage

• Default/known technology Upsides • Low infrastructure requirement
• Exhaustive proofs
• Implicit code coverage closure*

• Low re-config cost

• High infrastructure requirement
• Constrained random unknowns
• Iterative coverage closure

• High re-config cost

Downsides • Applicability is TBD
• Ramp-up/learning curve
• Technology limitations

• Depth/breadth of logic

• Because Motivation • Eliminate sim cycles
• Increase confidence

SIMULATION

FORMAL

Where to start…?
• Module level proofs

• aka: unit proofs… like 
simulated unit tests

• SWIF Status/Interrupt Checking

• Applicability is TBD

• Eliminate sim cycles• Because



SWIF Interrupt/Status Checking

• Habitually difficult in simulation
• UVM testbenches are architected around core 

functionality

• Status/interrupt checking are an 
afterthought/overlay

Datapath

SWIF



SWIF Interrupt/Status Checking

• Habitually difficult in simulation
• UVM testbenches are architected around core 

functionality

• Status/interrupt checking are an 
afterthought/overlay

Datapath
UVM

SWIF



SWIF Interrupt/Status Checking

• Habitually difficult in simulation
• UVM testbenches are architected around core 

functionality

• Status/interrupt checking are an 
afterthought/overlay

• Formal enables a more deliberate approach
• Dedicated checking without the 

infrastructure/retrofits requirements

Datapath
UVM

SWIF

Formal



SWIF Interrupt/Status Checking

• Habitually difficult in simulation
• UVM testbenches are architected around core 

functionality

• Status/interrupt checking are an 
afterthought/overlay

• Formal enables a more deliberate approach
• Dedicated checking without the 

infrastructure/retrofits requirements

Method

1. Map each status bit to CTRL/IO
2. Capture a checker strategy/feasibility
3. Build properties to verify each status 

output
4. Document/review the outcome



SWIF Interrupt/Status Checking

Method

1. Map each status bit to CTRL/IO
2. Capture a checker strategy/feasibility
3. Build properties to verify each status 

output
4. Document/review the outcome

STATUS_REG.status_bit



SWIF Interrupt/Status Checking

Method

1. Map each status bit to CTRL/IO
2. Capture a checker strategy/feasibility
3. Build properties to verify each status 

output
4. Document/review the outcome

STATUS_REG.status_bit

CTRL_REG0.some_field

CTRL_REG1.other_field

top.an_input



SWIF Interrupt/Status Checking

Method

1. Map each status bit to CTRL/IO
2. Capture a checker strategy/feasibility
3. Build properties to verify each status 

output
4. Document/review the outcome

STATUS_REG.status_bit

CTRL_REG0.some_field

CTRL_REG1.other_field

top.an_input

Mess-o-logic

Strategy Output(s) Limitations

General plan of 
attack

Status bits under test Fear, uncertainty, 
doubt, etc.



SWIF Interrupt/Status Checking

Method

1. Map each status bit to CTRL/IO
2. Capture a checker strategy/feasibility
3. Build properties to verify each status 

output
4. Document/review the outcome

property status_bit_asserted;

@(posedge i_clk)

disable iff (!i_sresetn)

some_field_seq and

other_field_seq and

an_input_seq |->

status_bit

endproperty

assert property (status_bit_asserted);



SWIF Interrupt/Status Checking

Method

1. Map each status bit to CTRL/IO
2. Capture a checker strategy/feasibility
3. Build properties to verify each status 

output
4. Document/review the outcome

Property When condition… Check this…

status_bit_asserted some_field and 
another_field and 
an_input <do something>

status_bit is asserted



Example Artifacts



Results/Observations

• 15 Status outputs verified
• 6 bugs found w/69 properties

• No dependency on simulation infrastructure
• Complementary but completely orthogonal

• Mapping was very useful
• Low-level capture of low-level relationships
• Documentation sparse but practical
• Some outputs “didn’t fit” into formal

• Light on infrastructure
• Use helper logic only when necessary
• Keep the entire check simple as possible



Results/Observations

• 15 Status outputs verified
• 6 bugs found w/69 properties

• No dependency on simulation infrastructure
• Complementary but completely orthogonal

• Mapping was very useful
• Low-level capture of low-level relationships
• Documentation sparse but practical
• Some outputs “didn’t fit” into formal

• Light on infrastructure
• Use helper logic only when necessary
• Keep the entire check simple as possible

always @(posedge clk) 

begin

// helper logic

end

property p;

// checker logic

endproperty

assert p;



Lessons Learned

• Assuming checker execution state
• i.e. Overflow on FIFO full && write

Reaching execution 
state procedurally



Lessons Learned

• Assuming checker execution state
• i.e. Overflow on FIFO full && write

Reaching execution 
state procedurally



Lessons Learned

• Assuming checker execution state
• i.e. Overflow on FIFO full && write

• State variables > procedures
• Let the tool figure out how to get there

Reaching execution 
state procedurally

Assuming 
execution state



Lessons Learned

• RTL models for performance
• i.e: multiply vs. pipelined multiply

• Prove the RTL pipelined multiply in isolation
• Use an RTL model everywhere else

• Turned unusably slow into very fast

General recommendation…
• Deep pipelines
• Arithmetic functions
• Fast configurations

X

inA

inB

result

RTL Model

Fast

X

X

X

inA
inB

result
RTL

Slow



Summary

• Because why?
• Simulation ruts run deep

• Formal is undervalued

• Opportunities for collaborative sim + 
formal approaches
• Software status/interrupts are a 

practical starting point

• Anywhere low-level checking is 
feasible

What else is in the paper?
• Simulation vs. Formal in verification 

thought leadership
• Verilog configurations vs. binding for 

inserting models
• 4-phase checker template

Bonus Points!
• Merging code coverage with sim?


