(2023

DESIGN AND VERIFICATION™

DVOCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 27-MARCH 2, 2023

A Simulation Expert’s Guide to
Formally Proving SW Status and Interrupts

Neil Johnson
Ciena

Verify functional correctness

SIMULATION

Formal Property Checking

Verify functional correctness

m Proven properties

—_— <Simulator> <Formal Tool>
V_s FORMAL * Test status Closure * Proof status

* Code coverage Metrics Code coverage
* Functional coverage * Functional coverage

- R 2023
aﬂﬂEllera | * I ﬁGNVANDVERI_HCATION

Verify functional correctness

Formal Property Checking

Verify functional correctness

m Proven properties
<Formal Tool>

Passing tests

SIMULATION _

¥ FORMAL :

accellera)

SYSTEMS INITIATIVE

Test status
Code coverage
Functional coverage

Default/known technology

High infrastructure requirement
Constrained random unknowns
Iterative coverage closure

* High re-config cost

Closure
Metrics

Downsides

Proof status
Code coverage
Functional coverage

Low infrastructure requirement

Exhaustive proofs

Implicit code coverage closure*
* Low re-config cost

Applicability is TBD
Ramp-up/learning curve
Technology limitations

» Depth/breadth of logic

2023

DESIGN AND VERIEICATION™

DV

CONFERENCE AND EXHIBITION

Verify functional correctness

SIMULATION

<Simulator>

Is FORMAL * Test status

~ 1

Formal Property Checking

Verify functional correctness

m Proven properties
<Formal Tool>

Closure * Proof status
rage Metrics * Code coverage
. coverage * Functional coverage

" 1own technology * Low infrastructure requirement
ts * Exhaustive proofs

a0 * Implicit code coverage closure*
j: * Low re-config cost

10 -

. structure requirement)G o Applicability is TBD
2008 2010 2012 2014 2016 2018 2020 2022 2024 Ed random unknowns (] Ramp—up/learning Curve
Formal v overage closure * Technology limitations
Figure 2 - DVCon|Keyword Search Data 2010-2022: Number of Keyword Hits re-config cost . Depth/breadth of logic

* Because * Eliminate sim cycles
* Increase confidence

= - VO 2023
aﬂﬂE,lera | * I ﬁGNVANDVERI_HCATION

. Simulaion | | Formal Property Checking
SIMULATION Where to start...?

* Module level proofs
e aka: unit proofs... like

¥ FORMAL

” simulated unit tests
* SWIF Status/Interrupt Checking

70

60

50

40

30
20

10

* Applicability is TBD ?
-

0 .
2008 2010 2012 2014 2016 2018 2020 2022 2024

/

. se — e Eliminate sim cyc|es J

F | UM e
Figure 2 - DVCon|Keyword Search Data 2010-2022: Number of Keyword Hits

R 2023
\ . i DESIGN AND VERIEICATIOMN

SYSTEMS INITIATIVE

SWIF Interrupt/Status Checking

e Habitually difficult in simulation

e UVM testbenches are architected around core
functionality

 Status/interrupt checking are an
afterthought/overlay

Datapath

acceller?)

SSSSSS S INITIATIVE

SWIF Interrupt/Status Checking

e Habitually difficult in simulation

e UVM testbenches are architected around core
functionality

 Status/interrupt checking are an
afterthought/overlay

acceller?)

SSSSSS S INITIATIVE

SWIF Interrupt/Status Checking

e Habitually difficult in simulation R

* UVM testbenches are architected around core Formal
functionality : :

 Status/interrupt checking are an
afterthought/overlay
* Formal enables a more deliberate approach

* Dedicated checking without the
infrastructure/retrofits requirements

acceller?)

SYSTEMS INITIATIVE

SWIF Interrupt/Status Checking

e Habitually difficult in simulation 4 Method N
 UVM testbenches are architected around core 1. Map each status bit to CTRL/IO
functionality 2. Capture a checker strategy/feasibility
]] 3. Build properties to verify each status
e Status/interrupt checking are an output

afterthought/overlay \4 Document/review the outcome /

* Formal enables a more deliberate approach

* Dedicated checking without the
infrastructure/retrofits requirements

- R R 2023
accellera | i] * ! : ESIGN AND VERIEICATION

SYSTEMS INITIATIVE

SWIF Interrupt/Status Checking

STATUS_REG.status_bit

accelleray -

SYSTEMS INITIATIVE

/

N

Method

Map each status bit to CTRL/IO

Capture a checker strategy/feasibility
Build properties to verify each status

output
Document/review the outcome

\

)

SWIF Interrupt/Status Checking

/ Method \

Map each status bit to CTRL/IO
2. Capture a checker strategy/feasibility

CTRL_REGO.some_field

STATUS REG.status_bit < CTRL_REG1.other_field 3. Build properties to verify each status
output
top.an_input K4 Document/review the outcome /

accelleray -

SYSTEMS INITIATIVE

SWIF Interrupt/Status Checking

/ Method \

1. Map each status bit to CTRL/IO
m=) Capture a checker strategy/feasibility
3. Build properties to verify each status

CTRL_REGO.some_field

STATUS_REG.status_bit <0 WA R8s — CTRL_REG1.other_field

output
top.an_input \4 Document/review the outcome /
General plan of Status bits under test Fear, uncertainty,
attack doubt, etc.

m S 2023
acﬂe,lera | * I DESIGN AND VERIEICATION

SYSTEMS INITIATIVE

SWIF Interrupt/Status Checking

/ Method \

property status bit asserted; .
@ (posedge i clk) 1. Map each status bit to CTRL/IO
disable iff (!'i sresetn) 2. Capture a checker strategy/feasibility
some field seqg and Build properties to verify each status
other field seqg and output
an_input_seq |-> 4. Document/review the outcome
status bit \\> <//
endproperty

assert property (status bit asserted);

- R k- 2023
accellers) _ o R

SWIF Interrupt/Status Checking

/ Method \

status_bit_asserted some_field and status_bit is asserted 2. Capture a checker strategy/feasibility
another_field and 3. Build properties to verify each status
an_input <do something> output

\-} Document/review the outcome /

acceller?)

SYSTEMS INITIATIVE

xample Artifacts

Strategy % Qutputs Limitations Status
. .

-
- .
Strategy
| d
Checkers
reonige Category Property Parameterization Configuration When Check This.. Notes
. Condition...
0
Assumptions
Category | Nama Applisd Condition

Assumptions

| N 2023
accellera)

DESIGN AND VERIEICATION™

DV
SYSTEMS INITIATIVE

CONFERENCE AND EXHIBITION

Results/Observations

e 15 Status outputs verified
* 6 bugs found w/69 properties

* No dependency on simulation infrastructure
* Complementary but completely orthogonal

* Mapping was very useful
* Low-level capture of low-level relationships
 Documentation sparse but practical
* Some outputs “didn’t fit” into formal

* Light on infrastructure
* Use helper logic only when necessary
» Keep the entire check simple as possible

- R R 2023
accellera | i] * ! : ESIGN AND VERIEICATION

SYSTEMS INITIATIVE

Results/Observations

15 Status outputs verified

* 6 bugs found w/69 properties always @ (posedge clk)

* No dependency on simulation infrastructure begin
* Complementary but completely orthogonal // helper logic
. end
* Mapping was very useful .
* Low-level capture of low-level relationships property p;
 Documentation sparse but practical // checker logic
* Some outputs “didn’t fit” into formal endproperty
e Light on infrastructure assert pj

* Use helper logic only when necessary
» Keep the entire check simple as possible

2023

acellera | . . y) DESIGN AND VERIFICATION™

SYSTEMS INITIATIVE

Lessons Learned

* Assuming checker execution state
* i.e. Overflow on FIFO full && write

task.proeEEST ()7 ..,

..... repeat (FIFOiFULLiLEVELi"'hg:gin Reaching execution
@ (posedge clk); e
fifo.write — 1; fal state procedurally

.
.
o .
.....

..........
.....................

assert (fifo_overflow);
endtask

- R E 2023
accellera |] * I DESIGN AND VERIEICATIOMN

L DV
SYSTEMS INITIATIVE N

CONFERENCE AND EXHIBITION

Lessons Learned

* Assuming checker execution state
* i.e. Overflow on FIFO full && write

£ ag K PrOE EEEE (VT e “Q_:(p@sedge...@lk} _

....... repeat (FI FOiFULLiLEVEI...i"'h?gin Reachi ng execution v‘.flfowrlte [*FIFOfFULLfLE\{E&P ##1 fifo.write |->
@ (posedge clk); 2 T2 Lifo..overLlows
fifo write — 1, ; state procedurally endproperty

.
.
o .
.....

..........
.....................

assert (fifo_overflow);
endtask

- R E 2023
accellera |] * I DESIGN AND VERIEICATIOMN

L DV
SYSTEMS INITIATIVE N

CONFERENCE AND EXHIBITION

Lessons Learned

* Assuming checker execution state
* i.e. Overflow on FIFO full && write

e State variables > procedures
* Let the tool figure out how to get there

tas kpr(jc_test (O A @CPQSedgéCIk} | .
““““““ repeat (FIFOiFULLiLEVEﬂi."'}Q;@gin Reaching execution v‘flfowrlte [*FIFOiFULLiLEV-h?E‘]’: ##1 fifo.write |->
€ (posedge clk); " g 2 T To#ti-Lifo..overtlow .
fifo write — 1r ; state procedurally endproperty
....,,..:end “““““
@ (posedge clk);
fifo.write = 1; property decl overflow;
Assuming @ (POSEAGE. CLI) oo
Q (posedge clk); L — > fifo.fill level == FIFO FULL LEVEL"&& fifo.write |->
assert (fifo _overflow): execution state @ = T fL."'ﬂc'#'f['_"fi'fii"'c')'x'fé'ffi['c')'{qi}? aaaaanet
endtask endpropertyv -

SYSTEMS INITIATIVE

CONFERENCE AND EXHIBITION

- R k- 2023
accellers) - - _ o R

Lessons Learned

* RTL models for performance
* i.e: multiply vs. pipelined multiply
* Prove the RTL pipelined multiply in isolation e Arithmetic functions
* Use an RTL model everywhere else « Fast configurations
* Turned unusably slow into very fast

General recommendation...
e Deep pipelines

iNA ~

inA
inB

L, result .8~ RTLModel

RTL

Fast

- R 2023
acﬂellera | * I DESIGN AND VERIEICATIOMN

SYSTEMS INITIATIVE

Summary

What else is in the paper?

°M why?

e Simulation ruts run deep Simulation vs. Formal in verification
thought leadership

. :
Formal is undervalued Verilog configurations vs. binding for

* Opportunities for collaborative sim + oerne meces
-pnase checker tempiate
formal approaches

e Software status/interrupts are a
practical starting point Bonus Points!

. . Y H . . ?
 Anywhere low-level checking is Merging code coverage with sim?
feasible

2023

| . ¥ DESIGN AND VERIFICATION™

SYSTEMS INITIATIVE

