
Refinable Macros and Terminal Boundaries 

in UPF 4.0:  Empowering Soft IPs of the 

Future 
Amit Srivastava 

Amit.Srivastava@synopsys.com 

Synopsys Inc 

John Decker 

jdecker@cadence.com 

Cadence Design Systems 

Lakshmanan Balasubramanian 

lakshmanan@ieee.org  

Texas Instruments (India) Pvt. Ltd 
 

Abstract:  Systems on Chips (SoCs) increasingly integrate numerous Soft Intellectual Properties (SIPs), each with its 

own power management architecture. Traditional methods often fail to comprehensively capture the power intent of these 
SIPs, leading to challenges during integration and risking verification integrity. This paper introduces Refinable Macros in 
the upcoming UPF 4.0 standard, providing enhanced capabilities for non-intrusive refinement of SIPs' power intent without 

altering original designs. Refinable Macros allow IP integrators to add implementation-specific details while preserving the 
extensive validation performed at earlier stages. Additionally, the importance of marking SIPs as terminal boundaries is 
highlighted to ensure consistent interpretation across design tools and facilitate efficient verification and implementation. 

The paper discusses these new features, implementation UPF commands, and best practices, showcasing advancements that 
expedite development and improve efficiency in low-power SoC design. 

I. INTRODUCTION 

The rapid advancement of semiconductor technology has led to increasingly complex System on Chips (SoCs) that 

integrate numerous Soft Intellectual Properties (SIPs) as standalone blocks, each often containing its own power 

management architecture. Managing the overall power intent of such SoCs presents significant challenges. SIPs are 

typically provided with their own Unified Power Format (UPF) files, encapsulating power intent in a technology-

independent manner, enhancing flexibility and reusability across different technology nodes and design environments. 

However, integrating these SIPs into larger designs often requires adding implementation-specific details during 

stages like synthesis and place-and-route (PnR), which can risk verification integrity if not handled carefully. The 

existing UPF 3.1 standard [1], which defines the Successive Refinement methodology for bottom-up implementation 

flows, lacks defined semantics for bottom-up verification flows involving SIPs. Additionally, the soft macros defined 

in UPF 3.1 are intended for bottom-up implementation flows but have restrictions that hinder necessary refinements 

from the SoC level, compromising optimization and flexibility. 

As a result, designers are often compelled to adopt intrusive methods to alter the original power intent to proceed 

with implementation, undermining the verification performed at the IP level. This situation forces either re-validation 

of the IPs, which is time-consuming and counteracts the goal of achieving faster turnaround times, or accepting the 

risk of introducing silicon bugs into the final product, compromising the reliability and functionality of the SoC. 

To address these challenges, UPF 4.0 [2] introduces Refinable Macros, providing enhanced capabilities for non-

intrusive refinement of SIPs' power intent without altering the original designs. Refinable Macros enable SIPs to 

maintain their validation integrity while allowing IP integrators to efficiently refine the power intent with 

implementation-specific details. By applying UPF's Successive Refinement methodology, integrators can seamlessly 

enhance the IP power intent without intrusive modifications. 

This work builds upon the ideas presented in our earlier paper, where we introduced the concept of Verification 

Macros and their role in maintaining the integrity of verifiable IP UPF through integration [3]. While the earlier work 

focused on addressing the challenges within the constraints of UPF 3.1, this paper highlights how the UPF 4.0 standard 

has evolved to systematically address these limitations, introducing concepts like Refinable Macros and enhanced 

Terminal Boundaries to better support SIP integration and verification. 

This paper provides an in-depth analysis of limitations in UPF 3.1 for SIP integration and introduces key 

advancements in UPF 4.0. Section II identifies challenges with SIP integration using UPF 3.1. Section III elaborates 

on Refinable Macros and their significance in preserving verification integrity. Section IV discusses implementation 

UPF commands with best practices. Section V highlights the role of Terminal Boundaries in ensuring tool consistency, 

and Section VI provides case studies illustrating these concepts in practical scenarios. The paper concludes with the 

benefits of UPF 4.0 adoption for efficient and reliable SoC design. 

II. LIMITATIONS OF UPF 3.1 IN SOFT IP INTEGRATION 

In designing complex System on Chips (SoCs), managing power intent efficiently is crucial due to the integration 

of numerous Soft Intellectual Properties (SIPs), each with its own power management requirements. The Unified 

Power Format (UPF) 3.1 provides the Successive Refinement methodology to handle power intent specifications 

hierarchically and incrementally. 
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A. Successive Refinement Methodology in UPF 3.1 

The Successive Refinement methodology allows designers to develop power intent progressively as the design 

evolves from individual IP blocks to the complete SoC. This approach facilitates collaboration between IP providers 

and SoC integrators by enabling the reuse of power intent specifications across different design stages and abstraction 

levels. 

In this methodology: 

 

• Constraint UPF: IP providers define a Constraint UPF that outlines the fundamental power architecture 

of the IP block, including definitions of power domains, retention requirements, isolation clamping 

requirements, and legal power states, all specified in a technology-independent manner. 

• Configuration UPF: As the design progresses, a Configuration UPF incorporates additional details, 

adapting the power intent to the specific context of the SoC, such as adjusting power management strategies 

to align with system-level requirements. 

• Implementation UPF: Finally, the Implementation UPF adds technology-specific information required 

for physical implementation, such as power switches, supply nets, and control logic for power management 

cells. 

Figure 1 illustrates the Successive Refinement methodology as defined in UPF. 

 

 
Figure 1 UPF Successive Refinement Methodology 

While this methodology promotes modularity and reuse, it primarily supports bottom-up implementation flows and 

lacks support for bottom-up verification flows involving SIPs. 

B. Bottom-Up Implementation Flows and Soft Macros 

In a bottom-up implementation flow, individual IP blocks are designed and implemented separately before being 

assembled into a larger subsystem or SoC. This approach allows IP blocks to be developed and optimized 

independently, leveraging their standalone power intent specifications. 

To support this flow, UPF 3.1 introduces Soft Macros. A Soft Macro represents an IP block along with its associated 

UPF, intended to be implemented independently from the rest of the design hierarchy. Soft Macros encapsulate the 

power intent of the IP block, forming a terminal boundary that isolates the internal power intent from external 

modifications. 

Features of Soft Macros: 

• Self-Contained Power Intent: The UPF for a Soft Macro fully specifies the power intent within the IP 

block without relying on power intent definitions from parent or ancestor scopes. 

• Terminal Boundary Behavior: The ports of a Soft Macro are treated as drivers and receivers, and the 

power intent outside the macro does not affect the internal power architecture. 

• Consistent Interpretation: Verification tools interpret the UPF of a Soft Macro in the same way as when 

the IP was implemented separately, ensuring consistent behavior across different design contexts. 

Advantages of Using Soft Macros: 

• Independent Implementation: Allows IPs to be implemented independently, facilitating modular design 

and enabling IP vendors to optimize their blocks without dependencies on the SoC environment. 



• Protection of IP Integrity: Ensures that the IP's internal power management strategies are not altered 

unintentionally during integration. 

• Consistent Verification Across Tools: Reduces the risk of discrepancies between verification and 

implementation by enforcing consistent semantics across different design tools. 

Example Scenario: 

Figure 2 demonstrates the semantics of Soft Macros in a bottom-up implementation flow. 

 

 
Figure 2.  Soft Macro in Bottom-up Implementation Flow 

 

In the figure: 

• A Soft Macro IP has two supply pins on its interface. The UPF is written to insert isolation cells within the 

IP from a source powered by one supply to a sink powered by another supply. 

• Since the IP is implemented separately, the isolation cells are present in the netlist. 

• When the IP is integrated into a larger block, there may be multiple instances of the IP. In one instance, 

the two supplies at the interface are connected, making the isolation cells redundant. 

• By marking the IPs as Soft Macros, verification tools can identify the IP boundaries and treat them as 

terminal boundaries, preserving the redundant isolation cells even if the supplies are connected. 

Note: The example of redundant isolation cells is just one scenario. Many UPF semantics can be affected by the 

environment, so it is important to mark these blocks as Soft Macros to maintain consistent behavior across different 

design contexts. 

C. Limitations in Bottom-up Verification Flows 

In a bottom-up verification flow, SIPs are verified independently but implemented within a larger system context. 

The entire SoC, including the SIPs, undergoes implementation and verification as a whole, allowing for optimization 

across the design hierarchy and leading to better overall performance, power efficiency, and area utilization. 

However, applying Soft Macros to SIPs in bottom-up verification flows presents significant limitations: 

• Inability to Refine Power Intent: Soft Macros prevent modifications to the IP's power intent from the 

parent scope, inhibiting necessary implementation-specific refinements. 

• Constraints on Optimization: They require standalone implementation, restricting system-level 

optimizations and potentially limiting performance and area efficiency. 

• Conflict with System-Level Requirements: The rigid isolation may not align with system-level power 

management strategies, leading to suboptimal integration. 

• Risk to Verification Integrity: Without non-intrusive refinement capabilities, designers may resort to 

modifying the original UPF, compromising the IP's verified power intent. 

Thus, Soft Macros are unsuitable for bottom-up verification flows where flexibility in refining power intent during 

integration is essential. 

D. Challenges in Capturing Power Intent of SIPs 

UPF 3.1 lacks suitable constructs for capturing the power intent of SIPs in bottom-up verification flows, leaving 

designers with inadequate options: 

1. No Marking for SIPs: 

o Approach: Treating the SIP's UPF like any other block, without special protection. 



o Consequences: Lacks mechanisms to ensure the IP's power intent integrity, requiring integrators 

to modify the UPF and potentially necessitating re-validation. 

2. Using Soft Macros for SIPs: 

o Approach: Marking SIPs as Soft Macros imposes strict restrictions. 

o Challenges: Prevents necessary refinements and optimizations at the SoC level due to the 

inability to modify the IP's power intent. 

Neither approach adequately balances maintaining verification integrity with the flexibility needed for system-level 

optimizations. 

E. Need for Enhanced Methodologies 

These challenges highlight the need for methodologies that: 

• Allow Non-Intrusive Refinement: Enable integrators to add implementation-specific details without 

altering the original IP's UPF. 

• Preserve Verification Integrity: Ensure refinements do not compromise the IP's standalone verification. 

• Facilitate System-Level Optimization: Align the IP's power intent with system-level strategies. 

• Support Bottom-Up Verification Flows: Provide tool support and defined semantics for effective 

handling. 

UPF 4.0 addresses these needs by introducing Refinable Macros, which will be discussed in the next section. 

III. REFINABLE MACROS IN UPF 4.0 

To address the limitations of soft macros in bottom-up verification flows, UPF 4.0 introduces Refinable Macros, 

providing the necessary flexibility for integrating SIPs into larger systems while preserving their original power intent 

and verification integrity. 

A. Definition and Purpose of Refinable Macros 

Refinable Macros are a new construct in UPF 4.0 that form a refinable terminal boundary. This boundary allows 

SoC integrators to add implementation-specific refinements to the IP's power intent during integration without altering 

the original UPF provided by the IP vendor. 

Key Attributes of Refinable Macros: 

• Non-Intrusive Refinement: Implementation details can be added without modifying the original power 

intent defined in the IP's UPF, avoiding the need for re-verification of the IP. 

• Preservation of Verification Integrity: The IP's standalone verification remains valid, reducing the risk 

of functional discrepancies. 

• Flexibility for System-Level Optimization: Enables alignment of the IP's power intent with system-level 

power management strategies, allowing optimizations such as removing redundant logic when it's safe to 

do so, improving performance and area utilization. 

B. Marking IPs as Refinable Macros 

IPs can be marked as Refinable macros using set_design_attributes command. 

These commands mark the IP (referred to as SIP or the current scope .) as a Refinable Macro by setting the 

UPF_is_refinable_macro attribute to TRUE. 

C. Practical Application 

Figure 3 illustrates the use of Refinable Macros in a bottom-up verification flow. 

set_design_attributes -models SIP \ 

  -attribute {UPF_is_refinable_macro TRUE} 

OR 

#Marks the Model of current scope as Refinable Macro 

set_design_attributes -models {.} \ 

  -is_refinable_macro  

 



 
Figure 3. Refinable Macro in a Bottom-up Verification Flow 

 

In Figure 3: 

• The IP is marked as a Refinable Macro, enabling the implementation tool to make necessary refinements 

during integration. 

• For instance, if the two supplies of the IP are connected in the larger system, redundant isolation cells can 

be safely removed to optimize area without violating the IP's original power intent. 

• The original power intent remains intact, ensuring that the IP's standalone verification is still valid. 

D. Advantages over Soft Macros 

Refinable Macros overcome the limitations of Soft Macros by allowing: 

• Implementation-Specific Refinements: Integrators can add details like power switches, supply nets, and 

control logic necessary for physical implementation without altering the original power intent. 

• Optimized System Integration: Enables system-level optimizations and refinements, improving 

performance and area utilization. 

• Preservation of Verification Integrity: Ensures that the IP's verified power intent remains unchanged, 

maintaining confidence in the IP's correctness. 

E. Using Implementation UPF for Refinements 

Refinements to the IP's power intent are specified in an Implementation UPF. This UPF contains only allowed 

commands that add implementation details without altering the fundamental power architecture. The details are 

present in section IV. 

F. Ensuring Compliance and Verification Integrity 

By combining Refinable Macros with the controlled use of Implementation UPF, designers achieve: 

• Controlled Refinement: Only safe and permissible changes are made to the IP's power intent. 

• Verification Integrity Preservation: The IP's original power intent and standalone verification remain 

unaffected. 

• Tool-Assisted Compliance: Tools enforce constraints, ensuring refinements adhere to UPF 4.0 standards. 

IV. IMPLEMENTATION UPF AND THE LOAD_UPF -IMPLEMENTATION COMMAND 

In UPF 4.0, the Implementation UPF allows designers to add implementation-specific details to the power intent 

of SIPs without altering the original power intent defined by the IP provider. This enables safe refinement during 

integration, maintaining verification integrity while accommodating necessary implementation adjustments. 

A. Allowed Commands in Implementation UPF 

To ensure refinements do not violate the fundamental power architecture, the Implementation UPF is restricted to 

specific commands and options. Table 1 lists the UPF commands and options permitted within the Implementation 

UPF. 

Table 1 UPF Commands and options that can be used in Implementation UPF 

UPF Commands and required options Implementation UPF 

add_power_state -update Only for options -supply_expr, -legal, -illegal 

create_logic_port All options 

create_logic_net All options 



connect_logic_net All options except -reconnect 

create_supply_port All options 

create_supply_net All options 

connect_supply_net All options 

create_abstract_power_source 

‑update 

Only for option -power_switch 

create_power_domain -update Only for options ‑elements, ‑available_supplies, 

‑boundary_supplies, ‑define_func_type 

create_power_switch All options 

create_supply_set -update Only for option -function 

find_objects All options 

map_power_switch All options 

map_repeater_cell All options 

map_retention_cell All options 

map_retention_clamp_cell All options 

use_interface_cell All options 

set_isolation All options 

set_isolation -update Only for ‑elements, ‑location, ‑isolation_supply, 

‑instance, ‑force_isolation 

set_level_shifter All options 

set_port_attributes All options 

set_design_attributes All options 

set_repeater All options 

set_retention -update Only -instance, -retention_supply 

set_variation All options 

set_correlation All options 

load_upf All options 

set_scope All options 

apply_power_model -update Only -port_map, -elements 

 

These commands focus on: 

• Adding Implementation Details: 

o Creating and Connecting Ports and Nets: Commands like create_logic_port, 

create_supply_net, and connect_supply_net add necessary logic and supply 

connections for implementation. 

o Defining Power Switches: Using create_power_switch to specify power switches needed 

for power gating strategies. 

o Mapping Constructs to Physical Cells: Commands such as map_power_switch and 

map_retention_cell associate logical power intent elements with physical library cells. 

• Updating Existing Power Intent Objects: 

o Refining Power Domains: With create_power_domain -update, designers can update 

power domains with implementation-specific details like available supplies and elements (e.g., 

adding Design for Test [DFT] logic). 



o Adjusting Power States and Supplies: Using add_power_state -update and 

create_supply_set -update to modify power states and supply functions without 

altering the core power intent. 

• Specifying Cell Insertion Strategies: 

o Isolation Strategies: set_isolation and set_isolation -update enable the 

definition or refinement of isolation strategies for signals crossing power domain boundaries. 

o Level Shifting and Retention: Define level shifting requirements using 

set_level_shifter and update retention strategies with set_retention -update. 

• Control and Configuration: 

o Setting Attributes: set_design_attributes and set_port_attributes specify 

attributes affecting implementation without changing the original power intent. 

o Managing Scope and Loading: Commands like set_scope and load_upf assist in 

managing context and loading additional UPF files as needed. 

B. Using the load_upf -implementation Command 

To apply the Implementation UPF, the load_upf command with the -implementation option is used: 

This command loads the Implementation UPF for the specified IP instance, enforcing that only permissible 

refinements are applied. 

By restricting the Implementation UPF to these commands and options, UPF 4.0 ensures that refinements are made 

in a controlled and non-intrusive manner. This approach allows integrators to: 

• Enhance the Power Intent for Implementation: Add necessary details for physical realization without 

altering the fundamental power architecture verified by the IP provider. 

• Maintain Verification Integrity: Ensure that the original power intent remains intact, preserving the 

validity of the IP's standalone verification. 

• Leverage Tool Support: Enable tools to enforce constraints and check for compliance, reducing the risk 

of errors during integration. 

V. IMPORTANCE OF MARKING IPS AS TERMINAL BOUNDARIES 

In complex System on Chip (SoC) designs, accurately managing power intent requires not only specifying power 

domains and strategies but also ensuring that design tools interpret these specifications consistently across different 

stages of the design flow. A critical aspect of achieving this consistency is marking Intellectual Property (IP) blocks 

as Terminal Boundaries. 

A. Isolation Strategies in UPF 

UPF provides two primary methods for defining isolation strategies between power domains: 

1. Port-Based Strategies: Isolation is explicitly defined on specific ports or signals. Designers manually 

specify the ports requiring isolation, resulting in consistent interpretation across tools. This method has 

been available since UPF 1.0. 

Example: 

2. Path-Based Strategies: Isolation is automatically inserted when certain source and sink requirements are 

met, based on the analysis of cross-domain paths. This method scales better with design changes and has 

been available since UPF 2.0. However, it requires visibility of the global design and appropriate macro 

markings to function correctly. 

Example: 

load_upf <implementation_upf_file> -scope <IP_instance> -implementation 

set_isolation iso_out \ 

  -domain pd_gated \ 

  -elements { \ 

    unit1/a \ 

    unit1/b \ 

  } 

set_isolation iso_out \ 

  -domain pd_gated \ 

  -source ss_gated \ 

  -sink ss_always_on \ 

  -diff_supply_only true 



B. Challenges with Path-Based Strategies 

While path-based strategies simplify UPF specifications and adapt well to design changes, they introduce 

challenges: 

• Global Design Visibility: Tools must analyze the entire design to identify cross-domain paths, which can 

be computationally intensive in large designs. 

• Consistency Between Simulation and Synthesis: Without proper boundaries, different tools may 

interpret the isolation requirements differently, leading to inconsistencies. 

• Functional Correctness: Inaccurate path analysis can result in missing or incorrectly inserted isolation 

cells, potentially causing functional errors. 

These challenges necessitate a mechanism to control the scope of path-based analysis. 

C. Terminal Boundary Semantics 

UPF addresses these challenges by defining Terminal Boundary Semantics, which stop cross-domain tracing at 

specified boundaries and rely on boundary constraints: 

• Driver/Receiver Supplies on Boundary Ports: Tools consider the supply conditions at the ports of the 

boundary, without analyzing the internal details of the IP. 

• Macro Markings: By marking IP blocks as macros, designers inform tools where to apply terminal 

boundary semantics. 

D. Types of Macros: 

UPF defines three kinds of macros that form Terminal Boundaries: 

• Soft Macros (UPF 3.1): Represent IPs intended for separate implementation, encapsulating their power 

intent. 

• Hard Macros (UPF 3.1): Pre-implemented IPs with fixed functionality and power intent. 

• Refinable Macros (UPF 4.0): Introduced for SIPs, allowing non-intrusive refinements while preserving the 

original power intent. 

All three macro types require tracing to stop at their boundaries, relying on boundary constraints to ensure correct 

power management. 

E. Benefits of Marking IPs as Terminal Boundaries 

Marking IPs as Terminal Boundaries provides several advantages: 

• Controlled Path Analysis: Tools limit cross-domain path analysis to within terminal boundaries, reducing 

computational complexity and improving scalability. 

• Consistent Tool Behavior: Ensures that verification and synthesis tools interpret the power intent 

consistently, reducing the risk of discrepancies. 

• Parallel Processing: Enables tools to partition the design at macro boundaries, facilitating parallel 

processing and faster analysis. 

• Functional Correctness: By relying on boundary constraints, tools accurately insert necessary isolation 

and level-shifting cells, maintaining functional integrity. 

F. Practical Implications 

In designs employing path-based strategies, not marking IPs as Terminal Boundaries can lead to inconsistent 

isolation cell insertion across tools and stages: 

• Simulation vs. Synthesis: Without terminal boundaries, simulation tools might insert isolation cells 

differently from synthesis tools, causing mismatches.  

• Complex Designs: Large designs with numerous power domains and IP blocks exacerbate these issues, 

making terminal boundaries essential for manageability. 



 
Figure 4 Simulation vs. Synthesis mismatch without terminal boundaries 

 

Figure 4 illustrates a common inconsistency between simulation and synthesis when terminal boundaries are not 

properly defined. An IP block implemented as a standalone macro has two input supplies powering its internals. When 

instantiated multiple times in the SoC, there are scenarios where these supplies may be shorted by connecting them to 

the same supply in the SoC. Within the IP, crossings between logic powered by these supplies are handled by isolation 

strategies that insert isolation cells if the source and sink supplies differ. 

During standalone synthesis, the isolation cells are inferred at these crossings based solely on internal conditions. 

These isolation cells are then included in the netlist for all instances of the IP in the SoC as it reuses the macro netlist 

for all its instances. In contrast, RTL simulation of the SoC considers the shorting of supplies and omits the isolation 

cells. This discrepancy between simulation and synthesis can lead to missed issues, such as incorrect clamping of 

isolation cells during normal operation in instances where supplies are shorted. 

Marking the IP as a Soft Macro enforces terminal boundary semantics, ensuring that simulation respects the 

presence of isolation cells as inferred during synthesis, even in instances where supplies are shorted. Figure 2 

highlights these semantics and demonstrates how simulation tools account for soft macro behaviors. This consistency 

catches potential issues during RTL simulation, ensuring reliable verification of the final hardware. This highlights 

that macro markings are crucial for functional correctness and tool consistency in UPF-based designs. 

Table 2 summarizes the key features of UPF 4.0 discussed in this paper and their benefits. 

Table 2 

Feature Description Benefit 

Refinable Macros Enables non-intrusive refinements Preserves IP verification integrity 

Terminal Boundaries Ensures consistent tool interpretations Reduces simulation-synthesis mismatch 

Implementation UPF Adds implementation-specific details Improves system-level optimizations 

 

VI. PRACTICAL APPLICATION AND CASE STUDIES 

To illustrate the practical benefits of Refinable Macros and terminal boundary markings, we present an example 

demonstrating their application. 
Example: Integrating a Pre-Verified IP with Refinable Macros  

A pre-verified IP has GATED and Always ON (AON) domains. The GATED domain is switched through a SoC-

implemented power switch. The IP implements isolation between the AON and GATED domains and validates its 

power intent. The SoC integrator needs flexibility in choosing the isolation location based on place-and-route (PnR) 

requirements without altering the IP's original power intent.  

 

IP's UPF (ip.upf): 
# IP hierarchy 

# ip1_top in AON domain 

# |_ ip1_pgd_wrapper in PGD domain 

 



set_design_attributes -models {.} -is_refinable_macro true 

 

create_supply_set ss_AON 

create_supply_set ss_PGD 

 

create_power_domain AON -elements {.} 

 

create_power_domain PGD -elements {ip1_pgd_wrapper} 

 

..... 

 

## isolation strategy for ports crossing from PGD to AON. 

## -location not specified by IP team 

## -location, if specified and hardcoded, cannot be overridden through 

Refinable macro refinement 

set_isolation "o_PGD_to_AON" \ 

 -domain “PGD” \ 

 -isolation_supply_set "ss_AON" \ 

 -clamp_value "0" \ 

 -elements { 

    ip1_pgd_wrapper/portA 

    ip1_pgd_wrapper/portB 

 } \ 

 -isolation_signal pwr_manager/iso_en_b \ 

 -isolation_sense low 

 

.... 

 

create_pst ip_PST   -supplies "ss_AON.power ss_PGD.power ss_AON.ground" 

add_pst_state ON    -state {ON  ON  ON} -pst ip_pst 

add_pst_state GATED -state {ON  OFF ON} -pst ip_pst 

add_pst_state OFF   -state {OFF OFF ON} -pst ip_pst 

The IP defines AON and PGD power domains and specifies an isolation strategy without the -location option, 

allowing the SoC integrator to define the isolation location based on implementation needs. 

 

SoC Implementation UPF (ip.socimpl.upf): 
set_isolation o_PGD_to_AON \ 

 -domain PGD \ 

 -location self \ 

 -update 

The SoC integrator refines the IP's isolation strategy by specifying the -location option. Using the Refinable 

Macro semantics, the integrator can make this refinement without altering the IP's original UPF. 

 

SoC-Level UPF (parIP1.upf): 
# soc hierarchy 

# parIP1 

# |_ ip1 ip1_top 

 

create_power_domain par_AON -elements {.} 

 

# Load the IP's UPF and the SoC implementation UPF 

load_upf ip.upf -scope ip1 

load_upf ip.socimpl.upf -scope ip1 -implementation 

By using the load_upf command with the -implementation option, the SoC integrator ensures that the 

refinements comply with UPF 4.0 standards and that the IP's original power intent remains intact.  

Benefits Demonstrated: 

• Flexibility in Implementation: The SoC integrator can specify implementation details like isolation 

location without modifying the IP's original UPF. 



• Preservation of Verification Integrity: The IP's standalone verification remains valid, avoiding the need 

for re-validation. 

• Tool-Assisted Compliance: Tools enforce constraints, ensuring that refinements adhere to UPF 4.0 

standards.  

VII. CONCLUSION 

The introduction of Refinable Macros and enhanced terminal boundary definitions in UPF 4.0 represents significant 

advancements in low-power design for complex System on Chips (SoCs). By addressing the limitations of UPF 3.1, 

these new features enable designers to integrate pre-verified SIPs more efficiently and safely, without compromising 

verification integrity. 

Key contributions of UPF 4.0 include: 

• Non-Intrusive Refinement Capabilities: Allowing implementation-specific details to be added to the 

SIP's power intent without altering the original definitions, preserving extensive verification performed by 

IP providers. 

• Flexible Terminal Boundary Definitions: Providing mechanisms to mark IPs as refinable terminal 

boundaries, facilitating efficient partitioning of designs and enabling tools to manage complexity 

effectively. 

• Enhanced Tool Support: Empowering design tools to enforce constraints, verify compliance, and assist 

in implementing power management strategies, reducing the likelihood of errors. 

By adopting these methodologies, designers can achieve: 

• Improved Design Quality: Enhanced optimization opportunities lead to better performance, lower power 

consumption, and efficient use of silicon area. 

• Reduced Development Time: Streamlined integration and verification processes accelerate development 

cycles, helping companies meet aggressive time-to-market goals. 

• Risk Mitigation: Preservation of verification integrity minimizes the risk of functional errors, contributing 

to more reliable and robust products. 

The evolution of UPF standards reflects the industry's response to the growing complexity of SoC designs and the 

need for efficient, scalable methodologies. Refinable Macros in UPF 4.0 offer a balanced approach, providing the 

necessary flexibility for implementation refinements while safeguarding the original power intent and verification 

efforts. 
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