
• In ASIC verification, C-based models are crucial for handling intricate 
computations and serving as golden reference models, streamlining 
testbench development and Post-Silicon Validation.

• However, integrating these Cmodels with UVM Testbenches which are 
often implemented in Scoreboards and Predictors, presents challenges 
in synchronization with RTL designs, requires manual intervention, code 
development, often leading to inefficiencies and potential errors. 

• By embedding DPI-C functions into UVM Register Abstraction Layer 
(RAL) adapters, we enable real-time monitoring and dynamic updates 
of bus traffic.

• This approach not only reduces the need for manual synchronization 
but also enhances the accuracy and efficiency of the verification 
process.

• Automating synchronization through DPI-C significantly reduces 
verification time and minimizes the risk of manual errors, enhancing the 
overall efficiency and reliability of ASIC verification.

Kirtan Mehta

onsemi

Real-Time Synchronization of 
C model with UVM Testbench

C-MODEL IMPLEMENTATION

INTRODUCTION UVM TB ARCHITECTURE WITH CMODEL CONNECTED TO 
RAL ADAPTER

UVM TB IMPLEMENTATION

IMPLEMENTATION ADVANTAGES

AUTHOR INFO

DRAWBACKS

• Complex Integration: Integrating DPI-C functions into RAL adapters requires 
common definitions. Continuous synchronization with evolving designs adds 
complexity.

• Performance Issues: Real-time updates may slowdown TB simulation time; 
Larger TB might require additional support to handle this automation.

• Automation and Efficiency: Embedding DPI-C functions into UVM RAL 
adapters reduces manual effort and potential human error. 

• Real-time Updates And Monitoring: Ensures continuous updates and 
synchronization between the C model and testbench for accurate and 
efficient verification. 

• Scalability: Handles complex operations like burst via front-door memory 
transactions, suitable for block-level and SoC verification environments. 

• Consistency: Mirrors the register and memory structure of the UVM RAL 
model, enhancing uniformity and reliability across the codebase.

• The UVM code snippets defines and configures registers, register fields 
and memory using RAL class, while the C code snippet mirrors this by 
defining and initializing C structures with its register map and register 
fields, ensuring identical configuration and initialization.

• The function build_C constructs the C model with specified register 
fields and initializes memory locations. This occurs at the same time as 
RAL ensuring the TB, Design and Cmodels are in sync.

• The cmodel_write function writes data to specific hardware addresses 
in a simulation environment by updating register fields or memory 
locations based on the provided address and data. 

• This ensures accurate simulation of register operations and interactions 
between the processor and peripheral devices.

• The image below depicts various components, such as the UVM 
Environment, RAL model, and REG Adapter, where DPI functions are 
implemented. 

• These functions ensure synchronization between the C-Models, RAL, 
and the UVM Testbench.

KIRTAN MEHTA, Contact info: kirtan.mehta@onsemi.com

• Register, reg fields and reg block structures which could be reused in C to mimic 
RAL and Design.

• Build function initializes the Cmodel registers and memories by allocating space 
and defaulting the values.

• Cmodel write function takes in Address and Data as input and based on Register 
configuration/access, address and updates the data.


	Slide 1

