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Abstract-The increasing complexity of soft IPs require soft IP teams to perform exhaustive validation of the IP as a 

standalone block, including the power management architecture. As many soft IPs have internal power gating, validating 

the power-switching behavior is required before delivering the IP for integration and implementation. UPF’s Successive 

Refinement methodology enables the reuse of power intent and validation done for the IP. However, the methodology has 

several limitations for power switches. This forces users to use intrusive methods and edit the original UPF to introduce 

implementation constraints which involve modifying the simple power switches to ones that allow effective di/dt 

management. This paper details a new methodology to enable the Successive Refinement of power switches. The proposal 

is already approved by the UPF committee and will be part of the next revision of the UPF 3.1.  
  

I. INTRODUCTION  

As power budgets continue to tighten across all semiconductor market segments, the use of low power architectures 

is expanding and increasing in complexity. The IEEE1801 Unified Power Format, UPF, standard defines power intent 

for a design to achieve the desired power–performance tradeoff. Leakage power can be reduced by implementing a 

gated power domain for logic in standby during a low power state. The UPF describes the implementation details of 

the gated domain through the use of power switches. A power switch disconnects the power or ground source from 

the logic that will go into standby or sleep mode. At this time, all leakage power is eliminated since no power is being 

provided to the devices in that domain. The power switches can be modeled in various configurations based on the 

power micro-architecture and di/dt mitigation requirements.   

Soft IP teams are expected to deliver IP drops that are fully validated, including the power management flows. Gated 

domains are commonly used in soft IPs to reduce their leakage targets, but the power switch configuration implemented 

in the IP’s UPF is not guaranteed to match the SoC’s power switch requirements. The SoC’s requirements are a 

function of power micro-architecture and process-related requirements for the di/dt mitigation.   

This paper introduces the implementation concepts of a power switch in a soft IP and the current integration method 

supported by the UPF standard today. Limitations of the current method are also discussed, along with the restriction 

and costs imposed on the SoC. Finally, a proposal is made to abstract the definition at the IP level to enable power 

validation and allow the SoC to refine that definition to meet their power micro-architecture and di/dt mitigation needs.  

   

II. NEED FOR POWER SWITCH REFINEMENT  

  

Power switches are controlled through power management units. This is typically done using two configurations, 

one using a control signal and an acknowledge signal (to determine the following protocol, e.g., the release of isolation) 

or another using a control signal and a timer instead of an acknowledge signal.  

When integrated into a synthesized and routed (APR) block, soft IPs implemented power switches need refinement 

to match micro-architecture and process-specific implementation needs for APR and power delivery. There is a 

significant shift within the industry to using two-stage power switches for effective di/dt management (Figure 1). 

Implementing power switches through daisy chains, fishbone, or other power switch placements are process and 

implementation choices. There is no need for soft IP teams to understand, implement or validate 

implementationspecific di/dt management details to complete their power management flow validation.  

The successive refinement of the power switches shown in Figure 1 is not possible using the existing 1801 UPF 

language capabilities. Integration teams must use intrusive transformation methods, which tools cannot check. The 

intrusive methods include taking the original UPF verified by the IP and modifying the power switch definitions to 



meet the SoC’s needs. These methods are laborious, error-prone, and risk fundamentally altering the power intent that 

the IP validated. The proposal of using an abstracted power switch is to allow implementation teams to transform Soft  

IP power intent to implementation details while keeping it tool verifiable. This abstract power switch enables the soft 

IP to fully validate their power-gated domains without describing implementation details. If a soft IP can avoid 

implementation details, there is better reuse, lower IP UPF overhead and maintenance, and more flexibility for SoCs.   

  

 
   

III. SUCCESSIVE REFINEMENT METHODOLOGY  

  

The UPF standard defines an IP reuse methodology called “Successive Refinement Methodology”. This enables the 

reuse and progressive refinement of IP power intent when it goes through the design and verification flow.   

The application of this methodology to power switches involves the following  

• Capturing the power switching in an abstract form so that it can be verified at the RTL level   

• The abstract power switch will be present in Configuration UPF.  

• The abstraction should not limit the implementation of the power switch, as this will inhibit the reuse of the 

abstracted definition  

• When the IP gets implemented with real power switches, it should be possible to refine and correlate the 
abstracted form with the actual power switch definition. This implies that any earlier validation of the 
switching should still hold when additional details are provided. If there is any violation, it should be flagged 

and caught early.  

  

IV. CHALLENGES/LIMITATIONS WITH THE CURRENT UPF APPROACH  

  

The current UPF LRM provides two approaches to represent the power gating behavior for verification. The first 

approach uses create_power_switch, which is the most common, and the second uses add_power_state. Each approach 

has various limitations, creating problems when refining power switches.  

A. Using create_power_switch for power gating  

The power switching in UPF LRM is defined using the create_power_switch command, which inserts switches that 

drive supply nets which then supply rails. Since it is based on supply nets, it requires some implementation-related 

choices, e.g. deciding whether the design will have a header (power) or footer (ground) switching. Hence, it is 

considered an implementation detail and is typically present in “Implementation UPFs” which comes late in the flow 

and cannot be used for early validation using the “Constraint UPF” and “Configuration UPF”. A soft IP provider would 

like to avoid enforcing such a choice early in the flow.  

The create_power_switch command creates more problems with the Successive Refinement Methodology for 

modeling the scenario described in Figure 1: Sample di/dt management scheme. It breaks the methodology’s basic 

principle based on adding more details to the same object without contradicting the original intent. We have tried to 

explore the possibility of extending the UPF LRM, introducing additional refinement capabilities in the command, and 

  
Figure  1 :   Sample  di/dt   management scheme   



allowing adding additional ports. We hit a roadblock as adding more details could not achieve the transformation. 

Instead, it requires modifying the original connectivity, which contradicts the original intent. Because of these 

problems, the approach involving create_power_switch is unsuitable for the Successive Refinement Methodology.  

B. Using add_power_state for power gating  

An alternate approach is to capture the effect of power-switching behavior in the form of power states using the 

add_power_state command with the option -logic_expr. This allows users to simulate corruption of logic, using 

simstate CORRUPT but has the following limitations regarding the Successive Refinement Methodology.  

• Power states don’t allow modeling of ack logic (driving the ack port and ack_delay), which is needed for 

handling power controllers that depend on acknowledgment after switching  

• Power states allow successive refinement by creating new states that refine the original state, e.g.  

ON.TURBO, ON.SLOW are refinements of ON. While this fits into the Successive Refinement 

Methodology, it cannot model the refinement of power switches by adding additional controls. Refer 

subsection “Limitations with power state refinement” for more details  

• Refinement of power states has limitations when OR operators are used for definition. The OR operators are 

needed to capture the power-switching behavior completely  

Due to these limitations, the users are forced to use intrusive transformation methods to capture power-switching 

behavior. These methods severely lack correlation and cannot be checked by tools – thereby losing the earlier 

validation performed at the IP level.  

  

Limitations with power state refinement  

If the original IP were to capture the switching behavior and the related corruption using the add_power_state 

command, it would be as follows:  

add_power_state PD1.primary   
    –state {OFF \  
    –logic_expr {IP_FET_EN || PDTOP.primary == OFF}   
    -simstate CORRUPT} \  
    -state {ON \     –logic_expr {!IP_FET_EN && PDTOP.primary == ON}   

  

  

The waveforms corresponding to the above add_power_state is shown in Figure 2.   

  

  

  

  
Figure 2 Waveforms during the validation of the IP  

  

When this IP is integrated into the SoC, the create_power_switch commands will be added at the IP scope as an 

implementation update. Additionally, the add_power_state commands in the IP UPF must be refined/modified to 

match the power switching behavior. The waveform with the create_power_switch commands would be different as 

it will include the effect of additional controls and acks. This will not align with the waveforms resulting from the 

add_power_state commands from the IP UPF. Figure 3 highlights the problem.  

  

  



     
Figure 3 Waveforms based on the create_power_switch commands  

  

To avoid the ERROR state, the add_power_state commands need to be re-defined to match the waveforms with the 

create_power_switch commands.  

add_power_state PD1.primary   
    –state {OFF \  
    –logic_expr {IP_FET_EN || APR_PIN_IN || PDTOP.primary == OFF}   
    -simstate CORRUPT} \  
    -state {ON \  
    –logic_expr {!IP_FET_IN && !APR_PIN_IN && PDTOP.primary == ON}   
    –simstate NORMAL}  

    

  

The current UPF standard does not permit the refinement or override of the power states with the addition of 

expression. Therefore, we would need to create additional states that are refinements of the fundamental power states 

ON/OFF.   

  

add_power_state PD1.primary      –state {OFF.refined \  
    –logic_expr { APR_PIN_IN }   
    -simstate CORRUPT} \  
    -state {ON.refined \  
    –logic_expr { !APR_PIN_IN }   
    –simstate NORMAL}  

    

  

However, these refined states need to be a subset of the parent states, i.e, whenever the refined state is active the 

parent state also needs to be active. This holds good for the ON state, since an additional expression is ANDed , but 

not for the OFF state,where an additional expression needs to be ORed thereby extending the state. So, the period 

when ctrl is high, but ctrl_tmp is low, the “ON” state is active whereas the state “ON.refined” is not active. Also the  

“OFF” state is not active, therefore the current state of the supply set is ERROR.  

 

 

 

  



V. ABSTRACT POWER SOURCE  

  

To overcome the challenges, we introduce the concept of an abstracted power switch based on supply sets. 

Abstracting the power switching from supply nets to supply sets provides greater flexibility to the user during 

implementation. The abstract power switch is created using a new command create_abstract_power_source. The 

command creates an abstract power source that can be used to model not just power switches but can represent LDOs 

and other power sources in the future. The abstracted power switch creates user-defined supply set handles and ON 

and OFF states. The ON and OFF states can be referenced by power states of the primary supply of target power 

domains to establish supply relationships. The supply relationships can be verified separately without any 

implementation details. The abstracted power switch can also model the ack port driving logic at an RTL level. Finally, 

the abstracted power switch can be refined with real power switches created using the create_power_switch command.  

  

Proposed syntax of create_abstract_power_source command:  

Syntax  

create_abstract_power_source power_source_name    

[-output_supply_set {supply_set_name [supply_set_ref]}]  

{-input_supply_set {supply_set_name [supply_set_ref]}}*  

{-control_port {port_name [net_name]}}*  

{-on_state {state_name input_supply_set {boolean_expression}}}*  

[-off_state {state_name {boolean_expression}}]*  

[-supply_set supply_set_ref]  

[-ack_port {port_name net_name}]*  

[-ack_delay {port_name delay}]*  

     [-ack_polarity {port_name <active_high|active_low>}]* 

[-power_switch {{power_switch_name}*}] [-update]  

  

create_abstract_power_source defines an abstract power source in the current scope with the name 

power_source_name that mimics the power gating behavior by controlling the ON and OFF states defined on the 

output supply set handle. The options -output_supply_set and -input_supply_set define local supply set handles on the 

power source object. These supply set handles are associated with the supply set objects defined in the option or using 

the associate_supply_set command. The -on_state and -off_state options define the conditions under which the ON 

and OFF states will be activated, respectively. The values on the -output_supply_set will be based on associating the -

input_supply_set to the -output_supply_set when the ON state is active. When the OFF state becomes active, it will 

not affect the values of the -output_supply_set but only impact the simulation by triggering OFF state. The values on 

the functions of the supply set will depend on the final refined power switches. It shall be an error if both ON and OFF 

states are active at the same time. An example code of an abstract power source is shown below:  

  

create_abstract_power_source PSW -input_supply_set {input PDTop.primary}  
-output_supply_set {output PD1.primary}  
-supply_set PDTop.primary  
-control_port {en IP_FET_EN}   
-ack_port {IP_FET_ACK}  

-ack_polarity active_low  
-on_state {PSON input {!en}}   
-off_state {PSOFF en}  

    

  

  



The creation of the abstract power source (as shown above) defines the ON and OFF states for the output supply set 

are implicitly created by mapping to the state of the abstract source. The tool will internally define the -logic_expr of 

the ON and OFF states as shown below.  

  

## PSW.input == ON is implied when referring to PSW.output == ON. It is included 

into the semantics  
add_power_state PSW.output ON –logic_expr {PSW == PSON} add_power_state PSW.output 

OFF –logic_expr {PSW == PSOFF}  

  

The add_power_state commands in the IP UPF are described in terms of the state of the output of the abstract power 

source (as shown below), so that when it is refined to create_power_switch commands, the add_power_state 

commands automatically reflect the behavior of the actual power switches.  

  

add_power_state PD1.primary ON –logic_expr {PSW.output == ON}  
add_power_state PD1.primary OFF –logic_expr {PSW.output == OFF} -update  

    

  

VI. SUCCESSIVE REFINEMENT OF POWER SOURCE  

  

The abstract power switch in the IP UPF is refined during the integration into the SoC environment. The integrator 

will create an implementation UPF, which refines the IP UPF to include the SoC requirements. The first 

implementation UPF update for the IP would contain the create_power_switch commands for the physical 

implementation. The create_logic_port commands are used to create the additional control and ack signals. In the 

same UPF, a link is created between the abstract power source and the create_power_switch commands using the 

power_switch option to the create_abstract_power_source command along with -update. This command associates 

the abstract power source with the create_power_switch commands that will be used for physical implementation. 

This enables tools to check if the power intent described by the create_power_switch commands is different from the 

power intent described by the abstract power source associated with them.  

  

The implementation updates to the IP UPF and the SoC UPF are shown below  

  

IP.impl.upf ------------  
create_logic_port APRPIN_IN  

create_logic_port APRPIN_OUT  

  
 

create_power_switch "SOCPSW_1" \  
  -domain             "PD1" \  
  -input_supply_port  {TVDD PDTop.primary.power} \   
  -output_supply_port {VDD PD1.primary.power} \  
  -control_port       [list SLEEPIN1 APRPIN_IN] \  
  -control_port       [list SLEEPIN2 IP_FET_EN] \  
  -ack_port           [list SLEEPOUT1 IP_FET_ACK SLEEPIN1] \  
  -ack_port           [list SLEEPOUT2 APRPIN_OUT SLEEPIN2] \  
  -on_state           {SW_ON TVDD "!SLEEPIN1 & !SLEEPIN2"} \  
  -off_state          {SW_OFF "SLEEPIN1 | SLEEPIN2"}  

 

 

create_abstract_power_source PSW  
-update  
-power_switch {SOCPSW_1}   

  

The following update to the add_power_state commands is implicit based on the association of the 

create_power_switch commands to the abstract power source.  



  

## Below add_power_state lines are implied.   
add_power_state PSW.output ON \  
  –logic_expr {PSW == PSON & SOCPSW_1 == SW_ON } -update  
# Effective expr: { !IP_FET_EN & !APRPIN_IN } add_power_state PSW.output OFF \  
  –logic_expr {PSW == PSOFF | SOCPSW_1 == SW_OFF } -update  

# Effective expr: { IP_FET_EN | APRPIN_IN }  

  

  

  

  

The SoC UPF makes connections to the newly created logic ports on the IP boundary  

  
SoC.refinement.upf (implementation.upf)  
-------------------- create_supply_set 

SOC_AON  

   
load_upf ${PATH}/ip.upf -scope ip1  
associate_supply_set {SOC_AON ip1/PDTop.primary} load_upf 

${PATH}/ip.impl.upf –scope ip1  

   
connect_logic_net APRPIN_IN -ports apr/ip1/APRPIN_IN connect_logic_net 

APRPIN_OUT -ports apr/ip1/APRPIN_OUT  

  

  

  

VII. EXAMPLES  

  

Abstract power switch and refinement can be used in many IP to SoC handoff scenarios. We will use three scenarios 

to illustrate the definition of an abstract power switch at the IP level and its refinement at SoC level.   

  

Example 1:  

 IP power manager provides a single control for power-gated domain control with no acknowledge port. IP power 

manager implements an internal counter instead of an acknowledge port.   

  

IP.upf  

create_power_domain "PDTop" -elements {.} -supply "primary ss_VDD" ....  
create_power_domain "PD1" -elements {mypgdwrapper}  

  
create_abstract_power_source PSW \ -input_supply_set 

{input PDTop.primary} \  
-output_supply_set {output PD1.primary} \  
-supply_set PDTop.primary \  
-control_port {en IP_FET_EN} \   
-on_state {PSON input {!en}} \  

-off_state {PSOFF en}  
  

IP.upf describes the abstract power source definition that captures Example 1 power intent. Supply set handles 

define input and output supplies. Control port defines the RTL signal from IP power manager with no acknowledge 

port. IP has all its power intent captured to deliver a self-sufficient, validated UPF to SoC teams.  

  

 

 



SoC.refined.upf  
## Design hierarchy  
## apr  
## -> ip_inst1  
##   
## Control Ports Hier Relations  
## apr.ip_inst1.IP_FET_EN (PHYSICAL PORT)  
## apr.APR_SoC_FET_ACK (PHYSICAL PORT) - logic port map to 

apr.ip1_inst1.APR_IP_FET_ACK  

  
## Design assumption  
## IP UPF does not implement ack = a programmable counter might have been implemented  
## SoC expecting ACK back to its power manager needs to comprehend IP level program 

counter   
create_logic_port APR_IP_FET_ACK  

  

  

create_power_switch "SoCPSW_1" \  
  -domain             "PD1" \  
  -input_supply_port  {TVDD PDTop.primary.power} \ ## PDTop.primary.power == VDD IP 

supply port  
  -output_supply_port {VDD PD1.primary.power} \ ## supply net is implict, derived by 

the tool  
  -control_port       [list SLEEPIN1 IP_FET_EN] \  
  -ack_port           [list SLEEPOUT1 APR_IP_FET_ACK SLEEPIN1] \  
  -on_state           {SW_ON TVDD "!SLEEPIN1"} \  
  -off_state          {SW_OFF "SLEEPIN1"}  

  
## SoC refined switch (SoCPSW_1) is asSoCiated with IP abstracted power source 

through the -power_switch option.  
The -update option provides a paper trail of the changes done from IP to SoC, 

allowing tools to ensure power intent did not change 

create_abstract_power_source PSW \  
-update \  

-power_switch {SoCPSW_1}  

  

SoC.refined.upf showcases the refinement of IP-provided abstract power source to a single control and single 
acknowledge power switch at the SoC level. SoC is shown using a logic port as acknowledge port. Example 1 
illustrates a scenario where IPs power management is through counters. Example 1 shows SoC converting IP power 

switch with control only to have both control and ack port. SoC needs to ensure that the delay from IP managed 

control signal to SoC implemented acknowledge signal is greater than or equal to IP power manager counter.  
.  

Refinement of IP-provided abstract power source at SoC involves two important steps:  

- Refinement: Refinement of the abstract power source to an implementation-specific power switch which is 
process specific. Process specification can come from switch selection and supply port association. Supply 
expression refinement done in SoC.refined.upf supply ports is implicitly included into add_power_state 

through asSoCiation.  

- Association: SoC refined switch is associated with IP abstracted power source through the -update 
command. The -update provides a paper trail of the changes done from IP to SoC, allowing tools across the 

SoC integration and implementation spectrum to check power intent violations.  

  

 

 

 

 



Example 2:   

IP power manager provides a single control and a single ack for power-gated domain control.   

  

IP.upf  

create_power_domain "PDTop" -elements {.} -supply "primary ss_VDD" ....  
create_power_domain "PD1" -elements {mypgdwrapper}  

  
create_abstract_power_source PSW \ -input_supply_set 

{input PDTop.primary} \  
-output_supply_set {output PD1.primary} \  
-supply_set PDTop.primary \  
-control_port {en IP_FET_EN} \   
-ack_port {IP_FET_ACK} \  
-ack_polarity active_low \  
-on_state {PSON input {!en}} \   

-off_state {PSOFF en}  
IP.upf describes the abstract power source definition that captures power intent of a single control from the IP power 

manager and a single ack back to it.   

  

SoC.refined.upf  
## implementation also uses single control/single ack power switch  
## delays assumed to be inserted through APR flow. Not design managed  

  
## refinement  
create_power_switch "SoCPSW_1" \  
  -domain             "PD1" \  
  -input_supply_port  {TVDD PDTop.primary.power} \ ## PDTop.primary.power == VDD IP 

supply port  
  -output_supply_port {VDD PD1.primary.power} \ ## supply net is implict, derived by 

the tool  
  -control_port       [list SLEEPIN1 IP_FET_EN] \  
  -ack_port           [list SLEEPOUT1 IP_FET_ACK SLEEPIN1] \  
  -on_state           {SW_ON TVDD "!SLEEPIN1"} \  
  -off_state          {SW_OFF "SLEEPIN1"}  

  
## asSoCiation of abstract power source at IP to refined implementation power switch 

at SoC  
create_abstract_power_source PSW \  
-update \  

-power_switch {SoCPSW_1}  
SoC.refined.upf showcases the refinement of IP single control and single acknowledge abstract power source to an 
SoC implementation-specific single control and single acknowledge power switch. SoC power switch adds 

processspecific details as described in Example 1. It is followed by the asSoCiation of the SoC refined power switch 
to IP abstract power source to ensure that power intent isn’t violated during the SoC level refinement of the IP power 

source.  

  

 

 

 

 

 

 



Example 3:   

IP power manager provides a single control and a single ack for power-gated domain control. SoC implements IP 

power intent using a primary-secondary power switch to account for di/dt management, including 

implementationspecific daisy chain and fishbone power switch details.  

  

IP.upf  

create_power_domain "PDTop" -elements {.} -supply "primary ss_VDD" ....  
create_power_domain "PD1" -elements {mypgdwrapper}  

  
create_abstract_power_source PSW \ -input_supply_set 

{input PDTop.primary} \  
-output_supply_set {output PD1.primary} \  
-supply_set PDTop.primary \  
-control_port {en IP_FET_EN} \   
-ack_port {IP_FET_ACK} \  
-ack_polarity active_low \  
-on_state {PSON input {!en}} \  

-off_state {PSOFF en}  
IP.upf describes the abstract power source definition that captures Example 1 power intent of a single control from the 

IP power manager and a single ack back to it.   

  

SoC.refined.upf  

## refinement 

SoC  
create_power_switch "SoCPSW_1" \  
  -domain             "PD1" \  
  -input_supply_port  {TVDD PDTop.primary.power} \ ## PDTop.primary.power == VDD IP 

supply port  
  -output_supply_port {VDD PD1.primary.power} \ ## supply net is implicit, derived 

by the tool  
  -control_port       [list SLEEPIN1 APRPIN_IN] \  
  -control_port       [list SLEEPIN2 IP_FET_EN] \  
  -ack_port           [list SLEEPOUT1 IP_FET_ACK SLEEPIN1] \  
  -ack_port           [list SLEEPOUT2 APRPIN_OUT SLEEPIN2] \  
  -on_state           {SW_ON TVDD "!SLEEPIN1 & !SLEEPIN2"} \  
  -off_state          {SW_OFF "SLEEPIN1 | SLEEPIN2"}  

  
## association of abstract power source at IP to refined implementation power switch 

at SoC  
create_abstract_power_source PSW \  
-update \  

-power_switch {SoCPSW_1}  
  

SoC.refined.upf showcases the refinement of IP abstract power source single control from power manager with a 
single acknowledge back to an SoC di/dt controlled and process specific primary-secondary power switches. The use 
of two SoC-level power switches, including a counter to manage di/dt is a process and SoC-level power architecture-
specific choice. The examples show the power of the abstract power source refinement proposal in handling 

complex refinement needs at SoC, while abstracting such details from the IP. The use of AND condition for power 
switch ON states and OR condition for power switch OFF states is also implicitly comprehended, allowing the SoC 
user to focus on the critical transformations needed while the tools heavy lift to verify that refinement did not change 

IP power intent.  

 

  



VIII. CONCLUSION   

The new command, create_abstract_power_source, enables capturing the power-switching behavior in an abstract 

form which can be refined to create_power_switch commands when implementation details are available. This 
enables tools to check if the update commands fundamentally changed the original power intent of the IP or not. 
Therefore it shortens the verification cycle of the SoC by not needing the re-validation of the Soft IPs (after the UPF 

updates) that have been validated standalone.  

  

The IEEE 1801 UPF WG approved the command, and the changes are currently being drafted in the next revision of 

UPF 3.1.  
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