
Automated Generation of Interval Properties
From Trace-Based Function Models
Robert Kunzelmann, Aishwarya Sridhar, Daniel

Gerl, Lakshmi Vidhath Boga, Wolfgang Ecker

Agenda

• Motivation and Background

• Trace Models
• Concept

• Workflow

• Property Generation From Traces

• Results and Conclusion

Motivation and Background

Motivation of (Formal) Verification

• Process of proving that a design adheres to its specification

• Addressed challenge in this work: specification capture

Spec.

RTL

Design

Formal

Properties
FPV

Background on MetaProp1

• MetaProp is a code generation framework for formal properties

• Follows metamodeling and model-driven architecture principles

1K. Devarajegowda and W. Ecker, "Meta-model Based Automation of Properties for Pre-Silicon Verification," 2018 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)

Trace Concept

Trace Definition

• Traces specify the temporal and functional behavior on the RT level1

1https://kluedo.ub.rptu.de/frontdoor/index/index/docId/6640

https://kluedo.ub.rptu.de/frontdoor/index/index/docId/6640

Modeling Traces

• Traces use an FSM notation

• States are aligned to a time-grid
(clock)

• Transitions model conditional data
propagation

Working With Traces

Trace Notation Using Hierarchical State
Machines (HSMs)
• HSMs allow reusing sub-traces

• Clearer modeling of complex
systems

Transition Mapping and HSM Flattening

• Default flattening
• Hierarchical transitions are duplicated

to each state

• Manual transition map
• Maps each hierarchical transition to a

set of flat transitions

Time-Annotation by Stretching and
Compressing (I)
• Different temporal implementations of one function

Time-Annotation by Stretching and
Compressing (II)
• Reuse traces by stretching and compressing their modeled temporal

behavior

Separating Control and Data Flow

• Traces model data flow

• Control flow is separated as much as possible

Formal Property Generation

Complete Formal Verification of State
Automata
• There exists a finite set of fixed-length intervals from which any execution

sequence of an automaton can be constructed1

• Extracting this set of intervals follows a set of rules
• Intervals must end at branches

• One interval per branch

• One interval per loop

1https://kluedo.ub.rptu.de/frontdoor/index/index/year/2017/docId/4680

https://kluedo.ub.rptu.de/frontdoor/index/index/year/2017/docId/4680

Automated Interval Extraction

Directed Cyclic Graph Loop Detection Interval Extraction

Property Generation

• Per Interval

• All transition triggers -> precondition

• All state actions -> postcondition property ABCD;

@(posedge clk)

A && B

|-> ##1

C ##1 D;

endproperty

Application and Results

Traces Save Modeling Effort

Source Files Lines-of-Code

AHB (S) AHB (M) Register File (32x32) FIFO (8x32) DMA CPU (RV32IMC)

Trace Model 81 131 123 213 214 213

Properties
Generator

472

Formal
Properties

144 229 500 341 994 1356

Efficiently Reusing and Adapting Traces

CPU (RV32IMC) Lines-of-Code

1-stage (naïve) 2-stage 3-stage

Trace Model 134 - -

Trace Refinement - +79 +14

Properties Generator 472

Formal Properties 1230 1356 1382

Conclusion

Traces vs. SVA Sequences

Traces

• Custom data structure

• Extensive refinement possible

• Generates correct sequences

Sequences

• Standard SVA data structure

• Limited adaptability

• Engineer responsible for correctness

The key difference between traces and SVA sequences is the
extraction of a complete set of interval properties from traces

Conclusion

• Traces formalize specification
• Capture functional and temporal behavior

• Trace format is built with reusability in mind
• Hierarchical structure to reuse sub-traces

• Refinement saves modeling time

• Highly reusable code generators save verification effort

Questions?

	Slide 1: Automated Generation of Interval Properties From Trace-Based Function Models
	Slide 2: Agenda
	Slide 3: Motivation and Background
	Slide 4: Motivation of (Formal) Verification
	Slide 5: Background on MetaProp1
	Slide 6: Trace Concept
	Slide 7: Trace Definition
	Slide 8: Modeling Traces
	Slide 9: Working With Traces
	Slide 10: Trace Notation Using Hierarchical State Machines (HSMs)
	Slide 11: Transition Mapping and HSM Flattening
	Slide 12: Time-Annotation by Stretching and Compressing (I)
	Slide 13: Time-Annotation by Stretching and Compressing (II)
	Slide 14: Separating Control and Data Flow
	Slide 15: Formal Property Generation
	Slide 16: Complete Formal Verification of State Automata
	Slide 17: Automated Interval Extraction
	Slide 18: Property Generation
	Slide 19: Application and Results
	Slide 20: Traces Save Modeling Effort
	Slide 21: Efficiently Reusing and Adapting Traces
	Slide 22: Conclusion
	Slide 23: Traces vs. SVA Sequences
	Slide 24: Conclusion
	Slide 25: Questions?

