
Formal Verification Framework for
Hardware Accelerator Designs

CASE STUDY 1 – Concurrent Operations

INTRODUCTION (PROBLEM STATEMENT) METHODOLOGY

CASE STUDY 2 – Data Transformation Verification

RESULTS

REFERENCES

Slice
Verify different
blocks separately
to break down long
sequential depths
into manageable
parts.

Dice
Identify parallel
computations,
verify one stream
separately and use
it for all streams.

Stitch
Cross-prove all the
properties in
adjacent partitions
to have exhaustive
verification setup.

Hardware accelerators (HAs) significantly improve performance in
specific computational tasks and often lack detailed specification,
posing major challenges in pre-silicon verification phase. The
following challenges stand out.

Design complexity

Concurrent operations

HAs have intricate designs to enhance
performance, thus verifying them is a
complicated task.

HAs often parallelize tasks which makes it
challenging to verify correct behavior.

Error handling

Detection of erroneous inputs is essential
trait of a reliable system. Verifying error
detection logic for corner cases can be
challenging.

Multiple threads increase the read throughput from the input buffer.

[1] P. Deutsch, “DEFLATE Compressed Data Format Specification version 1.3”, https://tools.ietf.org/html/rfc1951, 1996.
[2] Ziv J., Lempel A., "A Universal Algorithm for Sequential Data Compression", IEEE Transactions on Information Theory, Vol. 23, No.

3, pp. 337-343.
[3] P. Wolper, “Expressing interesting properties of programs in propositional temporal logic”, POPL '86 Proc. of the 13th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages”, pp. 184-193

Solution – Symbolic variables

1. Store the data output for a
symbolic address (sym_wraddr).

2. Track a token whose length and
distance require it to fetch data
from sym_wraddr.

3. Compare the output for this
token, against the data stored
earlier.

CASE STUDY 3 – Tricky situation with decoder

Kevin Bhensdadiya, Anmol Patel, Anshul Jain, Aarti Gupta
{kevin.bhensdadiya, anmol.patel, anshul.jain, aarti.gupta}@intel.com

Intel Corporation, India

4 Data Checks

1. Correctness - Data read from symbolic address
should be Green data
2. Ordering -
- (out_data == R) then G and B data should not

have been seen
- (out_data == G) then B data should not have

been seen
- (out_data == B) then R and G data should have

been seen
3. Dropping - Green data should come eventually
4. Duplication - Green data should come only once

As depicted earlier, LZ77 decoder fetches previously written clear text
from memory to decode tokens and has a complex FSM. Verifying data
integrity using the decoder as a stand-alone DUT was challenging.

Slicing can sometimes lead to increased implementation complexity. In
fact, there exists a trade-off between design and implementation
complexity.

Payload verification follows 3 properties as listed below:
1. For any random input chunk value, it should consistently decode the

same value.
2. If consistency breaks, it should flag an error.
3. For 2 different input chunks, it should never produce the same output.

Chunk 1 Chunk 2 Chunk NFile Header End of File

Payload

Store any random input
chunk, corresponding
output and value of
config signals(action

signals)

If same chunk come again
within a same file, assert

should trigger

Results:-

Consistency Pass/fail

(If fails, soft error should
have already detected it

or else it’s a bug)

• Slicing, dicing, and stitching offer a potential solution to complexity
challenges. However, it introduces implementation complexity,
necessitating a careful trade-off.

• The FV setup identified 26+ bugs and achieved 12+ performance
enhancements.

• This setup enabled the development of robust hardware accelerators
for the next generation.

• Each case study in the paper details an exhaustive method tailored to
a specific feature.

• The formal tool's ability to provide concise counterexamples simplified
the debugging task.

Symbolic variables are used for deep case-splitting

Symbolic thread: To select a thread Symbolic cycle: To select a random chunk

Input data stream

Floating pulse

Serializer
Huffman
decoder

LZ77
decoder

CAM

Memory
interface

Output

Huffman
decoder

CAM

Serializer

Input Merge buffer

Input buffer

https://tools.ietf.org/html/rfc1951

	Slide 1

