
The Untapped Power of UVM Resources and 
Why Engineers Should Use the 

uvm_resource_db API 
 

 Clifford E. Cummings Heath Chambers Mark Glasser 
 Paradigm Works, Inc. HMC Design Verification Elastics.cloud 
cliff.cummings@paradigm-works.com hmcdvi@msn.com mark.glasser@elastics.cloud 

    
 

Abstract- The resource database has been part of UVM since its first release. It was built to replace the cumbersome 
set_config/get_config API for configuring testbenches. The set_config_* functions could only store integers, strings and 
object handles in an inefficient manner distributed across components of an OVM testbench. 

 
The newly added UVM resource database greatly expanded the old set_config/get_config API capabilities.  It could 

store values of any type in a centralized database that could be accessed anywhere in a testbench. It was built with two 
interfaces, a low-level interface and a convenience layer called “uvm_resource_db.”  This interface provides access to most 
of the functionality of the resource database through convenient one-line calls. The uvm_resource_db API is simple to use 
and allows storage and retrieval by any module and UVM testbench class, including transactions and sequences.  

 
Later, a second API was added, uvm_config_db API, to provide backward compatibility with the OVM set_config_* 

API. This provided a way for users of set_config/get_config to transition to the resource database.  The uvm_config_db API 
was never intended as the primary interface to the resource database, yet in practice, it has become so. The problem is that 
the uvm_config_db API imposes the ridiculous restriction that only UVM testbench components can set and retrieve items 
stored in the resource database. Using uvm_config_db as the primary means to access the resource database has led to 
continued usage of awkward constructs such as p_sequencer and so-called virtual sequencers. 

 
This paper will explain how UVM resources work and how to use the simple and powerful uvm_resource_db API to 

take full advantage of the UVM resources. This paper will also outline the shortcomings and misconceptions related to the 
uvm_config_db API and why engineers should quit using this very flawed API. 

 
 

I. Introduction 
 
OVM had set_config_int, set_config_string, and set_config_object APIs (collectively 

referred to as set_config_*) that served the purpose of configuring components in OVM testbenches but were 
relatively inefficient. UVM introduced a more efficient facility that includes a centralized UVM resource database to 
replace the older OVM set_config_* facility. Access to the new UVM resource database was accomplished using 
the uvm_resource_db Application Programming Interface (API). 

 
To ease the transition from OVM to UVM, a "convenience" layer was added to UVM using an API that more closely 

mimicked the semantics of the older OVM set_config_* facility. The set_config_* API was rewritten in 
UVM in terms of uvm_config_db. This made the transition from OVM to UVM much smoother, as users could 
use the uvm_resource_db and set_config_* in the same testbench. The uvm_config_db API was intended 
to be a "transition" layer rather than a "convenience" layer and only included a subset of the capabilities available to 
users of the uvm_resource_db API. 

  
Unfortunately, as of DVCon 2023, we estimate that more than 90% of UVM Verification Engineers are using the 

uvm_config_db API, which is the wrong API. Engineers broadly use the wrong API because early UVM books 
and examples gave the flawed recommendation to use the inferior uvm_config_db API. 

 
This paper will show the numerous limitations and complexities surrounding the uvm_config_db API and 

illustrate the simpler syntax and more powerful capabilities available using the uvm_resource_db API. UVM 



Verification Engineers should plan to abandon the uvm_config_db API and embrace the more straightforward and 
powerful uvm_resource_db API. 

 
A. The UVM Resources Database Intent - Summarized 

 
The resources database was designed with several goals in mind: 

 
• Enable virtual interfaces to be treated like other configuration items. 
• Remove the restrictions on what types can be stored. 
• Detach configuration from the component hierarchy and enable objects other than components to access 

the resource database. 
• Provide a general-purpose mechanism for sharing data between entities. 

 
II. get_full_name() -vs- this 

 
Three commonly used constructs when accessing UVM database resources are the SystemVerilog keyword this, 

and the UVM function calls get_full_name()and get_name(). 
 

The this keyword is a class handle to the class object that uses the this keyword. In other words, this is a 
handle called by a class object to access itself without regard to where the class is in a testbench hierarchy. It is 
important to remember that this is a class handle and not a string. 

 
The get_full_name() method is a method that returns the full-path string to the calling object for objects 

derived from uvm_object. The returned value is a string-based hierarchical path and is not a class handle. The 
get_full_name() method is used by the uvm_config_db command to return the string that corresponds to the 
this class handle. 

 
The get_name() method is a method that returns the string name of just the calling object and not the full path 

name to the object. It is a string name that points to the current object and is not a class handle. 
 
get_full_name(), get_name() and this are often used together as UVM database command arguments, 

but they are not interchangeable. To summarize: 
• get_full_name() - returns a full-path string name to the current object. 
• get_name() - returns the string name of the current object but not the full path. 
• this - returns a full path class handle to the current object. 

 
III. The Resource Database 

 
UVM does not have two resource databases, only one. uvm_resource_db#() and uvm_config_db#() are 

two different Application Programming Interfaces (APIs) for the same resources database. uvm_config_db#() is 
a wrapper around uvm_resource_db#() -- that is, uvm_config_db#() is derived from 
uvm_resource_db#(), and the uvm_resource_db#() is a layer on top of the low-level resources database 
(uvm_resource_pool). It is possible to dispense with both uvm_config_db#() and 
uvm_resource_db#() APIs and use the low-level uvm_resource_pool access methods. However, doing so 
is more verbose than using either of the interfaces, so we generally do not recommend working with the low-level 
resource-pool database API directly. 

 
IV. Introduction to uvm_resource_db & uvm_config_db APIs 

 
The uvm_resource_db class provides a simplified interface for UVM resources as described in the previous 

section and in the UVM Class Reference [6]. The uvm_resource_db interface has a simple set of commands that 
can replace multiple commands required for equivalent operations using the uvm_resource_base and 
uvm_resource#(T) classes. 



 
All of the functions in the uvm_resource_db (and the uvm_config_db) are static and must be called using 

the :: operator. All of the uvm_resource_db#() (and uvm_config_db#()) commands are parameterized 
with the default #(type T uvm_object), and the user replaces the #(…) type with the actual type to be stored 
or retrieved.  

 
Because the uvm_resource_db and uvm_config_db APIs are both interfaces to the same database, any item 

put into the resource database using the uvm_config_db#() commands can be retrieved using the 
uvm_resource_db#() commands. 

 
Important Note #1: The uvm_resource_db commands can retrieve any resource stored using either the 

uvm_config_db or uvm_resource_db commands.  
 
This also means you can use uvm_resource_db#() commands to put an item into the database using string 

scope values, based on component hierarchies, and retrieve the same item using uvm_config_db#() commands. 
 
Users should understand that uvm_resource_db#() commands can also store items in non-component 

referenced locations, such as in UVM sequences, and those items can only be retrieved using 
uvm_resource_db#() commands. This offers many uvm_resource_db#() command advantages explained 
in this paper. 

 
Important Note #2: Any resource stored with the uvm_resource_db commands that use a non-component scope 

cannot be retrieved using uvm_config_db commands. The uvm_config_db API is a subset of the 
uvm_resource_db API. 

 
These notes are essential to understand because using the uvm_resource_db#() commands may be desirable 

to retrieve an item that another engineer stored using uvm_config_db#() commands. If you mix the uvm_db 
APIs, you must pay attention to the context and regular expression scope arguments described later in this paper. 

 
The bottom line is that anything stored using uvm_config_db#() commands can be retrieved using 

uvm_resource_db#() commands, but not all items stored with uvm_resource_db#() commands can be 
retrieved using uvm_config_db#() commands. As will be shown in this paper, the uvm_resource_db#() 
API is more powerful and has a simpler syntax. 

 
V. Storing UVM Resources using the uvm_resource_db API 

 
UVM resources are typed extensions of the uvm_resource_base class. This section details the storing and 

retrieving of resources. 
 

A. uvm_resource_pool & uvm_queue#(uvm_resource_base) 
 
Each typed resource handle is stored in a pair of uvm_queues of uvm_resource_base class handles. One 

uvm_queue handle is stored in a string-indexed associative array called the Name Table, and another 
uvm_queue handle is stored in a type-handle-indexed associative array called the Type Table. 

 
The Name Table and Type Table associative arrays are declared and maintained inside a singleton 

uvm_resource_pool, which is automatically created at the beginning of a UVM test. 
 
The block diagram for the singleton uvm_resource_pool with both Name Table and Type Table is shown in 

Figure 1, and it should be noted that: 
• The tables do NOT store resources directly; the tables are associative arrays that store handles to queues. 
• Each uvm_queue entry stores uvm_resource_base-type class handles. 

 



Figure 1 - uvm_resource_pool Block Diagram 
 
Each uvm_resource is a type-specialized derivative of the non-typed uvm_resource_base class. Since each 

resource handle is an extension of the uvm_base_class type, they can be copied into the uvm_queues in the 
associative arrays. Assigning a typed resource into a queue containing base class handles is an upcast operation. When 
each resource object is retrieved, UVM does a $cast (downcast) operation to convert it back to the correct type-
specialized uvm_resource class handle. 

 
B. uvm_resource_db#()::set Details 

 
Consider the following uvm_resource_db command, with type virtual dut_if, string-name "vif", 

wild-card scope string "*agnt*" and the value is the dif dut interface handle.  
 

uvm_resource_db#(virtual dut_if)::set("*agnt*", "vif", dif); 
 

 
Figure 2 - uvm_resource_db Name Table storage action 

 
UVM first creates the new typed uvm_resource#(virtual dut_if). Then UVM checks to see if there is 

already a "vif" string entry in the string-indexed Name Table. When UVM recognizes that there is no "vif" entry, 
it then creates a new uvm_queue and pushes the uvm_resource#(virtual dut_if) handle onto the queue 
and stores the queue handle in the Name Table associative array at the string location, "vif". 

 



Whenever a uvm_resource is created, UVM stores three items in the resource: (1) the resource type, (2) the 
resource scope (which is a regular expression that can contain wildcards), and (3) the resource’s value.  

 
The resource scope is a somewhat misleading term. The scope is just a string. Using the uvm_resource_db 

API, the scope does NOT have to match an actual testbench component scope. The scope is just a string with wildcards 
that must be matched when retrieving a resource value using get or read_by_* commands. 

 
Each uvm_resource_db::set() command creates both a Name Table entry, as described above, and a Type 

Table entry, as described below. 

Figure 3 - uvm_resource_db Type Table storage action 
 
After inserting the resource into the Name Table, UVM checks to see if there is already a virtual dut_if type 

entry in the type-handle-indexed Type Table. When UVM recognizes no virtual dut_if entry, it creates another 
new uvm_queue and pushes the uvm_resource#(virtual dut_if) handle onto the new queue. It then 
stores the queue handle in the Type Table associative array at the type-index location, virtual dut_if, as shown 
in Figure 3. 

 
NOTE: There was only one new resource created, but its handle was made accessible from both the Name Table 

and the Type Table. 
 
Now assume that the following uvm_resource_db commands have been executed: 
 
This command was executed in Figure 2 and Figure 3. 

uvm_resource_db#(virtual dut_if)::set("*agnt*", "vif",     dif); 
 

The next two commands have been executed to add two new entries to the Name and Type Tables. 
uvm_resource_db#(env_cfg)::set       ("*.e*",   "env_cfg", cfg,  this); 
uvm_resource_db#(agnt_cfg)::set      ("*agnt1", "cfg",     cfg1, this); 

 
The two preceding uvm_resource_db commands require that a pair of new uvm_queues be created to store 

the unique string-index names and type-index values. 
 
Now let's add another uvm_resource_db command that reuses the existing Name Table "cfg" string-index 

(shown in Figure 4) and Type Table agnt_cfg type-index (shown in Figure 5).  That is, we will create a new resource 
with the same string and type names as an existing resource. 

 
uvm_resource_db#(agnt_cfg)::set      ("*agnt2", "cfg",     cfg2, this); 



 

 
Figure 4 - uvm_resource_db Name Table new queue entry action 

 
Since there was already a "cfg" string index in the Name Table, the new uvm_resource#(agnt_cfg) handle 

was pushed onto the existing queue pointed to by the "cfg" string index (shown in Figure 4). 
 
And since there was already an agnt_cfg type index in the Type Table, the uvm_resource#(agnt_cfg) 

handle was pushed onto the existing queue pointed to by the agnt_cfg type index (shown in Figure 5). 
 
 

 
Figure 5 - uvm_resource_db Name Table new queue entry action 

 
To continue this example, assume that four additional uvm_resource_db commands have been executed. These 

commands will create four new string-indexed queues for the Name Table and two new type-indexed queues for the 
Type Table. 

 



uvm_resource_db#(int)::set   ("*",       "cnt",     4,       this); 
uvm_resource_db#(int)::set   ("*.e*",    "has_cov", 1,       this); 
uvm_resource_db#(string)::set("*agnt1",  "msg1",    "Warn1", this); 
uvm_resource_db#(string)::set("*agnt2",  "msg2",    "Err2",  this); 

 
C. uvm_resource_db Using a Pseudo Scope 

 
Finally, let's execute a uvm_resource_db command to store a resource with a pseudo-scope (non-

uvm_component scope) at the new string-index location "LCNT" of the Name Table and push the resource handle 
onto the existing int-type-index queue of the Type Table (shown in Figure 6). 

 
uvm_resource_db#(int)::   set("LCNT::*", "LCNT",    10); 

 
This last uvm_resource_db command would not be legal using a similar uvm_config_db command because 

uvm_config_db scopes must be a legal path to a uvm_component. 
 

 
Figure 6 - uvm_resource_db Name Table new "LCNT" queue & Type Table push int-type queue entry 

 
D. Pseudo Scopes 

 
As previously mentioned, all of the "scopes" used by all UVM resource commands are strings. Since the scope 

arguments used by uvm_resource_db commands are just strings, they do not have to match an actual scope path 
to a real uvm_component in the component hierarchy. The only requirement for retrieving resources is that the 
regular expression used to set the resource must match the regular expression of the uvm_resource_db 
read_by_name or read_by_type commands. 

 
This is both valuable and extremely useful. Since the scope is just a string that must be matched when accessed 

using uvm_resource_db#()::read_by_name or uvm_resource_db#()::read_by_type commands, 
items can be stored as resources and accessed directly by entities other than uvm_components, such as sequences 
and modules. 

 
In his 2014 DVCon-India paper [5], Mark Glasser made the following observations and recommendations regarding 

pseudo-scope creation and naming conventions: 



• Since non-hierarchical scopes do not have a natural naming scheme, we are free to invent one. 
• Since scopes are not tied to the component hierarchy, any naming convention can be used for pseudo-

scopes. 
• It is essential to use a consistent naming convention amongst target scopes so that reasonable regular 

expressions can be used to identify them. 
• Mark recommended using a common prefix and a separator unlikely to appear elsewhere in the target 

scope name. 
• Mark recommended using the double colons (::) as the separator. Note that in this context the double 

colons do not have any special meaning.  It is just a string that can easily be matched with a regular 
expression and is easily identifiable visually. 

 
The uvm_resource_db command shown in Figure 6 used the pseudo scope "LCNT::*".  Any 

uvm_resource_db read command with a scope field that starts with the prefix "LCNT::" can match this pseudo 
scope. 

 
E. Summarizing uvm_resource_db Storage Operations 

 
The resource database, known as the resource pool, is organized as a pair of associative arrays: the Name Table, 

which stores resources by a string-name index, and the Type Table, which stores resources by a type-handle index. 
Each resource is always added to the Name Table and the Type Table such that either name-index or type-index 
uvm_resource_db commands can access the resource. 

 
Adding a new entry to the database proceeds as follows: 

 
Name Table 
1) Look up the name index in the name table. 
2) Get a handle to the queue for that name if it exists. 
3) Else, create a new queue for that name and insert it in the name table. 
4) Put the resource handle into the existing or new queue. 
 
Type Table 
5) Look up the type handle in the type table. 
6) If it exists, get a handle to the queue. 
7) Else, create a new queue for that type. 
8) Put the resource handle into the existing or new queue. 
 

Each resource with the same name-index or type-index is differentiated by its regular expression scope field. 
 
 

  



VI. Name Table, Type Table & UVM Resources 
 
After executing the nine uvm_resource_db commands shown previously, there are nine typed-

uvm_resources, eight entries in the Name Table that point to the resources, and five entries in the Type Table that 
point to the same resources, as shown in Figure 7.  

 

 
Figure 7 - Name Table, Type Table & UVM Resources 

 
Each typed-uvm_resource has a handle that points to it by a Name Table entry and a separate Type Table entry. 

Using uvm_resource_db commands, each resource can be retrieved either from the Name Table, Type Table, or 
both. 

 
VII. Retrieving UVM Resources using the uvm_resource_db API 

 
Once items have been stored as resources, then components, sequences, sequence_items, and modules are able to 

access the resources and retrieve the stored values. These resources can be retrieved by name or by type. 
 
Both uvm_resource_db::set and uvm_config_db::set commands store typed-uvm_resource 

handles into queues whose queue handles are stored in the Name Table and the Type Table.  
 
The uvm_config_db#()::get command can only access the Name Table string-index values; it cannot access 

the Type Table type-handle-index values. 
 
The uvm_resource_db can access string-index resource handles in the Name Table using 

uvm_resource_db#()::read_by_name commands, and can access type-handle-index values in the Type 
Table using uvm_resource_db#()::read_by_type commands.  

 
A. uvm_resource_db#()::read_by_name Details 

 
The first resource-retrieval technique is demonstrated using the uvm_resource_db read_by_name command.  
 



It is common practice for an agent to retrieve a virtual dut_if handle from the resource database and store it 
locally. The agent frequently copies the retrieved virtual dut_if handle to its subordinate driver and monitor.  

 
Figure 8 shows the essential steps to retrieve the dut_if handle. The agent would declare a virtual dut_if 

handle; in this example, the handle has been named vif. When first declared, the vif handle points to null, so 
later, the agent code calls the uvm_resource_db#(virtual dut_if)::read_by_name command to 
retrieve the stored virtual dut_if handle. 

 

 
Figure 8 - uvm_resource_db#(virtual dut_if)::read_by_name example & Pseudo Scope Regex matching 

 
The read_by_name command attempts to access a Name Table entry with the string-index "vif". If the "vif" 

string entry exists, the uvm_queue for the entry is $cast to a uvm_queue#(virtual dut_if). This $cast 
is a downcast operation. The queue is then traversed to extract all queue handles that match both the virtual 
dut_if type and that can match the "*agnt*" regular expression. The uvm_resource_db command creates a 
matching scope by calling UVM's built-in get_full_name() method that returns a full-path string of the calling 
component, which in this example is "uvm_test_top.e.agnt1". This name will wild-card match "*agnt*". 

 
Each matching entry is placed into a Match_Queue. The stored value from the top entry in the Match_Queue is 

returned and stored in the vif handle.  
 
Note: The UVM resources facilities provide a way to add priority weighting and a way to push matching queue 

entries to the top of the Match_Queue, but those mechanisms are rarely used and not described in this paper. The user 
can refer to the UVM Reference manual if such mechanisms are required. Engineers generally control what is placed 
in the Match_Queue by using uniquely crafted matching scopes. 

 
The if-test ensured that a valid virtual dut_if handle was returned. For proper testbench implementation, 

any accessed resource must have already been stored as a typed-uvm_resource. The if-test traps missing resource 
errors that could otherwise be null-pointer references, which can be exceptionally difficult to debug. Every 
uvm_resource_db#()::read_by_name or uvm_resource_db#()::read_by_type command returns 
status to indicate if the command was successful (1) or not (0 or null), and each resource access should be checked 
with an if-test. If not successful, it is common practice to issue a `uvm_fatal command, especially if cascading, 
catastrophic failures would happen in the test if the resource was missing. The if-test can save hours of debugging 
time. 

 



Figure 9 - uvm_resource_db#(string)::read_by_name - No existing Name Table entry 
 
Consider what happens when one tries to access a non-existent Name Table entry, as shown in Figure 9. The 

uvm_resource_db#()::read_by_name command attempts to retrieve a resource handle that presumably was 
stored at the string-index "dummy". The read_by_name command will fail, the if-test will detect the failure and 
execute a `uvm_fatal macro to print a failure message and abort the simulation. 

 

Figure 10 - uvm_resource_db#(int)::read_by_name example & Pseudo Scope Regex matching 
 
In Figure 10, a uvm_resource_db command is used to access a resource stored at the "LCNT" string-index 

location in the Name Table. This entry includes the pseudo scope string "LCNT::*" that does not point to any 
component in the UVM testbench. Perhaps a sequence base class needs to retrieve a Loop Count set by the top 
module or top-level environment. Passing information from the top module or one of the testbench components is 
very simple when using uvm_resource_db commands with pseudo scopes. This is one of the outstanding 
advantages that uvm_resource_db commands have over uvm_config_db commands. 

 



B. uvm_resource_db#()::read_by_type Details 
 
The second resource-retrieval technique to be demonstrated uses the uvm_resource_db read_by_type 

command.  
 
The virtual dut_if described in the previous section can also be retrieved by its type without knowing where 

it is stored in the Name Table.  
 
Figure 11 shows the essential steps to retrieve the dut_if handle. Once again, the agent would declare a virtual 

dut_if handle; in this example, the handle has been named vif. When first declared, the vif handle points to 
null, so later, the agent code calls the uvm_resource_db#(virtual dut_if)::read_by_type 
command to retrieve the stored virtual dut_if handle, this time from the Type Table. 

 
The read_by_type command attempts to access a Type Table entry with type-handle-index virtual 

dut_if. If an entry for the virtual dut_if type-handle exists, the uvm_queue for the entry is $cast to a 
uvm_queue#(virtual dut_if). This $cast is a downcast operation. The queue is then traversed to extract 
all queue handles that match both the virtual dut_if type and that can match the "*agnt*" regular expression. 
The uvm_resource_db command created a matching scope by calling UVM's built-in get_full_name() 
method that returns a full-path string of the calling component, which in this example is 
"uvm_test_top.e.agnt1". This name will wild-card match "*agnt*". 

 
Each matching entry is placed into a Match_Queue. The stored value from the top entry in the Match_Queue is 

returned and stored in the vif handle.  
 

Figure 11 - uvm_resource_db#(virtual dut_if)::read_by_type example & Regex matching 
 
The last argument, this, is used for audit tracing when debugging the creation and access of resources. The default 

for this argument is null, which does no audit tracing. The recommended usage for this audit flag is to use null 
when retrieving a resource into a non-class, such as a module, and use this inside all classes to enable class-based 
audit tracing. 

 
  



Now consider a uvm_resource_db command that references a Type Table entry that has a queue with multiple 
entries, as shown in Figure 12. 

 
string msg1; 
… 
if (!uvm_resource_db#(string)::read_by_type(get_full_name(), msg1, this)) 
        `uvm_fatal … 

 
The read_by_type command accesses the Type Table entry with string type-index. The uvm_queue for 

the entry is $cast to a uvm_queue#(string). This $cast is a downcast operation. The queue is then traversed 
to extract all queue handles that match both the string type and that can match the "*agnt2*" regular expression. 
The uvm_resource_db command created a matching scope by calling UVM's built-in get_full_name() 
method that returns a full-path string of the calling component, which in this example is 
"uvm_test_top.e.agnt2". This name will not match the "*agnt1*" scope of the first string-type resource 
but will wild-card match "*agnt2*" of the second string-type resource. 

 

 
Figure 12 - uvm_resource_db#(string)::read_by_type example & Regex matching 

 
 
If an engineer knows the type of the stored resource, and if the resource is easily distinguished with a unique match-

scope, the uvm_resource_db::read_by_type command is a straightforward syntax that can be used to 
retrieve a value from a resource. There is no equivalent read_by_type capability using the uvm_config_db 
API. 

 
  



VIII. Storing UVM Resources using the uvm_config_db API 
 
There is a second resources API that most UVM engineers frequently use and partially understand, called the 

uvm_config_db API. The uvm_config_db#() class definition is included the UVM Base Class Library (BCL), 
in the file src/base/uvm_config_db.svh. The uvm_config_db class is a derivative of the 
uvm_resource_db class as shown below: 

 
class uvm_config_db#(type T=int) extends uvm_resource_db#(T); 

 
The uvm_config_db API imposes additional set-method scoping requirements and has a limited subset of the 

uvm_resource_db read capabilities.  
 
Using the uvm_resource_db API, the set and read_by_* commands simply stored a scope-string and test 

for a matching scope-string when retrieving a resource value. As will be seen in this section, the uvm_config_db 
API requires additional testing and setting of scope-strings to make sure they correspond to the full-path string of an 
existing component. This means that the uvm_config_db API is slightly less simulation efficient than the 
uvm_resource_db API, plus it means that sequences and modules cannot set or access resources using the 
uvm_config_db API. 

 
A. UVM uvm_config_db Command & Usage 

 
Defined in this same uvm_config_db.svh source file is the definition for the static set method shown in 

Figure 13. 
 

static function void set(uvm_component cntxt, 
                         string inst_name, 
                         string field_name, 
                         T value); 
 

Figure 13 - Prototype of the uvm_config_db static set method 
 

Also defined in this same source file is the definition for the static get method, shown in Figure 14. 
 

static function bit get(uvm_component cntxt, 
                        string inst_name, 
                        string field_name, 
                        inout T value); 

 
Figure 14 - Prototype of the uvm_config_db static get method 

 
For both the static set and get methods, the last two arguments (string field_name, input or inout 

T value) are reasonably well understood by most UVM users. The string field_name is the string address 
indicating where the variable will be stored in a string-based Name Table associative array (it is just the storage address 
for set and get commands). The T value is the typed value of the stored variable or the name of a declared properly 
typed variable that the get command will declare to hold the retrieved value. 

 
The first two arguments (uvm_component cntxt, string inst_name ) can confuse many new and 

experienced UVM users.  
 

The first two arguments form a path to one of the extended uvm_component classes in the user's UVM testbench. 
The first argument (cntxt) must be a uvm_component-derivative handle, not a string. The second argument 
(inst_name) must be a string, not a handle. The UVM source code does a cntxt.get_full_name() to 
return the full-path-handle-string name to the referenced cntxt-handle, then generally concatenates the full-path-



handle-string to the inst_name string to form a full-path string to the referenced component. Since the 
inst_name string can contain wildcard characters, the full-path string frequently contains wildcarded paths. 

 
The full-path string is the scope-string that is stored in a UVM resource. The full-path string does not indicate where 

the resource is stored. The full-path string is literally just a string that must be matched when a uvm_config_db 
get command attempts to retrieve the stored value in a resource. 

 
B. UVM uvm_config_db Class Set/Get Definitions 

 
To fully understand the uvm_config_db ::set and ::get methods, one also needs to realize that there is a 

uvm_root class (in the uvm_root.svh file) extended from the uvm_component class that declares the 
following singleton uvm_root handle: 

 
const uvm_root uvm_top = uvm_root::get(); 

 
Figure 15 - The const uvm_root uvm_top declaration 

 
In the same uvm_root.svh file is this snippet of uvm_root constructor code that will call the 

uvm_component new() constructor with the unique string "__top__" and parent null. 
 

function uvm_root::new(); 
  super.new("__top__", null); 
  … 
endfunction 

Figure 16 - uvm_root new() constructor code 
 

Included in the uvm_component.svh file is the snippet of uvm_component new() constructor code, shown 
in Figure 17. 

 
 1 function uvm_component::new (string name, uvm_component parent); 
  … 
 2   uvm_root top; 
 3   uvm_coreservice_t cs; 
 
 4   super.new(name); 
 
 5   // If uvm_top, reset name to "" so it doesn't show in full paths then return 
 6   if (parent==null && name == "__top__") begin 
 7     set_name(""); // *** VIRTUAL 
 8     return; 
 9   end 
 
10   cs = uvm_coreservice_t::get(); 
11   top = cs.get_root(); 
  … 
12 endfunction 

Figure 17 - uvm_component new() constructor code 
 

In Figure 17, lines 2-3 & 10-11 retrieve the one and only (singleton) handle to the uvm_root class object, which 
has the full handle name top. After line 11 is executed, top and uvm_top are equivalent handles in the UVM 
testbench that point to the singleton const uvm_root uvm_top object, shown in Figure 15. 

 
Lines 4-9 define the uvm_component new() constructor and this constructor checks the exception condition 

that is present when uvm_root calls super.new("__top__", null); After this new() constructor 
completes, there will be a singleton uvm_root object with handle name top (and uvm_top) and the top object 
has had its get_full_name() return value set to an empty string "", which happened on line 7. 



 
C. uvm_config_db::set source code details 

 
Now moving to the uvm_config_db.svh source file, the top-module will typically call the 

uvm_config_db::set() method with the first two arguments, null (cntxt) and "*agnt" (inst_name 
-or- some other path-string). So by the time the ::set method is called, the following values exist: 

• cntxt=null 
• inst_name="*agnt" 

 
The set method includes the following snippet of implementation code: 

 
1 uvm_root top; 
… 
2 uvm_coreservice_t cs = uvm_coreservice_t::get(); 
… 
3 top = cs.get_root(); 
… 
4 if(cntxt == null)    cntxt     =  top; 
5 
6 if(inst_name == "")  inst_name =  cntxt.get_full_name(); 
7 else if(cntxt.get_full_name() != "")  
8                      inst_name = {cntxt.get_full_name(), ".", inst_name}; 

 
Figure 18 - uvm_config_db set() method code 

 
Before walking through the description of this code, remember for our top-module example, the ::set 

inst_name="*agnt" input argument is not an empty string. 
 
Lines 1-3 retrieve the one and only (singleton) handle to the uvm_root class object, which has the full handle 

name top. After line 3, top and uvm_top are equivalent handles that point to the singleton uvm_root object. 
 
Line 4 shows that if the set command argument is cntxt=null, cntxt will be set to top / uvm_top. 
 
Line 6 checks to see if the set command argument inst_name="", and inst_name will be set to either the 

cntxt argument string-name (if not null) or will be set to the full string name of uvm_top, which is "" (if 
cntxt=null). For our top-module example, the inst_name is not an empty string, so this line of code will not 
execute. 

 
Lines 7 & 8 are executed if the retrieved cntxt string value is not "" and sets the final inst_name to the full-

path string name starting at the specified non-null cntxt component followed by .inst_name (a string). For our 
top-module example, the cntxt string is an empty string, so lines 7-8 will not execute. 

 
For our top-module example, the original "*agnt" passed as the inst_name input argument will remain 

unmodified and is the final inst_name argument. 
 

D. uvm_config_db::get source code details 
 

We now move on to the uvm_config_db::get method to see how items are retrieved. Let's consider a typical 
tb_agent action that retrieves the virtual interface from the uvm_config_db and then stores the retrieved handle 
into a virtual dut_if vif handle. 

 
The ubiquitous command used to retrieve the vif handle is the following: 

 
if(!uvm_config_db#(virtual dut_if)::get(this,"","vif", vif)) <… call ̀ uvm_fatal…> 



 
For this get command: 

• cntxt=this 
• inst_name="" 

 
Examining the uvm_config_db get() method code shown in Figure 19 and using the previous argument values 

(this, ""), line 3 will not execute, and line 4 will execute and get the final inst_name to the full-path-name of 
this component. Lines 5-6 will not execute. For our simple example, the vif handle declared in this component 
will be set to point to the vif handle set by the uvm_config_db::set command used in the top-module example. 

 
1 uvm_coreservice_t cs = uvm_coreservice_t::get(); 
2  
3 if(cntxt == null)    cntxt     =  cs.get_root(); 
4 if(inst_name == "")  inst_name =  cntxt.get_full_name(); 
5 else if(cntxt.get_full_name() != "")  
6                      inst_name = {cntxt.get_full_name(), ".", inst_name}; 

 
Figure 19 - uvm_config_db get() method code 

 
E. Preferred Usage Observations 

 
It is worth making a few preferred-usage observations: 

 
(1) In the UVM testbench top module, a uvm_config_db command often stores a virtual interface handle 

before even calling the UVM run_test() command. At this point in the simulation, there is no UVM 
testbench hierarchy. This command is often called with arguments null (cntxt) and a wildcard path 
(inst_name), which frequently specifies any path to an agent-handle (agnt) component. The null 
keyword argument is recognized by UVM and converted into the uvm_top handle. In general, 
uvm_config_db commands called from a module scope (not a class scope) will use the cntxt handle 
null, and the inst_name string will be a wildcard to one of the components that will be factory-
constructed during the UVM build_phase(). The inst_name will not be the empty string "", but must 
be a string path even if it is just the wildcard string "*". 

 
(2) When using the uvm_config_db commands from inside a class, the first argument is typically the keyword 

this (a handle to this class object no matter where the component object is located inside the UVM 
testbench). If the variable type is set or get-retrieved in this class scope, the inst_name is frequently the 
empty string "" because the full-path string references something inside this constructed component. 

 
(3) When a component attempts to set or retrieve a variable in a subcomponent or a config object, the component 

typically still sets the cntxt=this to reference itself as the starting point of the full-path string and then 
uses the subcomponent handle string instance name or config object handle name to complete the full-path 
string where the required variable will be set or get-retrieved. 

 
IX. Example uvm_config_db Commands and their uvm_resource_db Replacements 

 
This section serves as a quick-tip-sheet to show how UVM verification engineers can replace common 

uvm_config_db commands with simple and efficient uvm_resource_db commands.  
 

A. Top-module set commands: 
• Existing uvm_config_db::set command #1: 
uvm_config_db#(virtual dut_if)::set(null, "*", "dut_if", dif); 

• Replace with uvm_resource_db::set command #1: 
uvm_resource_db#(virtual dut_if)::set("*", "dut_if", dif); 



 
• Existing uvm_config_db::set command #2: 
uvm_config_db#(virtual dut_if)::set(null, "*agnt", "dut_if", dif); 

• Replace with uvm_resource_db::set command #2: 
uvm_resource_db#(virtual dut_if)::set("*agnt", "dut_if", dif); 

 
B. Agent component set commands: 

• Existing uvm_config_db command #3: 
uvm_config_db#(agnt_config)::set(this, "", "cfg", cfg); 

• Replace with uvm_resource_db command #3a: 
uvm_resource_db#(agnt_config)::set(get_full_name(), "cfg", cfg, this); 

- OR - 
• Replace with uvm_resource_db command #3b: 
string scope = get_full_name(); 
uvm_resource_db#(agnt_config)::set(scope, "cfg", cfg, this); 

 
• Existing uvm_config_db command #4: 
uvm_config_db#(agnt_config)::set(this, "drv", "cfg", cfg); 

• Replace with uvm_resource_db command #4a: 
uvm_resource_db#(agnt_config)::set({get_full_name(), ".drv"}, "cfg", cfg, this); 

- OR - 
• Replace with uvm_resource_db command #4b: 
string drv_scope = {get_full_name(), ".drv"}; 
uvm_resource_db#(agnt_config)::set(drv_scope, "cfg", cfg, this); 

 
C. Agent component read_by_* command (Part 1): 

If top module set command was one of the following: 
uvm_config_db#(virtual dut_if)::set(null, "*", "dut_if", dif); 

- OR - 
uvm_resource_db#(virtual dut_if)::set("*", "dut_if", dif); 

 
Agent component read_by_* command(s) should be: 

• uvm_resource_db::read_by_name command #1: 
uvm_resource_db#(virtual dut_if)::read_by_name(get_full_name(),"dut_if",vif, this); 

• uvm_resource_db::read_by_type command #2: 
uvm_resource_db#(virtual dut_if)::read_by_type(get_full_name(), vif, this); 

 
D. Agent component read_by_* command (Part 2): 

If agent component set command was one of the following: 
uvm_config_db#(agnt_config)::set(this, "", "cfg", cfg); 

- OR - 
uvm_resource_db#(agnt_config)::set(get_full_name(), "dut_if", dif); 

- OR - 
string scope = get_full_name(); 
uvm_resource_db#(agnt_config)::set(scope, "cfg", cfg, this); 

 
Agent component read_by_name command should be: 

• uvm_resource_db read_by_name command #1: 
uvm_resource_db#(agnt_config)::read_by_name(get_full_name(), "cfg", cfg, this); 

• uvm_resource_db read_by_type command #2: 
string scope = get_full_name(); 
uvm_resource_db#(agnt_config)::read_by_name(scope, "cfg", cfg, this); 

 
 



 
X. Avoiding p_sequencer by Using the uvm_resource_db API 

 
Sequences cannot easily access resources using the uvm_config_db API because the uvm_config_db API 

was really designed to only work with components. 
 
When engineers need to pass testbench information to a sequence, one common technique is to use the 

`uvm_declare_p_sequencer() macro to create a p_sequencer handle. Since sequences are started on a 
sequencer, sequences have a handle to the sequencer where they are running, and anything stored in that sequencer is 
now accessible to the sequence. The sequence can retrieve any stored value that may have been declared and stored 
in that sequencer.  

 
If you trust that you have not made a mistake, you can access the sequencer handle using the built-in 

m_sequencer handle that is set every time a sequence is started on a sequencer. Using the p_sequencer handle, 
created using the `uvm_declare_p_sequencer() macro, is fully vetted and therefore, a safer alternative. This 
is one of the primary ideas behind using virtual sequencers [2]. 

 
Engineers who use the more advanced uvm_resource_db API to store and retrieve resource information can 

completely bypass `uvm_declare_p_sequencer() macro and p_sequencer handle usage altogether. Using 
the uvm_resource_db API with pseudo-scopes (non-component-path strings) a verification engineer can store any 
information required by a sequence into the resource database from modules and UVM testbench components and 
retrieve it directly into the sequence. With the uvm_resource_db API, there is no need to pass information through 
a sequencer so the `uvm_declare_p_sequencer() macro and p_sequencer handle are unnecessary. 
 

XI. OVM set_config_* / get_config_* Commands 
 

Although useful in OVM, the set_config_* and get_config_* commands were deprecated from the UVM 
standard but are still supported by vendors for backward compatibility. This interface has two key restrictions that 
severely reduce its utility. One is that it supports only three data types (integers, strings, and class handles). The other 
is that it only works within components. 

 
A. set_config_* / get_config_* Examples 

 
Figure 20 shows examples of set_config_* commands: 

• The set_config_int("*",…) command sets a cnt integer to the value of 2 for every component in 
the OVM testbench. 

• The set_config_string("*e",…) command sets an sqr1 string to the value "agnt.sqr" for 
just the env component in the OVM testbench. 

• The set_config_object("*agnt",…) command sets a dif_w object handle to point to the 
dif_w handle defined in the top module and does so for just the tb_agent component in the OVM 
testbench. The last 0 argument specifies that this is just a handle to the existing dif_w class object and 
not a handle to a cloned copy of the class object. 

 
set_config_int    ("*",     "cnt",   2); 
set_config_string ("*e",    "sqr1",  "agnt.sqr"); 
set_config_object ("*agnt", "dif_w", dif_w, 0); 
 

Figure 20 - OVM - set_config* examples 
 
All set values are shown in the block diagram of Figure 21. 
 



 
Figure 21 - OVM Block Diagram - shows variable assignments to components in the OVM testbench. 

 
Figure 22 shows examples of get_config_* commands, and since each get_config_* command is a 

function that returns a status indicating if the get-operation was successful (non-0 value) or unsuccessful (0-value), 
each should be if-tested and, if unsuccessful, execute one of the following message macros, `ovm_info, 
`ovm_error, or `ovm_fatal, with corresponding behaviors: 

• The get_config_int(…) command will retrieve the cnt integer value from any component in the 
OVM testbench. 

• The get_config_string(…) command retrieves the sqr1 string value but only does so if the 
command is executed from the env component. No such string value is available from any other 
component in the OVM testbench. 

• The get_config_object(…) command retrieves the dif_w object handle but only does so if the 
command is executed from the tb_agent component. No such object handle value is available from any 
other component in the OVM testbench. The last 0 argument specifies that this is just a handle to the stored 
dif_w class object and not a handle to a cloned copy of the class object. 

 
if (!get_config_int("cnt", cnt)) 
    `ovm_info ("NOINT", "NO cnt value",          OVM_HIGH) 
 
if (!get_config_string("sqr1", sqr1)) 
    `ovm_error("NOSTR", "NO sqr1 string value",  OVM_HIGH) 
 
if (!get_config_object("dif_w", obj, 0)) 
    `ovm_fatal("NOVIF", "NO dif_w handle found", OVM_HIGH) 
 

Figure 22 - OVM - get_config* examples 
 

Due to their inefficient storage model and limited capabilities, we recommend transitioning away from the older 
OVM-style set_config_* commands and adopting the newer UVM Resources Database commands. The 
set_config* / get_config* interface has been deprecated and has been removed from the IEEE UVM 1800.2 
Standard [3]. 

 
B. set_config_* / get_config_* is the Reason for the uvm_config_db API 

 
If the uvm_config_db API was never intended to be the primary resources API, why does it even exist? Was it 

a mistake to add the uvm_config_db API to UVM? 
 



It was not a mistake to add the uvm_config_db API to UVM. It was necessary to provide backward compatibility 
with earlier OVM set_config_* / get_config_* commands. The alternative was to support two entirely 
incompatible means of configuring testbenches, the resource database AND the set_config/get_config 
facility. Had UVM developers left it that way most people would never have switched from 
set_config/get_config. The mistake was using and promoting the uvm_config_db API as the primary 
interface to the resource database. 

 
XII. Resource database read-functions and testing 

 
All of the uvm_resource_db and uvm_config_db read_by_*/get commands are functions that return a 

status bit indicating if the read/get operation was successful. This status bit should ALWAYS be tested because an 
unsuccessful read/get command almost always causes failures, which are hard to detect and difficult to debug. 

 
The following are guidelines regarding handling the returned read/get status bit: 

• Never void'() cast the return bit. Doing a void'() cast is a legal way to discard the returned status bit, 
but that status bit should never be discarded. 

 
• Do not use an assert statement to test the returned status bit. There are SystemVerilog Assertion (SVA) 

commands to disable assertions, and a disabled assertion coded as part of a resource database command 
disables the resource database command and the retrieval of the resource database variable. Disabling 
assertions can turn a passing test into a failing test, which can be difficult to debug. 

 
• When a read/get command fails, the returned status bit is 0. Use an if (! uvm_resource_db#()…) 

command to detect a failing uvm_resource_db (or uvm_config_db) command and report a 
`uvm_fatal message or a `uvm_error message to help rapidly debug the problem. If retrieving a 
resource database variable would cause a catastrophic and obscure test failure where the test could not do any 
subsequent productive testing, use the `uvm_fatal message. 

 
• It is an unfortunate common practice to code the id-string of ̀ uvm_fatal/`uvm_error messages as either 

get_full_name() or get_type_name(). This practice can make it more difficult to debug huge 
verification environments, especially if there are multiple resource database read/get commands in the 
same component. The printed output can be very verbose when using get_full_name() and non-intuitive 
when using get_type_name(), especially if there are multiple print commands in the same class and 
multiple copies of that class type used in a huge test environment. Adding short, unique names (perhaps even 
the same short name) is recommended.  

 
XIII. POSIX Regular Expressions and Globs 

 

The low-level interface to the resources database supports both regular expressions and globs. By extension, 
uvm_resource_db supports both. However, uvm_config_db only supports globs. 

 
The low-level interface to the resource database assumes that the scope argument is a glob unless you surround it 

with slashes. For example, top.* is a glob, /top.*/ is a semantically equivalent proper regular expression. If the 
slashes are present, the underlying UVM library will strip the slashes and return the string. Otherwise, it will do a 
conversion. Table 1 shows a short comparison of glob meta-characters versus equivalent regular expression meta-
characters. 

 

 glob regex 
 . \. 
 ? . 
 * .* 

Table 1 - Meta-Character Conversion from Globs to Regular Expressions 
 



The globs used with uvm_config_db commands are a reasonable subset of regular expressions. Still, there are 
times when the true regular expressions offer enhanced wildcard access to pieces of the uvm_resource_db 
referenced resources. 

 
For an expanded description and additional examples using regular expression access and glob access in a UVM 

testbench, see Mark's DVCon 2014 India paper [5]. 
 

XIV. Debugging uvm_resource_db operations 
 
Because all resource database operations are global, it is often difficult to trace buggy operations back to the 

offending resource database command. The following debug facilities are available to aid in debugging UVM resource 
database operations. 

 
A. uvm_resource_db Tracing Facility 

 
When debugging uvm_resource_db operations, there is a very convenient runtime 

+UVM_RESOURCE_database_TRACE option that will report all resource database write and read operations. The 
output from this command can be rather verbose, but it is easily runtime-enabled and disabled. Sometimes this tracing 
capability is the easiest way to find resource database access problems. There is an equivalent uvm_config_db 
runtime tracing option: +UVM_CONFIG_database_TRACE. 

 
B. uvm_resource_db Dumping Facility 

 
Dumping a database so you can see what it contains is the most obvious debugging tool for any database. The 

resource pool class provides a dump() function to do just that. The function is made accessible in the 
uvm_resource_db interface as uvm_resource_db#(T)::dump(). Each resource in the database is printed 
along with its scope regular expression and all its access records.  

 
C. uvm_resource_db Auditing Facility 

 
The term auditing, as used with the uvm_resource_db, refers to tracking the different variety of set and get 

operations on portions of the uvm_resource_db. Auditing is possible when an accessor field is used in the 
uvm_resource_db commands. Setting the accessor field to this allows the auditing capabilities to report 
which class objects called the uvm_resource_db commands. If the accessor field is left blank, then the accessor 
handle keeps the default value of null, and tracking information for that command is practically useless.  

 
Typical practice is to add this as the accessor field of uvm_resource_db commands used in classes to allow 

tracking when enabled for debugging purposes. Omitting the accessor field of the uvm_resource_db command is 
perfectly legal, but it eliminates useful debugging information for that command if tracking is turned on (enabled). 

 
XV. UVM Resource Efficiency & Usage Recommendations 

 
As was described in the previous sections, the storage of general-purpose resources is a compute-intensive 

operation. The uvm_pool singleton includes two associative arrays. The associative arrays have pointers to multiple 
uvm_queues of uvm_resource_base class handles that are dynamically created during the simulation as 
needed. Each resource is created as a type-specialized uvm_resource.  

 
Also, as described in previous sections, retrieval of general-purpose resources is another compute-intensive 

operation. Each read_by_name or read_by_type command must do a lookup from the corresponding Name 
Table or Type Table associative array; then they must walk through all of the queued uvm_resource_base class 
handles for the index value (frequently, there is only one class handle, but each queue could have multiple class 
handles), then try to match the resource type field, and try to match the resource scope field (using wild-card DPI-
C function calls). Each matched queue item is pushed onto a dynamically created match-queue, another queue of the 



uvm_queue#(uvm_resource_base) type, and either selects and returns and stores in a separate variable (the 
accessed resource value from the match-queue if matches exist) or returns a fail status that should be if-tested when 
the uvm_resource_db command is called. If no match exists, the if-test should often report a `uvm_fatal or 
`uvm_error message. 

 
Since storage and retrieval are compute-intensive operations, usage of the resources database should largely be 

restricted to storing one-time setup and configuration information. Using the resources database for frequent run-time 
variable storage and retrieval is very simulation inefficient and not recommended. 

 
 
 

XVI. uvm_resource_db & uvm_config_db Capabilities Summarized 
 
The resource database set commands always create a single typed UVM resource and then stores the resource 

handle into both the Name Table and Type Table queues.  
 
Resources handles in the Type Table queues are only accessible using the uvm_resource_db read_by_type 

command. There is no equivalent uvm_config_db get/read/read_by_type command. These capabilities and 
restrictions are shown graphically below. 

 
 

A. uvm_resource_db Capabilities 
 
Figure 23 shows that the uvm_resource_db API is used to store (set) resource references in both the Name 

Table and Type Table queues. The uvm_resource_db API can be used to set both component-based scopes and 
non-component-based scopes in the resources. 

 
Figure 23 - uvm_resource_db can set component-scope and pseudo-scope resources that can be referenced from both Tables 

 
 

  



Figure 24 shows that the uvm_resource_db::read_by_name command can be used to retrieve resource 
references from the Name Table, while the uvm_resource_db::read_by_type command can be used to 
retrieve resource references from the Type Table. The uvm_resource_db API can be used to match both 
component-based scopes and non-component-based scopes in the resources. 

 

 
 

Figure 24 - uvm_resource_db can do both read_by_name & read_by_type 
 
 
 

B. uvm_config_db Capabilities 
 
Figure 25 shows that the uvm_config_db API is used to store (set) resource references in both the Name Table 

and Type Table. The uvm_config_db API is required to use component-based scopes. Non-component-based 
scopes are not permitted when using the uvm_config_db API. 

 

 
Figure 25 - uvm_config_db pseudo scope storage limitations 

 
 

  



Figure 26 shows that the uvm_config_db::get command can only be used to retrieve resource references from 
the Name Table queues. There is no equivalent uvm_config_db command to retrieve resource references from the 
Type Table. The uvm_config_db API is required to use component-based scopes when retrieving a resource. Non-
component-based scopes are not permitted when using the uvm_config_db API. 

 
Figure 26 - uvm_config_db get limitations 

 
 

XVII. User Experiences 
 

The authors worked together on a large verification project. Mark Glasser is also one of the primary inventors of 
the uvm_resource and uvm_resource_db classes and methods, so Mark decided that our project would focus 
on using the uvm_resource_db API. Heath and Cliff were more familiar with the uvm_config_db API, so we 
were new to and skeptical about using the uvm_resource_db API.  

 
Heath summed up his experience using the uvm_resource_db, coming from a uvm_config_db perspective. 

 
There were several positive surprises regarding the use of the uvm_resource_db directly: 

• It was much easier to use than many papers and other materials lead people to believe. 
• The flexibility of not being tied to the component hierarchy. 
• The ability to use it outside UVM classes (e.g., modules). 

 
Things that took time to get used to: 

• Changing from using ::get to ::read_by_name and ::read_by_type. 
• Remembering to leave off the uvm_component cntxt first argument of the method calls (including 

::set). 
 
Things to watch out for or plan for: 

• Set up a good "naming convention" for the scope argument of the method calls to avoid conflict of the 
name arguments between various calls to set and read different values. 
• If needing to use legacy code with uvm_config_db calls along with new code using 
uvm_resource_db, particular attention will need to be paid to setting up the scope argument for all 
uvm_resource_db methods that access items that uvm_config_db calls have either ::set or 
::get. If the item was uvm_config_db::set, wildcarding could be used in the scope argument of 
the uvm_resource_db::read_* calls. The other way around is a much more difficult problem to 
uvm_resource_db::set an item for use by a uvm_config_db::get call in legacy code. 



XVIII. Summary of Capabilities 
 

To summarize the capabilities described in this paper, consider the following table of capabilities using OVM & 
UVM config commands. 

 
 set config_*  uvm_config_db uvm_resource_db 
Used in OVM testbenches    
Used in UVM testbenches  1   
Stores int / string / object data types    
Stores any data type    
Allows use of glob regular expressions    
Allows use of POSIX regular expressions    
Distributes stored information across components    
Stores information in a common resource database     
Requires complex component handle & string scoping     
Allows simple string scoping     
Can store & retrieve information by name     
Can store & retrieve information by type     
Can store & retrieve information into components     
Can store & retrieve information into sequences     
Can store & retrieve information into modules     

 
The uvm_resource_db commands have three primary capabilities not available using the uvm_config_db 

commands: 
1. The ability to use the more expressive POSIX regular expression capability provides a fine-grained means 

for specifying the visibility of resources – i.e., which components, sequences, etc. have access to a 
resource. 

 
2. The ability to store and retrieve information not only by_name but also by_type can simplify the 

retrieval process. This can be very useful in a large UVM testbench environment. 
 

3. The ability to store information that can be directly accessed by sequences is one of the most compelling 
reasons to prefer uvm_resource_db commands over the continued use of uvm_config_db 
commands. 

 
XIX. Conclusions 

 
Quit using set_config_* / get_config_* commands - These commands were deprecated in UVM because 

they used a very inefficient storage model. 
 

Quit using the uvm_config_db API - The uvm_config_db API lacks important features that simplify UVM 
testbench development, features that are available when using the uvm_resource_db API. The uvm_config_db 
commands also require the cntxt(component-handle)-inst_name(string) pair to specify the matching scope, 
which has proven to be confusing to many verification engineers. 

 
The good news is that uvm_config_db code does not have to be removed from existing UVM testbenches. 

uvm_resource_db commands are fully backward compatible with uvm_config_db code so 
uvm_resource_db commands can work with all existing UVM testbenches. 

 
USE the uvm_resource_db API - the uvm_resource_db syntax is easier than the uvm_config_db 

syntax and uses a simple-string scoping mechanism. 
 

 
1 Although deprecated from UVM, the set_config_* facility is still used in some UVM testbenches. 



Using the uvm_resource_db API also simplifies the development of advanced UVM testbench techniques, 
such as: 

 
• Virtual sequences [2] - uvm_resource_db makes subsequencer handles directly available to the 

virtual sequence base class [1]. 
 

• Parameterized MAX_IF techniques [4] - again, uvm_resource_db allows passing of DUT parameters 
from the top module to the UVM testbench without passing the parameters through a sequencer. 

 
The uvm_resource_db API is by far the simplest, most powerful and preferred API to interact with UVM 

resources.  
 
 
 

References 
 [1] Clifford E. Cummings, Heath Chambers, Mark Glasser, "UVM Virtual Sequences The Easy Way (not the Hard Way … or the other Hard 

Way!)," SNUG-SV 2023, in press. [2] Clifford E. Cummings, Janick Bergeron, "Using UVM Virtual Sequencers & Virtual Sequences," DVCon 2016 Proceedings, also available at www.sunburst-design.com/papers/CummingsDVCon2016_Vsequencers.pdf [3] "IEEE Standard For Universal Verification Methodology Language Reference Manual," IEEE Computer Society, IEEE, New York, NY, IEEE Std 1800.2™-2017 [4] Jeff Montesano, Paul Marriott, "Parameterize Like a Pro - Handling Parameterized RTL in you UVM Testbench," DVCon 2020 Tutorial, also available at www.verilab.com/files/parameterize_like_a_pro_web_final.pdf [5] Mark Glasser, "UVM Resources Database: The Missing Manual," DVCon India 2014 silo.tips/download/configuration-in-uvm-the-missing-manual# [6] Universal Verification Methodology (UVM) 1.2 Class Reference - June 2014  


