
CXL Verification using Portable Stimulus
Ragesh Thottathil

Senior Architect

Vayavya Labs

Karthick Gururaj

Chief Architect and CTO(ESL)

Vayavya Labs

 CXL is a low latency fabric which builds upon PCIe interface and enables high-speed, efficient interconnect between

CPU, memory and accelerators. What makes CXL distinct is that it maintains coherency between CPU memory space

and memory on CXL attached devices. Along with these features comes a set of challenges in verifying these from unit

level to Post silicon environments. The objective of this paper is to bring out the effectiveness of using Portable Stimulus

Standard (PSS) for the verification of Compute Express Link (CXL).

I. INTRODUCTION

 CXL provides a low-latency, high-bandwidth path for an accelerator to access the system and for the

system to access the memory attached to the CXL device. CXL is made up of 3 distinct set of protocols

• CXL.io - I/O semantics similar to PCIe (mandatory)

This provides a non-coherent load/store interface for I/O devices. Transaction types, packet

formatting, flow control etc. follow the PCIe definition

• CXL.cache - caching protocol semantics (optional)

CXL.cache is developed to allow Devices to access and cache Host attached memory. This was not

possible with the traditional load-store format of PCIe. CXL.cache works on MESI (Modified,

Exclusive, Shared, Invalid) coherence protocol

• CXL.mem - memory access semantics (optional)

This is the CXL memory protocol and allows for memory bandwidth and capacity expansion. This

applies for various types of memory like volatile, persistent etc.

 Fig:1 Types of CXL devices

CXL is designed to support 3 different device types with the combination of the protocols defined

above. The 3 types of devices are captured in Fig: 1

 There are multiple challenges associated with verification of CXL such as

1) Multiple dynamic and configuration parameters which need crossing

CXL is feature rich and consists of multiple configuration parameters such as cache state transitions, memory

pooling, RAS (Reliability, Accessibility, Serviceability), IDE (Integrity and Data Encryption), power

management etc.

2) Coherency and ordering rules cannot be verified at just unit level

CXL aims to build heterogeneous and disaggregated compute environments which means memory

subsystems and coherency problem is no longer problem of unit implementing it. We will need cache

coherency and memory ordering verification to be done at multiple levels

• Unit

• Subsystem (Headless)

• Full system – Software driven system

• Emulation and prototyping

• Post silicon

3) Scalable topologies and shared resources

There are numerous topologies possible with CXL bridges in between and verifying multiple

configurations across multiple topologies is a great challenge.

 As a part of the work different hierarchies were enumerated and CXL transactions were verified

4) Software world behavior needs to be modelled for verification

CXL is micro-architecture aware so we need to model their behavior to certain extent in verification

environment early to make sure we model the traffic more realistically. Also, most of configuration and

enumeration happens in System firmware and it is better to model it in PSS, so that we can leverage it at

different hierarchies.

Portable Stimulus Standard defines a specification for creating a single representation of stimulus and test

scenarios. A PSS model is a representation of some view of a system’s behavior, along with a set of abstract

flows. It is essentially a set of class definitions augmented with rules constraining their legal instantiation. A

model consists of two types of class definitions: elements of behavior, called actions; and passive entities

used by actions, such as resources, states, and data flow items, collectively called objects. The behaviors

associated with an action are specified as activities.

II. WORK SUMMARY

A. PSS Modelling

The work consisted of creating portable Stimulus model for a standard CXL host and device controller, which

consists of the following

1) Portable stimulus register model for the cxl.io and cxl.mem registers

A quick snapshot of the CXL register space that is modelled using PSS is captured in Fig: 2

 Fig:2 CXL register space

As part of our work, these different subsets of registers which are part of CXL controller were modelled using

PSS core library as pure components. These registers will be accessed in PSS atomic actions to program the

controller. Fig: 3 shows an example of how a register in the configuration space (PCIe DVSEC for CXL

device) is represented in PSS

 Fig:3 Representation of CXL register space in CXL

2) Flow objects representing the CXL.io topology, DVSECs, Component register space etc.

Flow objects were modelled which captures the CXL.io topology, DVSEC (Designated vendor-specific

extended capabilities) and component register space. Fig: 4 shows an example of how the DVSEC register

space was modelled

struct cxl_dvsec_range1_size_low_s : packed_s <LITTLE_ENDIAN>

{

 bit [1] mem_info_valid;

 bit [1] mem_active;

 bit [3] media_type;

 bit [3] mem_class;

 bit [5] desired_interleave;

 bit [3] mem_active_timeout;

 bit [12] rsvd;

 bit [4] mem_size_low;

}

pure component cxl_dvsec_range1_size_low_c: reg_c <cxl_dvsec_range1_size_low_s,

READONLY, 32> {} ;

pure component cxl_reg_grp : reg_group_c

{

...

cxl_dvsec_range1_size_low_c cxl_dvsec_range1_size_low;

...

}

/***

 * struct cxl_dvsec_reg_map_s - Structure to represent the different DVSEC

component registers and

 memeory device base address for each CXL device.

***/

 struct cxl_dvsec_reg_map_s

 {

 rand bit[64] pcie_dvsec_base;

 rand bit[64] non_cxl_func_dvsec_base;

 rand bit[64] cxl20_port_dvsec_base;

 rand bit[64] gpf_port_dvsec_base;

 rand bit[64] gpf_dev_dvsec_base;

 rand bit[64] pcie_flex_dvsec_base;

 rand bit[64] reg_locator_dvsec_base;

 rand bit[64] mld_dvsec_base;

 rand bit[64] test_cap_dvsec_base;

 rand int reg_locator_size;

 };

 Fig: 4 PSS flow object representation of CXL DVSECs

3) Actions for enumerating CXL.io and CXL.mem registers

 CXL.io enumeration is similar to PCIe enumeration in which the system software discovers the devices

in the hierarchies by probing for the vendor ID register in ECAM (Enhanced Configuration Access

Mechanism) address space.

 Once the CXL.io devices are discovered and BARs are configured the enumeration of the CXL

components takes place. A PCIe device is identified as CXL device through the presence of CXL specific

DVSEC capabilities. The action provided below depicts the identification of multiple CXL DVSECs which

are part of the configuration region. In addition to this the System software enumerate the CXL.mem register

space which is memory mapped through the BAR region. Fig:5 shows an example of how the action for

enumeration of CXL.io DVSEC register space was modelled

extend action cxl_io_c :: cxl_enumerate_dvsec_registers_a {

int count = 0;

int dummy;

exec body

{

while (count < NUM_PCIE_DEVICES)

{

out_cxl_dvsec_reg_map.cxl_dvsec_reg_map[count]

=

comp.pci_find_dvsec_capability(out_cxl_dvsec_reg_map.cxl_dvsec_reg_map[count],

in_pcie_hierarchy.pcie_hierarchy.dev_list [count], dummy);

count = count + 1;

}

}

}

/***

* pci_find_dvsec_capability () - PSS native function to find the dvsec capabilities

* @cxl_dvsec_reg_map : Structure containing dvsec registers

* @pci_devices : Structure containg enumerated bdfs

* @pcie_var : int variable

* @return cxl_dvsec_reg_map_s

**/

function cxl_dvsec_reg_map_s pci_find_dvsec_capability (cxl_dvsec_reg_map_s

cxl_dvsec_reg_map, pcie_device_s pci_devices, int pcie_var)

{

bit [16] pos;

bit [16] vendor;

bit [16] id;

bit [32] read_from_handle;

bit [32] header;

addr_handle_t config_base;

addr_handle_t handle;

bit [64] addr;

/**

* buffer cxl_dvsec_reg_map_b - Buffer containing the DVSEC register maps for all the CXL

devices in the hierarchy

**/

 buffer cxl_dvsec_reg_map_b

 {

 rand cxl_dvsec_reg_map_s cxl_dvsec_reg_map[NUM_PCIE_DEVICES];

 };

bdf_s b_d_f;

pcie_var = pci_devices.pcie_var;

b_d_f = pci_devices.dev;

pos = PCI_CFG_SPACE_SIZE;

config_base = cxl_io_get_handle (b_d_f, 0);

header = pci_find_ext_capability (config_base, pos, b_d_f);

while (header != 0)

{

handle = cxl_io_get_handle (b_d_f, header + 0x04);

read_from_handle = read32 (handle);

vendor = read_from_handle & 0x0000FFFF;

handle = cxl_io_get_handle (b_d_f, header + 0x08);

read_from_handle = read32 (handle);

id = read_from_handle & 0x0000FFFF;

if (vendor == PCI_DVSEC_VENDOR_ID_CXL && id == 0)

{

cxl_dvsec_reg_map.pcie_dvsec_base = config_base + header;

}

else if (vendor == PCI_DVSEC_VENDOR_ID_CXL && id == 2)

{

cxl_dvsec_reg_map.non_cxl_func_dvsec_base = config_base + header;

}

…

…
 header = pci_find_next_ext_capability (config_base, header);

 }

 return cxl_dvsec_reg_map;

}

Fig: 5 PSS action for enumeration of DVSEC register space

4) Actions for performing mailbox communication from CXL host to device

CXL implements a command/response interface over mailbox. CXL host can send a command to devices which is

identified through a 2-byte opcode. Opcodes 0000h-3FFFh describe generic CXL device commands and falls into

4 categories – Events, Firmware update, Timestamp and logs. Opcodes 4000h-BFFFh describe Class Code

specific commands such as memory device commands. CXL controller uses the mailbox register interface to send

device commands and payload and read back the response. Fig: 6 show the action modelled for sending a mailbox

command to CXL device

extend action cxl_mem_c::cxl_send_command_a {

 addr_handle_t h1;

 exec post_solve{

 h1 = make_handle_from_claim(mem_claim);

 }

 exec body {

 MAILBOX_CAPABILITIES_REG_s mb_cap_reg;

 MAILBOX_CONTROL_REG_s mb_control_reg;

 MAILBOX_STATUS_REG_s mb_status_reg;

 MAILBOX_COMMAND_REG_s mb_cmd_reg;

 MAILBOX_BACKGROUND_COMMAND_STATUS_REG_s mb_back_status_reg;

 MAILBOX_PAYLOAD_REG_s mb_payload_reg;

 //Caller reads MB Control Register to verify doorbell is clear.

 mb_control_reg = comp.MB_grp.MAILBOX_CONTROL_REG.read();

 //Caller writes Command Register.

 //Caller writes Command Payload Registers if input payload is non-

empty

 if (mb_control_reg.DOORBELL == 0){

 bit[64] cmd_reg = 0;

 bit[16] opcode = in_mb.mb_b.op;

 cmd_reg |= opcode;

 mb_cmd_reg.COMMAND_OPCODE = cmd_reg;

 //Copy the payload to PAYLOAD DATA

 . . .

 comp.MB_grp.MAILBOX_COMMAND_REG.write(mb_cmd_reg);

 //Caller writes MB Control Register to set doorbell

 mb_control_reg = comp.MB_grp.MAILBOX_CONTROL_REG.read();

 mb_control_reg.DOORBELL =1;

 comp.MB_grp.MAILBOX_CONTROL_REG.write(mb_control_reg);

 comp.cxl_display ("doorbell is set");

 //Caller wait for doorbell to be cleared and reads MB Status

Register to fetch Return code

 if (mb_control_reg.DOORBELL == 0){

 mb_status_reg =

comp.MB_grp.MAILBOX_STATUS_REG.read();

 bit[16] rc = (mb_status_reg.RETURN_CODE >> 32) &

0xFFFF;

 if (rc == 0){

 comp.cxl_display ("command executed

successfully");

 }

 else{

 comp.cxl_display("command failed");

 }

 }

 //If command successful, Caller reads Command Register to

get Payload Length

 mb_cmd_reg = comp.MB_grp.MAILBOX_COMMAND_REG.read();

 bit[21] payload_size = (mb_cmd_reg.PAYLOAD_LENGTH >>16) &

PAYLOAD_SIZE_MASK;

 //If output payload is non-empty, host reads Command Payload

Registers

 . . .

 }

}

Fig: 6 PSS action for sending a mailbox command to CXL device

5) Actions for performing CXL.mem transactions

CXL.mem transactions work in the same was as normal PCIe mem transactions once the CXL HDM (Host

Managed device memory) is configured. Once the HDM ranges and sizes are configured, the CXL device

memory will appear as normal memory to the system software. Any reads/writes within the HDM range will

result in a CXL.mem transaction on the bus.

extend action cxl_io_mem_wr_a {

exec body {

addr_handle_t mem_h = mem_write_buff_in.mem_addr;

int offset = 0;

addr_handle_t mem_h1 = make_handle_from_handle(mem_h, offset);

mem_h = mem_write_buff_in.mem_addr;

 . . .

repeat (i: (mem_write_buff_in.data_size / 4)) {

write32(mem_h1, (mem_write_buff_in.data[i]));

offset = offset+1;

mem_h1 = make_handle_from_handle(mem_h, offset);

}//then the rest

repeat (i: (mem_write_buff_in.data_size %4)) {

write8(mem_h1, (mem_write_buff_in.data[i]));

offset = offset+1;

mem_h1 = make_handle_from_handle(mem_h, offset);

}

 }

}

Fig: 7 PSS action for performing CXL memory write

6) Test scenario

Top level test scenario instantiates other leaf level actions and the action instances are scheduled inside an

activity. Fig:8 shows an example for a top-level scenario which performs injecting poison to a set of memory

locations and read back the list of poisoned locations from a CXL memory device.

 /**

 scenario to get the poisoined list

 **/

 action get_poisonlist_a {

 cxl_mb_cmd_c::inject_psn_input_a inject_psn;

 cxl_mb_c::send_inject_psn_cmd_a send_inject_psn;

 cxl_mb_cmd_c::psn_input_a psn_list_input;

 cxl_mb_c::send_psn_cmd_a send_psn_list;

 cxl_mb_cmd_c::cxl_poisonlist_out_a get_psn_list;

 activity {

 inject_psn;

 send_inject_psn;

 psn_list_input;

 send_psn_list;

 get_psn_list;

 bind inject_psn.out_mb send_inject_psn.in_mb;

 bind psn_list_input.out_mb send_psn_list.in_mb;

 }

 }

Fig: 8 PSS scenario action for poisoning memory location and retrieving the poisoned list

B. Test generation

PSS models described in the above section are compiled using PSS tool. The PSS tool processes the models and

randomizes the variables which are provided as random based on the constraints provided and generates C test

cases for the scenarios modelled. The tool also generates results of the coverage achieved on the randomization

of the variables.

Multiple scenarios were created during the project for verification of CXL system. Below is a sample list of

actions which were implemented as PSS scenarios

• Enumeration of CXL DVSEC registers

• Enumeration of component registers

• CXL.io and CXL.mem transactions with randomized payload,

• Various mailbox communication between CXL host and device

 Figure 9 below shows a sample test scenario that was executed

 Figure 9. Representative PSS scenario used for test generation

C. Test Execution

Qemu was used as the test environment to validate the generated test cases. Qemu is an open-source emulator

which emulates processor and peripheral models. A test setup which consists of an x86 processor connected to a

PCIe RC and which in turn is connected to a topology of CXL root ports and devices is emulated on Qemu.

Figure.11 below shows a pictorial representation of the test environment built on Qemu.

The test code generated from the PSS tool in the above section was compiled and built into a binary(.bin) file

which can be loaded on the processors emulated on Qemu.

Qemu supports emulation of CXL host controller and CXL memory devices. Multiple hierarchies of CXL Host

and devices can be emulated by varying the parameters provided during Qemu. Below is a snapshot of the

command provided to create the test setup shown in Figure 10.

Figure 10. Representative command for invoking Qemu with required CXL hierarchy

qemu-system-i386 -drive file=os_image,if=floppy,media=disk -boot order=d -m

1024,slots=12,maxmem=16G -M q35,cxl=on

-object memory-backend-file,id=cxl-mem1,share=on,mem-path=/tmp/cxltest.raw,size=256M \

-object memory-backend-file,id=cxl-mem2,share=on,mem-path=/tmp/cxltest2.raw,size=256M \

-object memory-backend-file,id=cxl-lsa1,share=on,mem-path=/tmp/lsa.raw,size=256M \

-object memory-backend-file,id=cxl-lsa2,share=on,mem-path=/tmp/lsa2.raw,size=256M \

-device pxb-cxl,bus_nr=11 ,bus=pcie.0,id=cxl.1 \

-device pxb-cxl,bus_nr=222,bus=pcie.0,id=cxl.2 \

-device cxl-rp,port=0,bus=cxl.1,id=root_port13,chassis=0,slot=2 \

-device cxl-type3,bus=root_port13,persistent-memdev=cxl-mem1,lsa=cxl-lsa1,id=cxl-pmem0 \

-device cxl-rp,port=0,bus=cxl.2,id=root_port15,chassis=0,slot=5 \

-device cxl-type3,bus=root_port15,persistent-memdev=cxl-mem2,lsa=cxl-lsa2,id=cxl-pmem1 \

-M cxl-fmw.0.targets.0=cxl.1,cxl-fmw.0.targets.1=cxl.2,cxl-fmw.0.size=4G,cxl-

fmw.0.interleave-granularity=8k

Figure 11. Representative diagram of the test environment on Qemu

III. RESULTS

• Real world software scenarios such as discovery of CXL hierarchy and enumeration of DVSEC registers

were validated

• Verified the enumeration of CXL component registers on exposed through BAR region.

• Initiated CXL.mem write/read transactions from multiple CPU cores and verified the results

• Successfully carried out mailbox transactions to the CXL device such as getting memory device info,

reading poison list, getting CXL event log etc.

IV. CONCLUSION

The objective of the work was to model different scenarios applicable to CXL and verify it on a system level

platform. Due to the non-availability of hardware platform the testcases generated from the models were validated

on Qemu. The current support of CXL in Qemu is limited to CXL.io and CXL.mem features. CXL.cache feature is

not yet supported. Hence the focus was on modelling the scenarios pertaining to CXL.io transactions such as

discovery and enumeration and CXL.mem transactions including mailbox communication between host and devices.

 The PSS model content created as part of this project can be reused to generate test content across multiple

platforms from simulation to post-silicon. This helps avoid the duplication of content from one platform to other.

Also, offloading of the randomization of attributes to the PSS tool is another advantage. This project proved the

concept well that modelling of CXL in PSS provide great advantages in terms of time and effort.

V. REFERENCES
[1] PSS 2.0 documentation: https://www.accellera.org/downloads/standards/portable-stimulus

[2] CXL™ Consortium 2022

[3] Qemu CXL documentation

X86_64

PSS test

Memory

PCIe RC

CXL HB

CXL HB

 X86_64
CXL Mem

CXL Mem

QEMU

https://www.accellera.org/downloads/standards/portable-stimulus
https://www.qemu.org/docs/master/system/devices/cxl.html

