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Introduction and motivation (1)

• Growth of RISC-V ecosystem into industries
• AI

• Machine learning

• Safety

• Security

• ISO26262 recommends fault injection to 
verify safety-critical designs
• ASIL risk classification system https://www.embitel.com/blog/embedded-blog/understanding-how-iso-26262-asil-

is-determined-for-automotive-applications



Introduction and motivation (2)

• Safety-critical designs require rigorous, stringent and automated 
verification techniques

• Complex testing techniques 

• Required to shorten Time-to-Market deadlines
• Automation

• Productivity

• Performance
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Background: Mixed register-transfer/gate 
level fault injector
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RISC-V CPU generation

• Key element: RISC-V 
metamodel 

• Four main components
• Encoding tree
• Instructions
• Architectural states
• Exceptions

K. Devarajegowda, E. Kaja, S. Prebeck, and W. Ecker, “Isa modeling with trace notation for context free 
property generation,” in 2021 58th ACM/IEEE Design Automation Conference (DAC), 2021, pp. 619–624



Model-based fault simulation framework(1)

• Fault simulation flow:
• MetaRTL is utilized to generate the design

• Fault injection framework transforms the design

• A script extracts information from the design and generates the fault list

• User configures the model accordingly

• The framework generates SystemVerilog and C++ testbench in accordance 
with the model’s data



Model-based fault simulation framework(2)
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Model-based fault simulation framework(3)

Line 3 represents the 
simulation count

Line 4 defines the 
timepoints when the 

fault should be injected

Lines 10 determines the 
fault model to inject



Model-based fault simulation framework(4)

• Safe undetected faults: did not propagate to any strobe
• Safe detected faults: detected and fixed by the safety mechanism
• Dangerous undetected faults: propagate to the functional strobes but are not detected by the safety mechanism
• Dangerous detected faults: propagate to functional strobes but are detected by the safety mechanism



Random instruction generation(1)

• Automatic Test Pattern Generation (ATPG)
• Common technique to test safety-critical desings

• Very high fault coverage but suffers from performance constraints

• ISO 26262 recommends various ASILs for different designs

• Combination of model-driven fault simulation framework with model-
driven random RISC-V instruction generation



Random instruction generation(2)

• Key element: RISC-V metamodel (slide 7)

• A python scripts reads the model data and generates random valid 
instructions

• Highly configurable
• Constraints

• Length

• File Type

• Memory Start Address



Application and results(1)

• The set of random instructions utilized as test input for the RISC-V CPU

• Fault simulation applied on a CPU subsystem with various RISC-V 
alternatives

• The tests are run on three similar subsystems with different RISC-V 
alternatives, i.e. only the CPU changes

• Faults injected on ALU, Forwarding Unit, Prefetcher, and Fetch stage



Application and results(2)
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Application and results(2)

RV32IMC-Exceptions Exhaustive Fault Injection campaign
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Application and results(3)

RV32IMC-MAC Exhaustive Fault Injection campaign
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Application and results(4)
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• Statistical fault injection (SFI) 
was applied to the different 
CPU alternatives

• Different fault models injected:
• Stuck-at
• SEU
• Timing faults

• 300 instructions as test length



Conclusion and future work

• Low-overhead automated safety evaluation of various RISC-V 
alternatives by combining Model-driven Fault Simulation and Model-
driven Random Instruction Generation

• The EFI campaign resulted in an acceptable fault coverage range 
(40%-99%) for a length of input test of 300 instructions

• The total effort required to run all the campaigns was 1 person-day

• Future work: Extending the supported fault models, constraining 
jumps to in-bound memory locations, and further comparisons to 
other commercial and open-source fault simulation tools



Questions?

Thank you!


