
Automated Thread Evaluation of Various RISC-V 
Alternatives using Random Instruction Generation

Endri Kaja, Nicolas Gerlin, Dominik Stoffel, Wolfgang 
Kunz, Wolfgang Ecker



Outline

• Introduction and motivation

• Background

• RISC-V CPU generation

• Model-based fault simulation framework 

• Random instruction generation

• Application and results

• Conclusion and future work



Introduction and motivation (1)

• Growth of RISC-V ecosystem into industries
• AI

• Machine learning

• Safety

• Security

• ISO26262 recommends fault injection to 
verify safety-critical designs
• ASIL risk classification system https://www.embitel.com/blog/embedded-blog/understanding-how-iso-26262-asil-

is-determined-for-automotive-applications



Introduction and motivation (2)

• Safety-critical designs require rigorous, stringent and automated 
verification techniques

• Complex testing techniques 

• Required to shorten Time-to-Market deadlines
• Automation

• Productivity

• Performance



Background: RTL generation framework 
(MetaRTL)

Hardware specifications are captured formally

Microarchitecture blueprint

Platform and technology indipendent hardware description

Maps MoD to MoV elements

Tree based, target language specific

RTL HDL

Formalized 
specifications

Template of design 
(ToD)

Target Code

Model of Design
(MoD)

Template of view 
(ToV)

Model of view 
(MoV)



Background: Mixed register-transfer/gate 
level fault injector

. .
Original RTL code Synthesis

Technology 
Library

Gate level 
netlist 

View 
Model

MoD

Original 
ToD

ToD 

Generator

Intended components 
for fault injection

RTL code with 
submodule at Gate 

level granularity
+saboteurs

MoD

Generated 
ToD*

View 
Model

Fault 
collapsing

Saboteurs

Mod 
Transformation

Wrapper

Designs pass Equivalence Check



RISC-V CPU generation

• Key element: RISC-V 
metamodel 

• Four main components
• Encoding tree
• Instructions
• Architectural states
• Exceptions

K. Devarajegowda, E. Kaja, S. Prebeck, and W. Ecker, “Isa modeling with trace notation for context free 
property generation,” in 2021 58th ACM/IEEE Design Automation Conference (DAC), 2021, pp. 619–624



Model-based fault simulation framework(1)

• Fault simulation flow:
• MetaRTL is utilized to generate the design

• Fault injection framework transforms the design

• A script extracts information from the design and generates the fault list

• User configures the model accordingly

• The framework generates SystemVerilog and C++ testbench in accordance 
with the model’s data



Model-based fault simulation framework(2)

Name:string[0..1]

Fault_Injection

rootNode

TopName: string[0..1]

SimulationTime: int[1]

TimingFaultActive: bool[1]

Simulation_Controller

InjectionTime: int[1]

ReleaseTime: int[1]

ExhaustiveFI

ID: int[1]

FaultModel: Model[1]

SignalName: string[1]

DFI

InjectionTime: int[1]

ReleaseTime: int[1]

Time

FaultsPerSim: int[1]

SimTotal: int[1]

SEU: bool[1]

TimingFault: bool[1]

SFI

Name: string[1]

Fault_List

Control: string[1]

Sequential: bool[1]

Signal

FaultModel: Model[1]

Fault_Model

Name: string[1]

Fault_Analyzer

ComponentName: string[1]

Group

StrobeSignal: string[1]

Active: bool[1]

StrobeType: StrobeType[1]

Strobe

Sa0: Model

Sa1: Model

BF: Model

TimingFault: Model

<<enum>>

Model

Checker: StrobeType

Functional: StrobeType

<<enum>>

StrobeType

0..1 0..1 *

1
11

1..*

1..*

*

1..*

1..*

Simulation Controller

Fault list Fault Analyzer



Model-based fault simulation framework(3)

Line 3 represents the 
simulation count

Line 4 defines the 
timepoints when the 

fault should be injected

Lines 10 determines the 
fault model to inject



Model-based fault simulation framework(4)

• Safe undetected faults: did not propagate to any strobe
• Safe detected faults: detected and fixed by the safety mechanism
• Dangerous undetected faults: propagate to the functional strobes but are not detected by the safety mechanism
• Dangerous detected faults: propagate to functional strobes but are detected by the safety mechanism



Random instruction generation(1)

• Automatic Test Pattern Generation (ATPG)
• Common technique to test safety-critical desings

• Very high fault coverage but suffers from performance constraints

• ISO 26262 recommends various ASILs for different designs

• Combination of model-driven fault simulation framework with model-
driven random RISC-V instruction generation



Random instruction generation(2)

• Key element: RISC-V metamodel (slide 7)

• A python scripts reads the model data and generates random valid 
instructions

• Highly configurable
• Constraints

• Length

• File Type

• Memory Start Address



Application and results(1)

• The set of random instructions utilized as test input for the RISC-V CPU

• Fault simulation applied on a CPU subsystem with various RISC-V 
alternatives

• The tests are run on three similar subsystems with different RISC-V 
alternatives, i.e. only the CPU changes

• Faults injected on ALU, Forwarding Unit, Prefetcher, and Fetch stage



Application and results(2)

0

10

20

30

40

50

60

70

80

90

100

100 150 200 250 300

FA
U

LT
 C

O
V

ER
A

G
E 

(%
)

ALU Fw Unit Prefetcher Fetch stage

Component Injected faults

ALU 2555

Fw Unit 871

Prefetcher 1873

Fetch stage 4351

RV32IMC Exhaustive Fault Injection campaign

EXECUTED INSTRUCTIONS



Application and results(2)

RV32IMC-Exceptions Exhaustive Fault Injection campaign

0

10

20

30

40

50

60

70

80

90

100

100 150 200 250 300

FA
U

LT
 C

O
V

ER
A

G
E 

(%
)

ALU Fw Unit Prefetcher Fetch stage

Component Injected faults

ALU 2555

Fw Unit 871

Prefetcher 1873

Fetch stage 18936

EXECUTED INSTRUCTIONS



Application and results(3)

RV32IMC-MAC Exhaustive Fault Injection campaign

0

10

20

30

40

50

60

70

80

90

100

100 150 200 250 300

FA
U

LT
 C

O
V

ER
A

G
E 

(%
)

ALU Fw Unit Prefetcher Fetch stage

Component Injected faults

ALU 2555

Fw Unit 871

Prefetcher 1873

Fetch stage 18936

EXECUTED INSTRUCTIONS



Application and results(4)

0

10

20

30

40

50

60

ALU Fw Unit Prefetcher Fetch stage

Fa
u

lt
 C

o
ve

ra
ge

 (
%

)

Axis Title

SFI campaign

RV32IMC RV32IMC2-Exceptions RV32IMC-MAC

• Statistical fault injection (SFI) 
was applied to the different 
CPU alternatives

• Different fault models injected:
• Stuck-at
• SEU
• Timing faults

• 300 instructions as test length



Conclusion and future work

• Low-overhead automated safety evaluation of various RISC-V 
alternatives by combining Model-driven Fault Simulation and Model-
driven Random Instruction Generation

• The EFI campaign resulted in an acceptable fault coverage range 
(40%-99%) for a length of input test of 300 instructions

• The total effort required to run all the campaigns was 1 person-day

• Future work: Extending the supported fault models, constraining 
jumps to in-bound memory locations, and further comparisons to 
other commercial and open-source fault simulation tools



Questions?

Thank you!


