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Abstract- Running an efficient fault campaign with accurate results can be a difficult task, especially on large complex 

designs, but optimizations and techniques exist to make it less so. Satisfactory results may have been attainable in the past, 

but the increased size and complexity of automotive designs, the difficulty in providing good-quality stimulus, and the large 

number of faults that need to be analyzed make it impractical to perform exhaustive, safety verification using a single 

technology. Fortunately, there are many methodologies that provide efficiencies for running fault campaigns starting with 

early and accurate safety analysis. Using a safety analysis tool that structurally analyzes RTL and provides accurate safety 

metrics, such as FIT and DC, allows engineers to understand the safety level of their design and reach the optimal safety 

architecture prior to costly fault injection. This paper will discuss these techniques using Samsung's safety flow 

methodology as a real-world example. It will outline real use cases, discuss the importance of accurate metrics during the 

analysis phase of the flow, outline fault list optimization techniques, propose recommended set up conditions for optimal 

stimuli, and discuss when good-machine simulation is needed based on Samsung's certification activity. 

 

I.   INTRODUCTION 

In the paper "Complex Safety Mechanisms Require Interoperability and Automation for Validation and Metric 

Closure" presented at DVCon US 2023, we covered a fundamental methodology to overcome typical fault campaign 

challenges for SoCs with complex safety mechanisms. Whereas the paper described a general methodology and flow 

for fault campaigns, it did not go into the details of how to plan and verify fault campaign activity.  

 

Questions not addressed in that paper include:  

• How do we know the fault campaigns we are doing are providing accurate results?  

• Are we running fault campaigns that represent real use cases?  

• Is the stimulus behavior at the RTL providing results that match the final gate-level netlist results?  

• What are the different techniques available to accelerate fault campaigns?  

• Do we need to do good-machine simulation for all the stimulus at all levels of SoC development?  

 

  In this paper we attempt to answer these questions and identify what is required in fault campaign methodologies to 

achieve accurate results for ISO 26262 certification. We further explain what should be considered to make sure 

good-quality stimulus is generated for fault campaigns, how to create stimulus quality checks prior to running fault 

campaigns, and how to implement a methodology for good-machine simulation. Fault simulation is resource 

intensive. At a minimum, you need to simulate a good machine and a faulty machine. The good machine is used as a 

reference to determine if any of the faults are detected. Good-machine simulation is where all state elements and 

observation points are compared at all times in the original stimulus to catch dormant deviation.  
 

Good-machine simulation is a systematic way to ensure the stimulus is good quality and provides accurate results. 

Good-machine simulation can solve the missing simulation data problem and reduce the load on the functional 

verification team. To create stimulus that provides accurate results at both the RTL and gate level, engineers need to 

make sure that the stimulus has minimal to no race conditions and no behavioral mismatches between simulation and 

synthesis. Making sure good stimulus is used for fault campaigns and having the right type of set up conditions to 

generate the stimulus to test real use cases is critical. An integrated set of tools such as simulation and emulation for 

fault injection also accelerates fault campaign runs as we will illustrate with the Samsung design.  

 

Additionally, although gate level simulation is more accurate and more closely represents silicon behavior, using 

RTL models is an acceptable approach provided that the RTL code used is shown to be well correlated with the gate 

level netlist. Kaleidoscope, Siemens EDA’s concurrent fault simulator, utilizes a pseudo synthesis method for RTL 

simulation. This means that in essence we are running a gate level fault campaign.  

 

mailto:hyunsun.ahn@samsung.com
mailto:james.kim@siemens.com
mailto:arun.gogineni@siemens.com
mailto:ann.keffer@siemens.com
mailto:mk.yim@samsung.com
mailto:soobon.kim@samsung.com
mailto:ys31.kim@samsung.com
mailto:seonilb.choi@samsung.com


Another important aspect of an efficient fault campaign is making sure the fault lists are optimized. We 

automatically create optimized, customized fault lists for the appropriate engine, and run concurrent, parallel fault 

injection runs that use all available compute power to reduce the cost of fault injection.  

 

Fault optimization techniques used on the Samsung design include: 

• Safety mechanism aware 

• Fault collapsing  

• Statistical random sampling 

 

Safety-mechanism-aware optimization eliminates faults that are not part of the safety mechanism’s cone of influence 

(COI). Fault collapsing eliminates logically equivalent faults, and statistical random sampling allows you to reduce 

the fault list size with a random sampling of faults estimated given a confidence level. All these methodologies for 

optimizing fault lists were considered.  

 

II. GOOD-QUALITY STIMULUS 

There are several steps to making sure good-quality stimulus is used to get optimal results from a fault campaign. 

To generate proper stimulus, several conditions must be considered: correct design setup, forces in the testbench, RTL 

simulation versus synthesis mismatches, Xprop(resolve), and race handling.  

 

Correct Design Setup 

When using the stimulus generated for good-machine checks and fault campaigns, we need to make sure we have 

a correct setup. The design should be the same between functional stimulus generation and good-machine/fault 

campaign simulation. 

For quality-stimulus we need to make sure to use the same input configuration, including: 

• File lists 

• Defines 

• Parameters 

• Preloads into memory 

 

Forces in the Testbench 

A complete list of forces that were used in functional simulation needs to be passed on to the fault campaign engine. 

A force on a signal net should propagate to wherever the net goes across all hierarchies, as shown in below example: 

 

 
Figure1. Valid force value propagation through design for fault campaign 

 



In the Figure 1, the force on the net is shown by the red circle. The effect of this force should be propagated to the 

output of gate 1, which will affect gate 2 and flip flop 3. The force value propagation cannot stop at top.inst_1 or 

top.inst_1.inst_2. This forcing behavior can be different between RTL and Gate Level Netlist. Synthesized netlist 

behavior is closer to silicon because synthesized design has flattened nets similar with silicon.  

 

RTL # Delays 

When doing functional simulation, it is always a good practice to avoid putting # delays in the RTL, as shown in 

figure 2, because adding delays will result in simulation versus synthesis mismatches in the functionality of the design.  

 

 

 
Figure 2. # Delays in RTL 

 

To make sure to avoid any inadvertent # delays, stimulus generation should always use non # delay modeling. All 

the industry standard simulators have configurations for this. In case the original code already has lots of # delays, 

additional handling is required to guarantee valid fault campaign results. 

 

Simulation Behavior versus Synthesis Mismatches 

Simulation model mismatches occur due to discrepancies between the simulation model and the actual hardware 

behavior. These discrepancies can cause unexpected results, which can occur due to incorrect logic or improper design 

implementation at the RTL. Some examples of the effects of this behavior are:  

• Missing synchronizers between clock domains  

• Improper simulation models that do not match the final hardware implementation  

• Out of indexing of data arrays  

• Mismatches between address pointers and data location size 

 

To avoid these situations, we recommend using lint-clean RTL for stimulus generation. Any industry standard linter 

can be used to achieve good results. 

 

XPROP=Resolve in RTL Stimulus Generation 

RTL simulation uses the value of X to temporarily represent a state that cannot be predicted or determined at a given 

time. Because X values do not appear in the design once it has been implemented in silicon, a mismatch can occur 

between simulation and silicon. Typically, RTL simulation is done based on X-Optimism, but to reflect silicon 

behavior more closely, X-Pessimism is preferred when debugging X behavior in simulation. This also be one of the 

best practice can show that used RTL correlated with gate level netlist when using RTL for fault injection testing.  

Consider the following code in figure 3: 

 

 
Figure 3. X-optimism, X-pessimism code example 

 

Table 1. shows simulation results for both X-Optimism and X-Pessimism. Resolve X is the behavior of X-

Pessimism.  

 

 



 

 
Table 1. Simulation result by mode of X-propagation (Non-X propagation versus X resolve mode 

 

Use XPROP=resolve in RTL simulation to attempt to resolve X values by forcing them to deterministic states based 

on certain algorithms or resolution rules. This helps in modeling how the hardware might behave when encountering 

unknown states. It also provides better insight into how the synthesized hardware would behave when encountering 

unknown states and aids in catching issues that might arise due to gate-level optimizations or mismatches between 

RTL and gate-level representations as shown in figure 4.  

 

 
Figure 4. X-propagation simulation result on MUX design 

 

 

Race Conditions in Stimulus 

Races can cause deviations in simulation behavior. The most common races are.  

• Reset to clock race 

This race condition happens when the testbench changes the reset and clock at the same time. This can be avoided 

by changing the reset when the clock is active. We have observed that this is a fairly hard thing to do in complex 

testbenches. We added a feature to the Siemens EDA’s KaleidoScope tool to delay the reset until the active clock edge 

is absorbed.  

• Data to clock race  

This happens when the testbench drives data on an active edge of the clocks. To avoid this, data should always be 

driven on an inactive edge of the clock. If a user doesn’t have a clear way of handling this, to take advantage of the 

features of used simulator can be used when generating stimulus. For example, QuestaSim Siemens’s digital simulator 

provides -deraceclockdata switch for simulation, it can mitigate race between clock and data and provides a way to 

read old (stable) data values. 

 

 

III.   GOOD-MACHINE SIMULATION 

A fault campaign tool in its good-machine simulation must check to see that all the state elements of the design are 

matching with that of the input stimulus. This includes checking observe points and all state elements for deviations. 

 

Checking Observe Points 

Limiting the check to only observe points will compromise the correctness of the fault campaign results because 

dormant deviations of state elements can result in incorrect behavior. 

 

Criticality Checking All State Elements 

The KaleidoScope fault simulator checks not only observe points but also all state elements for deviations. The 

benefit of this methodology is that it avoids dormant deviations. Since KaleidoScope is checking all state elements 

and observe points for deviations, the results of fault campaigns are always accurate.  

 



Kaleidoscope’s approach to good-machine simulation consists of the following: 

• Check deviations at observe points 

• Check deviations at all state elements (flip-flops and latches) 

• Check deviations of memory content 

• Catch all dormant deviations 

• Fault campaign based on correct golden simulation 

 

IV.   FAULT CAMPAIGN 

We propose a fault campaign methodology that addresses the correctness and rightness of the campaign. Following 

this methodology, shown in figure 5, guarantees that the fault campaign is right the first-time.   

 

 

 
 

 

Figure 5. Fault campaign methodology 

Active Safety Mechanism 

Doing fault campaigns on stimulus where safety mechanisms are not active is detrimental as it will result in marking 

all the faults as undetected. It is very important to activate all safety mechanisms in the design for fault campaigns.  

A good approach is to put self-checking in place when implementing the safety mechanism which will copy the 

behavior of the fault and will trigger an alarm on the safety mechanism [9]. Use these steps: 

• Add an error inject capability in the safety mechanism  

• Use this capability to see the proper alarm trigger  

• Clear the error injection and clear the alarm (the safety mechanism is now ready to use) 

• Check the safety mechanism activation with classified detected fault results  

Stimulus Grading 

Stimulus grading is a technique where all input stimuli are analyzed to pick the one that allows performing the most 

fault injections. This can be as simple as looking at toggle coverage, or it may involve propagating faults to the next 

state element to see if the deviation propagates, which is more complex than looking at toggle coverage. 

 

 



Race Conditions in Stimulus  

We talked about how important it is to make sure to handle race conditions in generating stimulus for fault 

campaigns. In the same way, it is very critical to also make sure to handle race conditions in the fault injection flow 

so the results from the fault campaign will be consistent. 

 

Xprop=Resolve  

As discussed, we strongly recommended generating stimulus using the resolve x-propagation method. 
 

V.   TEST DATA ANALYSIS 

Good-Machine Simulation Deviations 

In the Samsung design, the initial good-machine simulation analysis showed quite a lot of deviations. After taking 

care of stimulus generation issues, these deviations went away. The initial stimulus was generated with 

XPROP=NOXPROP, which resulted in 15% of total state elements deviated. We generated stimulus with 

XPROP=RESOLVE and used it to do good-machine simulation. The deviation percentage went down to 4.63%. We 

did not stop here as we wanted to understand all the deviations to see if we could fix/address/understand them. In the 

next section we will discuss our approach to this.  

 

Stimulus Generate Method Deviation % 

Original stimulus  

Generated with XPROP=noXprop 
~ 15% 

Updated Stimulus  

Generated using XPROP=resolve 
4.63% 

Table 2. Xprop mode experiment results in good-machine simulation 
 

Resolving Remaining Deviation 

The remaining 4.6% deviations were analyzed in several categories. The table below shows several of these 

categories: 

 Cause 
Number of 

Deviations specific to the cause 

 Total Remaining (4.6%) 37,546 

1 Force signal list 

Missing simulation force list  

600 

170 

2 Race Delay 27,205 

3 RTL # Delays 7,722 

4 Simulation behavior vs synthesis mismatch 1,845 

5 Design should be the same between stimulus 

generation and good-machine simulation 
4 

Table 3. Results for resolving good-machine simulation deviations 

 

• The first set of deviations (600+170) are caused by incorrect force list and incorrect force behavior.  

• The second set of deviations (27,205) are because of the reset to clock race in the input stimulus. We added support 

in KaleidoScope to delay the reset; this fixed all the deviations.  



• The third set of deviations (7,722) are because of # delays in RTL. We generated stimulus using zero delay 

simulation.   

• The fourth set of deviations (1,845) are because of the out of index in FIFO models  

• The fifth set of deviations (4) are because of parameter mismatch between stimulus generation and good-machine 

simulation. Design set up is updated to fix parameter issue, which fixed these deviations. 

 

Fault Campaign Results 

The fault space for the Samsung design in this exercise is huge. Due to the size of the fault space, we generated a 

subset of faults using the statistical random sampling technique supported by KaleidoScope.  

 

The total number of faults analysed using this technique was 4598 faults. In the next section, we will walk through 

the results for this fault list. 

 

 Categories % Of faults 

1 Alarm Detected 65.87 % 

2 Residual 9.86 % 

3 No Deviation 14.98 % 

4 Not Injected 9.38 % 

Table 4. Results of fault campaign 

 

We used the fully validated stimulus from good-machine simulation, which guaranteed the correctness of the results. 

We injected a total of 100% of faults, and the results were observed in the four categories shown in Table 4. The first 

category, Alarm Detected, means the 65.87 % of faults were detected by a safety mechanism. The second category, 

Residual, means the 9.86 % of faults were not detected by a safety mechanism and are considered dangerous faults. 

But this is an expected result since most of the residual faults were injected on an unprotected area due to a partially 

configured safety mechanism on the boundary of the target design. The third category, No Deviation, means that 

14.98 % of faults were injected but did not cause any deviations in the design for this stimulus.  The fourth category, 

Not Injected, means that 9.38 % of faults were not injected because input stimulus did not allow it. The golden values 

for those fault nodes matched with that of the fault value throughout the simulation.  

 

VI.   CONCLUSION 

Here are the latest experiment results after applying all methods discussed in this paper. The results in Table 5 came 

from an experiment that was explained in a previous paper[4]. Table 6 shows the updated results after applying all the 

methods described in this paper including increasing stimulus quality, valid set up, and cleanup of all good-machine 

simulations. The total fault space used for this experiment is represented as 100% in the Total Faults% column. All 

other test results are represented as the detected fault ratio of the total fault space.  

 

BUS 

Logic 

Total Faults% 

(SA0+SA1) 

Test 1: 

Detected 

(%) 

Test 2: 

Detected 

(%) 

Test 3: 

Detected 

(%) 

Test 4: 

Detected 

(%) 

Test 5: 

Detected 

(%) 

NOC in 

Safety 

Island 

100% 3.27% 5.50% 9.80% 42.81% 

TBD 

(Future 

work) 
Table 5. Previous results of fault campaign [4] 

 

BUS 

Logic 

Total Faults% 

(SA0+SA1) 

Test 1: 

Detected 

(%) 

Test 2: 

Detected 

(%) 

Test 3: 

Detected 

(%) 

Test 4: 

Detected 

(%) 

Test 5: 

Detected 

(%) 

NOC in 

Safety 

Island 

100% 3.27% 5.50% 9.80% 42.81% 65.87% 

Table 6. Updated results of fault campaign 

 



In answering the question, “are my fault campaigns providing accurate results for ISO certification?”, we described 

critical concepts and processes that need to be used for quality fault campaign results. We also addressed the 

criticality of handling races, forces, delays, design set up concerns, and simulation versus synthesis issues. The 

analysis shown in this paper is based on the Samsung design where we illustrated how following the methodologies 

described in this paper will help ensure your fault campaign results are accurate. 
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