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Abstract-UPF power model plays vital role for soft and hard macro (i.e., IPs) verification and integration. On the other 

hand, terminal boundary typically signifies the power domain boundary for soft and hard macros and also plays significant 

roles in low power verification. However, understanding the self-containment of macros within power models, imply power 

intent object relations with ancestors, like supplies, strategies, source sink analogy, power states correlation and ultimately 

establish the terminal boundary concepts is utterly cumbersome to comprehend. This paper identifies and resolves the 

fundamental problems of IP design for low power systems and clearly shows with real examples, how the association of 

terminal boundary significantly simplifies to verify and integrate such IPs in larger systems. 
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I.   INTRODUCTION 

The IEEE 1801 standard specifies the low-power intent, i.e., UPF for any design. The UPF power model in 

the standard language reference manual (LRM) defines the power intent of a model - more specifically intents of soft 

macros and as well possibly of hard macros. On the other hand, the boundary formed around these soft or hard macro 

is termed as terminal boundary - as it terminates the effects of all most all regular UPF commands and imply new 

verification (simulation) as well integration semantics on boundary ports. For example, power intent on ancestor 

descendant contexts, global supplies, isolation, level-shifter strategies etc. on a terminal boundary implicates a 

completely new semantics. 

The intention behind such strict implication imposed by the UPF standard (IEEE 1801 2018, UPF 3.1) LRM 

is to simplify low power design, verification, implementation, and integration. Our motivation is to clarify such new 

semantics by accurately defining the characteristics of low power macros and identifying appropriate use models that 

establish the foundation for intuitive, portable, and standard low power verification in a bottom-up integration 

perspective.  

In this paper we intended to establish the transparent relations of power model and terminal boundary and 

there after conducting empirical research to identify and reinforce a complete perception of soft and hard macro 

design, verification, implementation, and integration, as well reuse environment. With real design examples, we 

planned to exercise all the predominant factors that govern the simple and manageable macro verification and 

integration solutions. Evidently such effort will not only reveal best-practice methodology but also expose limitations 

in existing IP verification flows. In order to do so, we will first explain what soft and hard macros are and how they 

appear in real low power design verification, integration and implementation environment. And thereby we will show 

how self-contained UPF power models are used in conjunction to the complicated terminal boundary concept to make 

the entire UPF based design, verification, and integration straightforward for larger systems. Followings are the 

foundational discussion that will connect readers to the succeeding sections. 

 

UPF: The Unified Power Format (UPF) also known as IEEE-1801, is not just a language to denote low-power intents 

or power specifications for a design – it’s a complete command set for verification and implementation of such low-

power designs. The UPF is the ultimate abstraction of low-power methodologies today. It provides the concepts and 

the artifacts of power management architecture, power aware verification and low-power implementation for any 

design. It provides the notions of power architecture from very early stage of design abstraction. Now it’s the industry 

trend and standard for lowering static and in some special cases dynamic power dissipation in every digital design. 

Overwhelmingly UPF standout as the only alternative choice of lowering power dissipation when fabrication process 

technology advanced below 65nm. 

 

Hard Macro: Hard macros are pre-implemented design blocks, essentially black box, available in behavioral RTL 

format without logic detail and associated with liberty library when instantiated in larger system level contexts for 

verification. For implementation, its available in netlist (LEF/GDSII) format, accompanied with liberty and mostly 

without UPF. So hard macro forms a terminal boundary which terminates all sorts of power management and 
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functional amendment to the block. Since this is already implemented and verified in smaller or self-contexts, a self-

contained UPF may not be mandatory but usually ships with ‘UPF_is_hard_macro’ attribute set to true. Such UPF 

specification comes without its own top-level domain but with driver/receiver supply for parents-context (outside), as 

well sometime for self-context (inside) ports. From UPF perspective, pre-synthesized netlist, liberty library and (or) 

minimum set of UPF is necessary for hard macro verification in bigger contexts. Obviously, there is no further 

implementation is required for hard macros. 

 

Soft Macro: Soft macro are pre-synthesized or not yet implemented design blocks, which are available in 

synthesizable RTL and essentially part of a larger RTL subtree. Even though soft macros are not black box, they are 

not refinable – neither from UPF nor from RTL perspective. For example, remove or modify isolation location. So just 

like hard macro, a terminal boundary forms around soft macro which terminates all sorts of power management and 

functional amendment to the block. However, differ from a hard macro, a self-contained UPF that will define its own 

top-level power with ‘create_power_domain -elements {.}’ and ‘UPF_is_soft_macro’ attribute set to true is 

mandatory for soft-macro. From UPF perspective, a set of constraint, configuration, and implementation UPF are 

combinedly necessary for soft macro verification. On top of that a liberty library will be required for implementation 

(to synthesize or hardened to a particular target technology). 

 

UPF power model: UPF power model is a self-contained UPF, which is used to define or encapsulate the power 

intent of a model. The models are essentially HDL, behavioral RTL and (or) liberty cells for soft and (or) hard macros. 

The encapsulation may confine one or more such models and consists of UPF key command such as 

‘define_power_model’ or ‘begin_power_model’ and ‘end_power_model’ in combinations with other regular UPF 

commands for power domains, isolation, retention, power switches etc. The ‘apply_power_model’ is another UPF key 

commands that binds power models to the design instances and connects the interface supply set handles and logic 

ports of a power model. The ‘apply_power_model’ command allows to map a supply set in the parent scope to a 

supply set in the power model. This is done using the -supply_map option. LRM also allows mapping a parent supply 

set to the power model’s supply set handle. Since the parent supply set is mapped to the model’s supply set handle, 

only supply set handles can be used inside of the power model. The UPF power model is the concept of self-

containment of power intent for soft and hard macros. 

 

Terminal Boundary: The terminal boundary is a new UPF concept of boundary (specifically power domain 

boundary) conditions that are applied around soft and hard macros. All sorts of UPF including find_object, global 

supply, location fanout for strategies, create object from parent contexts etc. and of course functional related 

amendment inside terminal boundary are strictly prohibited. It is also important to know that the driver and receiver 

supply contexts for soft & hard macro-IO ports reveal that they are regarded as the terminal points or terminal 

boundaries with respect to the ancestor power domain instances – this is common ground for all verification and 

implementation tools. Such boundary conditions obviously paved the way to confidently sign-off larger systems as 

well reuse them across multiple projects.  

 

A. Motivation and Contribution of this Paper: 

Our core objective is to accurately define the characteristics of low power macros and identifying appropriate 

use models that establish the foundation for intuitive, portable and standard low power verification in a bottom-up 

integration perspective. In this paper we conducted empirical research to identify and establish a complete perception 

of soft and hard macro verification, integration and reuse environment. With real design examples, we exercised all 

the predominant factors that govern the simple and manageable macro verification and integration solutions. We hope 

this paper, will serve as reference point to prepare IPs for low power verification, integration as well implementation.   

 

B. Organization of this Paper: 

This paper is organized in the following structure. Section I introduces the key concepts and relevant UPF 

topics in conjunction to the proposition and methodology. Section II explains fundamentals of UPF power model. 

Section III provides further insight of macros in terms of terminal boundary. The final sections IV draws the 

conclusion. The references are shown at the end. 

 

II UNDERSTANDING THE SELF-CONTAINMENT UPF FOR MACROS 

As defined in section I, UPF power model are the container for self-contained UPF that can be defined with 

‘define_power_model’ or ‘begin_power_model’ & ‘end_power_model’ duo (the later duo became legacy in latest 

1801-2018, UPF 3.1 LRM) in conjunction with ‘apply_power_model’ command. Even though semantically the 
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current or the legacy commands carries same concepts, the syntax are such that, they encapsulate other regular UPF 

commands, like, power domains, supply sets, isolation, retention, power switches, power state, etc. within the curly 

braces for  

 

‘define_power_model <model_name> -for <model_lists> {< UPF detail for the macro model>}’  

and withing begin and end commands (now legacy in current LRM) 

 

‘begin_power_model <model_name> -for <model_lists>  

< UPF detail for the macro model > 

end_power_model’  

 

For simplicity we will only discuss ‘define_power_model’ but the explanation will be equally applicable for 

begin/end_power_model duo. The other important point to remember that the <model_name> is the user provided 

simple name of the macro and <model list> actually lists the modules or liberty cells name of the macro. Following 

table shows example of a UPF power model, how its integrated in a parent or larger contexts in terms of UPF, and 

physical appearance of model or macro in a larger verification environment.    

 

Table 1 Understanding the UPF power model for Macros 
UPF power model macro.upf 

# Power model for macro 

define_power_model my_macro -for {cellA} {#start of encapsulation 

# Attribute to identify macro 

set_design_attributes -models cellA -is_hard_macro TRUE 

# Macros own top level  

create_power_domain PD_macro -elements {.} -supply {primary} 

# Associate interface supplies to boundary supply ports 

create_supply_set PD_macro.primary -function { power vdd } -function { ground vss } -update 

# Define power states for interface supply set handles 

add_power_state PD_macro.primary -supply \ 

-state {ON -supply_expr {(power == {FULL_ON,5.0}) && (ground == {FULL_ON,0.0})} -simstate NORMAL}\ 

-state {NON -supply_expr {(power == {OFF}) && (ground == {OFF,0.0})} -simstate CORRUPT} 

# Define Internal ISO, RET, Power Switch strategies 

… 

} #start of encapsulation 

Top Level UPF top.upf 

# UPF for design/dut interface that instantiate the macro  

# Design/DUT Power Domain 

create_power_domain PD_TOP -elements {.} 

… 

# Supply set for Design/DUT Power Domain 

create_supply_set PD_top_ss -function {power VDD_TOP_net} -function {ground GND_TOP_net} 

create_power_domain PD_TOP -update -supply {primary PD_top_ss} 

# Instantiating the macro to design 

load_upf "macro.upf" 

apply_power_model my_macro -elements {dut/I1} -supply_map { { PD_macro.primary PD_TOP.primary } } 

Top Level design/dut, macro and instantiation of macro 

module wrap_tb(); 

top dut (clk,reset,inp,outp,buff); 

endmodule 

 

module top (clk,reset,inp,outp,buff); 

.. 

supply_net_type vdd,vss; 

cellA   I1 (vdd,vss,clk,reset,inp,temp); 

endmodule 

 

module cellA (vdd,vss,clk,reset,inp,outp); 

<other logics>         

endmodule 

 
Hence its’ clear what the LRM denotes that a “UPF power model” can be used to represent one of the 

following: 
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A hard macro, indicated by the fact that the power model defines the attribute ‘UPF_is_hard_macro 

TRUE’' on the model to which it applies. In this case, the UPF commands within a power model describe power intent 

that has already been implemented within the instances to which this power model is applied. 

A soft macro, indicated by the fact that the instance to which this power model is applied has the attribute 

UPF_is_soft_macro TRUE. In this case, the UPF commands within the power model describe power intent that 

remains to be implemented.  

That’s the reason we mentioned in section I that for hard macro “a self-contained UPF may not be mandatory 

but usually ships with ‘UPF_is_hard_macro’ attribute set to true.” So, for hard macro define_power_model is not 

mandatory, and verification tool can get power intent info or validate it from liberty or combinedly both liberty and 

power model. For Soft macro, UPF power model is mandatory.  The requirement can be readily verified according to 

the UPF 3.1 as follows. 

 

A hard macro may have a Liberty description, as well as one of the following: 

- No UPF specification. 

- A self-contained UPF specification. 

- A UPF specification that does not define its own top-level domain. In this case, it shall be an error 

if any of its top-level ports’ driver_supply or receiver_supply is needed (by other commands in the UPF) but 

is not specified. 

 

For soft macro it shall be an error if the UPF specified for a soft macro is not self-contained. 

  

Before we move further to ‘what/why is self-contained UPF’, let’s understand the implication of 

‘apply_power_model’ on hard & soft macro. This is equally important for macro verification as well integration on to 

larger system. A power model can be applied to specific instances using apply_power_model. According to LRM, this 

binds power models to the design instances and connects the interface supply set handles and logic ports of a 

previously loaded power model. This is exactly shown in Table 1 as follows. 
  

# Instantiating the macro to design 

load_upf "macro.upf" 

apply_power_model my_macro -elements {dut/I1} \ 

    -supply_map { { PD_macro.primary PD_TOP.primary } } 

 Syntax of apply_power_model is as follows. 
apply_power_model power_model_name 

[-elements instance_name_list] 

[-supply_map {{instance_scope_supply_set current_scope_supply_set}*}] 

[-port_map {{instance_scope_logic_port current_scope_logic_net}*}] 

 

Where, the apply_power_model argument model_name identifies the user specified simple name of a 

previously defined power model, e.g. apply_power_model my_macro. The -elements option specifies a list of 

instances, relative to the current scope, to which the power model applies. If this option is missing, the scope is 

defined using the associated define_power_model or begin_power_model command. 

Specifically: 

 

- If -for is used with define_power_model, then this option sets the scope.  

- If a specified -elements instance does not match up with any of the model names in the -for list, 

verification tool must generate error. 

- If -for is not used, then the model_name sets the scope. 

 

The -supply_map option specifies how the supply set(s) from the instance scope in the defined power model 

associate with the supply set(s) of the current scope. The LRM specifies that, each instance_scope_supply and 

current_scope_supply pair implies an associate_supply_set command of the following format: 

 

associate_supply_set {instance_scope_supply_set current_scope_supply_set} 

 

The -port_map option specifies how the logic/supply ports of the defined power model connect to the 

logic/supply nets in the current scope. Interestingly, UPF 3.1 LRM allows nested power model i.e. one power model 

applied to a given instance may apply another power model to a descendant instance. For example, applying 

‘apply_power_model’ inside another power model can be done as follows. 
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Table 2 Nested UPF power model for Macros 

Example of nested power model: pm2

pm1

supplies

 

 

define_power_model pm1 ...    

{ .... } 

define_power_model pm2 ...   { ....     

apply_power_model pm1 ...   ...  

} 

 

This eventually will also require multiple load_upf -scope inside the power model for the nested 

apply_power_models. Note that a power model that is not referenced by an apply_power_model command does not 

have any impact on the power intent of the design. 

 

A. Why Self-Containment? 
A larger system, for example, a SoC, consists of several macros and other synthesizable (or implementable 

logic blocks). While implementing such larger system it may be required to implement an instance separately from the 

top-level scope with the intention to integrate this block back into the system later in the flow. This flow style is often 

referred to as a bottom-up flow. If using a bottom-up flow, some considerations regarding UPF partitioning must be 

made. In particular the implementation of a lower-level instance will be done without the parent scope being present. 

Therefore, the block UPF power intent must be self-contained; in that it cannot rely on power intent defined in an 

ancestor scope and it cannot define power intent that is to be implemented in an ancestor scope. 

 A system may contain instances that have already been implemented or instances that will implemented 

separately. These instances in a bottom-up flow need to be defined as macros. By defining an instance to be macro, 

the evaluation of certain UPF power intent commands are affected since a macro forms a terminal boundary. In order 

for a block to be implemented standalone from its parent scope, the UPF for this block must completely define its own 

power intent. Hence self-containment is essential. 

 

B. Case Study: Macro Integration for verification 

In section I and II, we explained that the ‘apply_power_model’ command allows to map a supply set in the 

parent scope to a supply set in the power model. This is done using the -supply_map option. LRM also allows 

mapping a parent supply set to the power model’s supply set handle. Since the parent supply set is mapped to the 

model’s supply set handle, only supply set handles can be used inside of the power model. This is explained in Figure 

1 below. 

SS_AON

SS_SW
SS_SW_PM

SS_AON_PM

VDD_GEN_PM

PD_SS_AON_PM

VDD_GEN

Power model – pm1

PD_SS_SW_PM

Use CSN to connect

Use –supply_map to connect

 
Figure 1 Macro integration from a larger system contexts  

 
Table 3 UPF power model Connections to Parent Contexts (Supply Association) 

UPF power model and Parent supply association 

# Power model and relevant UPF commands for inside the macro 

begin_power_model pm1 { 

   <all upf commands that apply inside of the power model> 

} 

# Power model and Parent associated with Supply set handle 

apply_power_model pm1 –elements {list_of_instances} \  

 -supply_map {{PD_SS_AON_PM.primary SS_AON} \  

      {PD_SS_SW_PM.primary  SS_SW} …} 

 

# Power model and Parent associated with supply set directly 

apply_power_model pm1 –elements {list_of_instances} \    

 -supply_map {{SS_AON_PM SS_AON} \  

      {SS_SW_PM SS_SW} …} 
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 The LRM also makes logic/supply ports of the power model connections with logic/supply nets connections 

in the parent contexts. Each pair in the -port_map option implies either a connect_logic_net command  or a 

connect_supply_net command depending on weather it’s a logic connection or a supply connection. The connection 

format are shown below: 

 

connect_logic_net current_scope_logic_supply_net –ports {instance_scope_logic_supply_port}  

OR 

connect_supply_net current_scope_logic_supply_netb–ports {instance_scope_logic_supply_port} 

 
Table 4 UPF power model Connections to Parent Contexts (Supply port map) 

UPF power model and Logic/Supply nets  

# Macro Power Model 

define_power_model test_macro -for ip_macro { 

set_design_attributes -elements {.} -is_hard_macro 

true 

# Create Supply Sets 

create_supply_net VDD 

create_supply_net DVDD 

create_supply_net DVDDLO 

create_supply_net VSS 

create_supply_net DVSS 

create_supply_set SS_VDD -function { power VDD }          

-function { ground VSS } 

create_supply_set SS_DVDD -function { power DVDD } -

function { ground DVSS } 

create_supply_set SS_DVDDLO -function { power DVDDLO 

} -function { ground DVSS } 

# Define Power Domains 

create_power_domain pd_test_macro -elements {.}\ 

        -supply {first SS_VDD} \ 

        -supply {second SS_DVDD} \ 

        -supply {third SS_DVDDLO}  

associate_supply_set SS_VDD -handle 

pd_test_macro.primary 

# Parent Contexts 

create_supply_set SWCoreSupply \ 

        -function [list power VDD_SW_top] \ 

        -function [list ground VSS_SW_top] 

# Parents Domain 

create_power_domain PD_Parents -elements {.} \ 

       -supply {first SWCoreSupply } \ 

       -supply {second SWIOSupply } \ 

       -supply {third SWIoIntermediate }  

associate_supply_set SWCoreSupply -handle 

PD_IO.primary 

# Macro connection 

load_upf ./ip_macro.upf 

apply_power_model test_macro \ 

       -elements {u1} \ 

        -port_map { {VDD VDD_SW_top} \ 

                    {VSS VSS_SW_top} \ 

                    {DVDD DVDD_SW_top} \ 

                    {DVSS DVSS_SW_top}  

                    {DVDDLO DVDDLO_SW_top}  } 

 
Hence its’ evident that the supply and logic connections are essential in order to hookup the macro through 

UPF power model for verification, integration and eventually implementation on to larger SoC contexts. The 

apply_power_model command describes the connections of the interface supply set handles of a previously loaded 

power model with the supply sets in the scope where the corresponding macro cells are instantiated. The arguments of 

the -supply_map option need to be such that the implied associate_supply_set commands are legal. In addition, the -

port_map shows how the interface logic or supply ports of the instance scope (i.e. macro in define_power_model is 

defined) connect with logic or supply nets in the current scope (i.e. parent where apply_power_model is used) 

respectively. The arguments of the -port_map option need to be such that the implied connect_logic_net or 

connect_supply_net commands are legal. 

 
C. Case Study: Macros from Successive Refinement Perspective 

UPF supports the successive refinement methodology where power intent or UPF information grows along 

the design flow to provide needed information for each design phases. Hard macros are already implemented and 

hence not actually relevant for this methodology, although its relevant for verification. However, in bottom-up 

integration, successive refinement can play significant role for soft macro verification and implementation. In such 

flow, soft macro will require constraint, configuration and implementation UPF all together for verification and in 

addition, liberty will be required for implementation (i.e. synthesis/hardening after verification at RTL). In UPF 

perspective of IP verification, integration and implementation - such constraint, configuration and implementation 

UPF will remain within UPF power model through define_power_model commands. 

We already discussed that soft macros follows self-contained UPF semantics and act as terminal boundary. 

Hence successive refinement flow is ideal for bottom-up integration and late implementation flows. However, 

successive refinement flow is not full-proof and there are known limitations, as noted in section I. Like soft macros 

are not refinable, for example, optimize or remove redundant strategies or alter locations of strategies inside. For 

example, remove or modify isolation location. Even the implementation UPF may not be altered for a different 

technology library mapping. The succeeding section will cover such limitations of in verification, integration and 

implementation 
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D. Limitations of Power model 

In addition to the limitations noted above, there are other consequences of verifying soft macros at block or 

system level configuration. For example due to terminal boundary restrictions, user may not have access and control 

of the power enable signals within a terminal boundary defined in UPF power model. Even though UPF provides 

mechanism to create and connect logic nets and ports in a scope through create_logic_net/port and 

connect_logic_net_port but such provisions are restricted. For example, consider Figure 2, where user may want to 

access different power control signal within IP1 terminal boundary as input ports only and as well associate a driver 

supply with the logic port to confirm that the correct supply is  ON for the control enable signals. 

 

pcm
IP1iso_en

pso_en

save

restore

iso_en

pso_en
save
restore

Created 

by UPF
Terminal 

boundary

Created 

by UPF

dindin

 
Figure 2 Macro verification from a larger system contexts  

 
Table 5 UPF power model limitation example 

User expectations in UPF power model 

# UPF Extension for IP1 macro in Power model 

create_logic_port iso_en 

create_logic_port pso_en 

create_logic_port save 

create_logic_port restore 

# associate a driver supply with the logic port 

set_port_attributes –ports {iso_en pso_en save restore} –driver_supply SS1 

 

In ideal situation, the set_port_attribute command for logic port and HDL port should have no functional 

difference. However, LRM restricts the extension of such input power enable ports with soft-macro and associate 

them with relevant driver supplies. One important aspect to remember that find_object will still not work for accessing 

such logic ports unless -traverse_macro is specified. 

 
III THE BOUNDARY CONDITION FOR VERIFICATION 

A. Why Boundary Condition? 

As explained in Section II, bottom-up integration and implementation are the only productive choice for SoC 

design today. Hence it became obvious to make some consideration regarding UPF portioning. In particular, the 

implementation of a lower level instance will be done without the parent scope being present. Therefore, the block 

UPF power intent must be self-contained. That is, it cannot rely on power intent defined in an ancestor scope and it 

cannot define power intent that is to be implemented in an ancestor scope.  Since the power model must be self-

contained as every aspect of larger SoC contexts are not available, the boundary conditions are specified for the 

model.  

Now it’s clear that whether design verification engineers  are dealing with hard or soft macros, the parent 

context of the UPF (where UPF power model of macros are loaded and apply_power_model is used) specifies only 

those conditions as seen from outside of these macros. This is why driver/receiver_supply are mandatory for soft and 

hard macros to specify appropriate driver_supply for output and receiver_supply for input ports from the outside of 

these macros (parent contexts). And exact opposite – i.e. driver_supply for input and receiver_supply for output from 

inside of these macros (self-contexts). However, inside declaration are optional for hard macros. But its obligatory to 

verify when or if they are present in accompanied UPF power model. 

 

B. What are the Boundary Condition for IPs Verification, Integration and Implementation? 

The boundary conditions for IPs (soft & hard macro) verification are already explained in previous sections 

combined with integration as well implementation perspective. Here in this section, our objective is to summarize 

these boundary conditions in standout formats so that it become very straightforward to prepare any IP (soft & hard) 

for low power verification, integration and implementation on to larger SoC contexts. Refer to Table 6 below that lists 

all these conditions.   
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Table 6 Boundary Condition for IPs (Soft & Hard macros)  
Boundary Conditions for Ips 

Self-contained UPF with own top-level power domain without any reference to any external objects  

No UPF objects inside macro from parent contexts 

No reference of power states 

No reference of child scope objects inside macro  

No visibility of real drivers and receivers for IOs from parent contexts 

driver_supply for output and receiver_supply for input from parent-contexts 

driver_supply for input and receiver_supply for output from self-contexts 

location fanout stops at boundary 

Isolation, Level-shifter location parent allowed 

Isolation input cannot specify -sink Isolation output cannot specify -source 

Level-shifer cannot specify input_supply, output_supply for self, other, fanout 

No global supply reference from inside macro 

find_object must accompany -traverse_macro 

No modification in connect_supply/logic_net and -reconnect 

 
C. Generic Factors affecting boundary conditions 

Even though we have explained the UPF perspective of integration and verification details of both soft & 

hard macros in previous sections, we realized that the methodological aspects that governs the macro integration and 

verification requires a standalone section for proper attention. In the previous sections, we have clarified the views, 

contents and contexts of soft and hard macros for power management perspective from system integration and 

verification perspective. In this section we will further clarify the additional power management semantics that are 

crucial for the entire design, verification, implementation and integration flow. Table 7 summarize the complete lists 

of all the predominant factors that affects and governs macro integration and verification. 

 

Table 7 Factors for Macro Verification, Integration and Implementation 
 

Predominant Factors Affecting Verification, Integration and Implementation 

UPF power model  Integration, Verification, Implementation 

Terminal boundary  Verification, Implementation 

Ancestor-descendant relations Verification, Implementation 

Driver-receiver or related supply contexts Integration, Verification, Implementation 

Power states expectations Integration, Verification 

Simulation state behavior Verification 

Corruption semantics etc.  Verification 

Flat Vs Hierarchical design (reason of having terminal point) Integration, Verification, Implementation 

 

IV CONCLUDING REMARKS 

In this paper we attempted to establish a very transparent relations between UPF power model and terminal 

boundary and there after identifying and reinforcing a complete perception of soft and hard macro design, verification, 

implementation, and integration environment. With real design examples, we exercised all the predominant factors 

that govern the simple and manageable macro verification and integration solutions. We intended to reveal best-

practice methodology but at the same time, also point out exact limitations in existing IP verification flows from UPF 

perspective. We intentionally avoided methodological perspective of soft and hard macro corruption semantics, as it 

requires an extensive research on liberty, UPF power model, set_simstate_behavior <ENABLE, SIMSTATE_ONLY, 

PORT_CORR_ONLY>,  inherited or parent power domain primary etc. based corruption perceptions and we consider 

pursuing such endeavor in a future research and publications. 
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