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Outline & Contribution of this Research
• This paper establish the transparent relations among 

• UPF power model and terminal boundary  

• Identified and reinforced a complete perception of 
• Low power Soft and hard macro design, verification, implementation, and integration, as well 

reuse environment. 

• In order to do so, 
• First explain what soft and hard macros are and how they appear 

• In real low power design verification, integration and implementation environment.

• Then explain how self-containment of UPF power models are used 
• In conjunction to the complicated terminal boundary concept 

• To make the entire UPF based design, verification, and integration straightforward for larger systems. 



Agenda
• What is UPF & UPF Power Model

• What is Soft & Hard Macro

• What is Terminal Boundary

• What are the Problems of Low Power IP Designs

• How to resolve low power IP design verification and Integration 

• Methodologies for Low Power IP Design, Verification & Integration

• Case Studies

• Concluding remarks



UPF
• The Unified Power Format (UPF) also known as IEEE-1801, 

• Not just a language to denote low-power intents or power specifications for a design 

• It’s a complete command set for verification and implementation of such low-power designs. 

• The UPF is the ultimate abstraction of low-power methodologies today. 

• It provides the concepts and the artifacts of 

• Power management architecture, 

• Power aware verification and 

• Low-power implementation for any design. 

• It also provide the notions of power architecture from 

• Very early stage of design abstraction. 

• Now it’s the industry trend and standard for 

• Lowering static and in some special cases dynamic power dissipation in every digital design. 



UPF Power Model
• UPF power model is a self-contained UPF, which is used to define or encapsulate the power intent of a model. 

• The models are essentially HDL, behavioral RTL and (or) liberty cells for soft and (or) hard macros. 

• The encapsulation may confine one or more such models and consists of UPF key command 

• such as ‘define_power_model’ or ‘begin_power_model’ and ‘end_power_model’ 

• Combined with other regular UPF commands for power domains, isolation, retention, power switches etc. 

• The ‘apply_power_model’ is another UPF key commands that binds power models 

• To the design instances and connects the interface supply set handles and logic ports of a power model. 

• The ‘apply_power_model’ command allows to map a supply set in the parent scope to a supply set in the power model. 

• This is done using the -supply_map option. 

• The UPF power model is the concept of self-containment of power intent for soft and hard macros.



Hard Macro
• Hard macros are pre-implemented design blocks, essentially black box, 

• Available in behavioral RTL format without logic detail and 

• Associated with liberty library when instantiated in larger system level contexts for verification. 

• For implementation, its available in netlist (LEF/GDSII) format, accompanied with liberty and mostly without UPF. 

• So hard macro forms a terminal boundary 
• Which terminates all sorts of power management and functional amendment to the block. 

• Since this is already implemented and verified in smaller or self-contexts, 
• A self-contained UPF may not be mandatory but usually ships with ‘UPF_is_hard_macro’ attribute set to true. 

• Such UPF specification comes without its own top-level domain but 

• With driver/receiver supply for parents-context (outside), 

• As well sometime for self-context (inside) ports. 

• From UPF perspective, 
• Pre-synthesized netlist, liberty library and (or) minimum set of UPF is necessary for hard macro verification in bigger contexts. 

• Obviously, there is no further implementation is required for hard macros.



Soft Macro
• Soft macro are pre-synthesized or not yet implemented design blocks, 

• which are available in synthesizable RTL and essentially part of a larger RTL subtree. 

• Even though soft macros are not black box, 
• They are not refinable – neither from UPF nor from RTL perspective. 

• For example, remove or modify isolation location. 

• So just like hard macro, 
• A terminal boundary forms around soft macro which terminates all sorts of power management and functional amendment to the block. 

• However, differ from a hard macro, following are mandatory for soft-macro
• A self-contained UPF that will define its own top-level power with ‘create_power_domain -elements {.}’ and 

• ‘UPF_is_soft_macro’ attribute set to true. 

• From UPF perspective, 
• A set of constraint, configuration, and implementation UPF are combinedly necessary for soft macro verification. 

• On top of that a liberty library will be required for implementation (to synthesize or hardened to a particular target technology).



Terminal Boundary
• The terminal boundary is a new UPF concept of boundary (specifically power domain boundary) conditions 

• that are applied around soft and hard macros. 

• All sorts of UPF commands are not allowed

• Including find_object, global supply, location fanout for strategies, create object from parent contexts etc. 

• And of course, functional related amendment inside terminal boundary are prohibited too. 

• It is also important to know that the driver and receiver supply contexts for soft & hard macro-IO ports reveal 

• That they are regarded as the terminal points or terminal boundaries with respect to the ancestor power domain instances 

• This is common ground for all verification and implementation tools. 

• Such boundary conditions obviously paved the way 

• To confidently sign-off larger systems as well reuse them across multiple projects. 



Problems with Low Power IPs
• Inconsistent definition or name of low power Soft and Hard macros

• Incomplete or not distinctly understandable requirements for UPF 

• Verification, Integration requirements are unknown.

• Objective is to accurately define the characteristics of low power macros and 

• identifying appropriate use models that establish the foundation for 

• intuitive, portable and standard low power verification in a bottom-up integration perspective. 

• Identify and establish a complete perception of soft and hard macro 

• verification, 

• integration and 

• reuse environment. 

• We exercised all the predominant factors that govern 

• The simple and manageable macro verification and integration (possibly reuse) solutions. 



Self-Containment UPF for Macros
• UPF power model are the container for self-contained UPF 

• That can be defined with ‘define_power_model’ or 
• ‘begin_power_model’ & ‘end_power_model’ duo 

• (the later duo became legacy in latest 1801-2018, UPF 3.1 LRM) 

• In conjunction with ‘apply_power_model’ command. 

• Note:
• A power model that is not referenced by an apply_power_model command 
• Will not have any impact on the power intent of the design.

• Even though semantically the current or the legacy commands carries same concepts, 
• The syntax are such that, they encapsulate other regular UPF commands, 

• like, power domains, supply sets, isolation, retention, power switches, power state, etc. 
• within the curly braces for ‘define_power_model <model_name> -for <model_lists> 
• {< UPF detail for the macro model>}’ 

• And begin and end commands (now legacy in current LRM)
• ‘begin_power_model <model_name> -for <model_lists> 
• < UPF detail for the macro model >
• end_power_model’ 



UPF Power Model?
“UPF power model” can be used to represent one of the following:

• For a hard macro,
• The power model defines the attribute ‘UPF_is_hard_macro TRUE’ 
• The UPF commands within a power model describe power intent that has already been implemented

• That’s the reason for hard macro “a self-contained UPF may not be mandatory but usually ships with ‘UPF_is_hard_macro’ attribute set to true.” 

• So, verification tool can get power intent info or validate it from liberty or combinedly both liberty and power model. 

• A hard macro may have a Liberty description, as well as one of the following:
• No UPF specification.
• A self-contained UPF specification.
• A UPF specification that does not define its own top-level domain. In this case, it shall be an error
• if any of its top-level ports’ driver_supply or receiver_supply is needed (by other commands in the UPF) but is not specified.

• For a soft macro,
• The power model define the attribute UPF_is_soft_macro TRUE. 
• The UPF commands within the power model describe power intent that remains to be implemented. 

• A Soft macro, 
• UPF power model is mandatory.  
• The requirement can be readily verified according to the UPF 3.1 as follows.

• It shall be an error if the UPF specified for a soft macro is not self-contained.



Self-Containment UPF for Macros
UPF power model macro.upf

# Power model for macro
define_power_model my_macro -for {cellA} 

{
#start of encapsulation

# Attribute to identify macro
set_design_attributes -models cellA -is_hard_macro TRUE

# Macros own top level 
create_power_domain PD_macro -elements {.} -supply {primary}

# Associate interface supplies to boundary supply ports
create_supply_set PD_macro.primary -function { power vdd } -function { ground vss } -update

# Define power states for interface supply set handles
add_power_state PD_macro.primary -supply \
-state {ON -supply_expr {(power == {FULL_ON,5.0}) && (ground == {FULL_ON,0.0})} -simstate NORMAL}\
-state {NON -supply_expr {(power == {OFF}) && (ground == {OFF,0.0})} -simstate CORRUPT}

# Define Internal ISO, RET, Power Switch strategies
…

} 
#end of encapsulation

Top Level UPF top.upf

# UPF for design/dut interface that instantiate the macro 
# Design/DUT Power Domain
create_power_domain PD_TOP -elements {.}
…
# Supply set for Design/DUT Power Domain
create_supply_set PD_top_ss -function {power VDD_TOP_net} -function {ground GND_TOP_net}
create_power_domain PD_TOP -update -supply {primary PD_top_ss}

# Instantiating the macro to design
load_upf "macro.upf"
apply_power_model my_macro -elements {dut/I1} -supply_map { { PD_macro.primary PD_TOP.primary } }

Top Level design/dut, macro and instantiation of macro

module wrap_tb();
top dut (clk,reset,inp,outp,buff);
endmodule

module top (clk,reset,inp,outp,buff);
..
supply_net_type vdd,vss;
cellA   I1 (vdd,vss,clk,reset,inp,temp);
endmodule

module cellA (vdd,vss,clk,reset,inp,outp);
<other logics>        
endmodule



Why Self-containment?
• Todays SoC, consists of 

• several macros and other synthesizable (or implementable) logic blocks. 
• While implementing such larger system 

• Requirements may come to implement an instance separately from the top-level scope 
• The intention is to integrate this block back into the system later in the flow. 

• This flow style is often referred to as a bottom-up flow. 
• Bottom-up flow requires certain considerations regarding UPF partitioning. 

• In bottom-up integration
• The implementation of a lower-level instance done without parent scope

• It cannot rely on power intent defined in an ancestor scope and 
• It cannot define power intent that is to be implemented in an ancestor scope.

• Therefore, the block UPF power intent must be self-contained; 



Why Self-containment?
• A SoC may contain instances

• That already been implemented or 

• instances that will be implemented separately.  

• These instances in a bottom-up flow need to be defined as macros.
• By defining an instance to be macro, 

• The evaluation of certain UPF power intent commands are affected 
• Because a macro forms a terminal boundary. 

• When a block to be implemented standalone from its parent scope, 
• The UPF for this block must completely define its own power intent. 

• Hence self-containment is essential.



Nested Power Model
• Nested power model are also allowed

• one power model applied to a given instance 
• may apply another power model to a descendant instance. 

• e.g. applying ‘apply_power_model’ inside another power model

• This eventually will also require 
• Multiple load_upf -scope inside the power model for the nested apply_power_models. 

Example of Nested Power Model:

define_power_model pm1 ...  { 
.... 
}

define_power_model pm2 ...   { ....    
apply_power_model pm1 ...   ... 

}

 pm2

pm1

supplies



Macro Integration for Verification
• How to hookup macro for verification or integration on to larger system?

• Supply and logic connections are utilized to 
• Hookup the macro through UPF power model 

• For verification, and eventually integration on to larger SoC contexts.

• For supply
• ‘apply_power_model’ -supply_map 

• For Logic
• connect_logic_net current_scope_logic_supply_net –ports 

{instance_scope_logic_supply_port} 

• connect_supply_net current_scope_logic_supply_netb–ports 
{instance_scope_logic_supply_port}



Macro Integration for Verification
• For supply connection - UPF allows to map 

• A supply set in parent scope to a supply set in the power model. 
• Also allows mapping a parent supply set to power model’s supply set handle. 

• Since the parent supply set is mapped to the model’s supply set handle, 
• Only supply set handles can be used inside of the power model.

• For logic connection – UPF allows to connect
• From logic/supply ports of the power model to logic/supply nets in parent contexts
• Each pair in the -port_map option implies either

• A connect_logic_net command  or 
• A connect_supply_net command 

• Depending on weather it’s a logic connection or a supply connection.



Macro Integration for Verification
 

SS_AON

SS_SW
SS_SW_PM

SS_AON_PM

VDD_GEN_PM

PD_SS_AON_PM

VDD_GEN

Power model – pm1

PD_SS_SW_PM

Use CSN to connect

Use –supply_map to connect

UPF power model and Parent supply association

# Power model and relevant UPF commands for inside the macro
begin_power_model pm1 {

<all upf commands that apply inside of the power model>
}
# Power model and Parent associated with Supply set handle
apply_power_model pm1 –elements {list_of_instances} \

-supply_map {{PD_SS_AON_PM.primary SS_AON} \
{PD_SS_SW_PM.primary  SS_SW} …}

# Power model and Parent associated with supply set directly
apply_power_model pm1 –elements {list_of_instances} \

-supply_map {{SS_AON_PM SS_AON} \
{SS_SW_PM SS_SW} …}

• apply_power_model describes 
• The connections of the interface supply set handles of a previously loaded power model 
• With the supply sets in the scope where the corresponding macro cells are instantiated. 



Macro Integration for Verification

• -port_map shows the interface logic or supply ports of the instance scope 
• That is macro in define_power_model connects with logic or supply nets 

• In the current scope where apply_power_model is applied 

UPF power model and Logic/Supply nets 

# Macro Power Model
define_power_model test_macro -for ip_macro {
set_design_attributes -elements {.} -is_hard_macro true
# Create Supply Sets
create_supply_net VDD
create_supply_net DVDD
create_supply_set SS_VDD -function { power VDD }          -function { ground VSS }
create_supply_set SS_DVDD -function { power DVDD } -function { ground DVSS }
# Define Power Domains
create_power_domain pd_test_macro -elements {.}\

-supply {first SS_VDD} \
-supply {second SS_DVDD} \
-supply {third SS_DVDDLO} 

associate_supply_set SS_VDD -handle pd_test_macro.primary

UPF power model and Logic/Supply nets 

# Parent Contexts
create_supply_set SWCoreSupply \

-function [list power VDD_SW_top] -function [list ground VSS_SW_top]
# Parents Domain
create_power_domain PD_Parents -elements {.} \

-supply {first SWCoreSupply } \
-supply {second SWIOSupply } \

associate_supply_set SWCoreSupply -handle PD_IO.primary
# Macro connection
load_upf ./ip_macro.upf
apply_power_model test_macro -elements {u1} \

-port_map { {VDD VDD_SW_top} \
{VSS VSS_SW_top} \
{DVDD DVDD_SW_top} \



Successive Refinement & Macros
• As the design progress through phases

• Obviously UPF information grows for each of these phases. 

• Hard macros are typically already implemented and 
• Hence not actually relevant for this methodology, 
• Although its relevant for verification. 

• For Soft macro verification and implementation
• In bottom-up integration, successive refinement can play 

significant role
• In such flow, soft macro will require 

• Constraint UPF
• Configuration UPF 
• Implementation UPF all together for verification 

• In addition
• liberty will be required for implementation 
• (i.e. synthesis/hardening after verification at RTL). 

IP/Block Development IP/System Configuration System Implementation

• Create IP
• Define power 

aware constraint

• IP/SoC integration
• Configure all IPs
• Validate configuration

• Add power management 
implementation detail

• Verify implementation

Courtesy: IEEE Std 1801™-2018 



Successive Refinement & Macros
• The constraint, configuration and implementation UPF for IPs

• Remains within “UPF power model” through define_power_model commands.

• Soft macros follows 
• self-contained UPF semantics and 
• Act as terminal boundary. 

• Hence successive refinement flow is ideal for bottom-up integration
• However, successive refinement flows have known limitations

• Like soft macros are not refinable.
• e.g., Optimize or remove redundant strategies or 
• Change / modify locations of strategies inside of macros 

• Even the implementation UPF may not be altered 
• For a different technology library mapping. 



Limitations of UPF Power Model
• Certain limitations of verifying soft macros at block or system level

• e.g., due to terminal boundary restrictions, 
• User have no access and control of the power enable signals
• Even UPF have mechanism to create/connect logic nets & ports in a scope

• Through create_logic_net/port and connect_logic_net_port 

• But such provisions are restricted by terminal boundary. 

• How to access?
• Different power control signal within a terminal boundary as input ports only 

• How to associate?
• A driver supply with a logic port to confirm that the correct supply is  ON for 

the control enable signals.



Limitations of UPF Power Model

• Ideally set_port_attribute command for logic port and HDL port have no functional difference. 
• But LRM restricts the extension of such input power enable ports with soft-macro 

• And associate them with relevant driver supplies. 

• Note: find_object will still not work for accessing such logic ports unless -traverse_macro is specified

User expectations in UPF power model

# UPF Extension for IP1 macro in Power model
create_logic_port iso_en
create_logic_port pso_en
create_logic_port save
create_logic_port restore
# associate a driver supply with the logic port
set_port_attributes –ports {iso_en pso_en save restore} –driver_supply SS1

 
pcm

IP1iso_en

pso_en

save

restore

iso_en

pso_en
save
restore

Created 

by UPF
Terminal 

boundary

Created 

by UPF

dindin



Boundary Condition 
• Bottom-up integration & implementation 

• Most productive choice for SoC design-verification

• UPF portioning is obvious- specifically for implementation 
• A lower-level instance needs to be done without the parent scope. 

• So, block-level UPF (power intent) must be self-contained. 
• It cannot rely on power intent defined in an ancestor scope and 
• It cannot define power intent that is to be implemented in an ancestor scope.  

• Since every aspect of larger SoC contexts are not available, 
• It is obvious to make some consideration regarding the boundary conditions for the 

model (IP or macros)



Boundary Condition 
• Whether dealing with hard or soft macros, the parent context of the UPF 

• Specifies only those conditions as seen from outside of these macros
• (where UPF power model of macros are loaded and apply_power_model is used). 

• This is why driver/receiver_supply are mandatory for soft & hard macros 
• These specify appropriate from the outside of these macros (parent contexts).

• driver_supply for output and 
• Receiver_supply for input ports

• And exact opposite from inside of these macros (self-contexts). 
• driver_supply for input and 
• receiver_supply for output

• NOTE: Inside declaration are optional for hard macros. 
• But its obligatory to verify when or if they are present in accompanied UPF power model.



Boundary Condition
Boundary Conditions for IPs

Self-contained UPF with own top-level power domain without any reference to any external objects

No UPF objects inside macro from parent contexts

No reference of power states

No reference of child scope objects inside macro

No visibility of real drivers and receivers for IOs from parent contexts

driver_supply for output and receiver_supply for input from parent-contexts

driver_supply for input and receiver_supply for output from self-contexts

location fanout stops at boundary
Isolation, Level-shifter location parent allowed

Isolation input cannot specify -sink Isolation output cannot specify -source

Level-shifer cannot specify input_supply, output_supply for self, other, fanout

No global supply reference from inside macro

find_object must accompany -traverse_macro

No modification in connect_supply/logic_net and –reconnect



Macro Verification, Integration & Implementation

Predominant Factors Affecting Verification, Integration and Implementation

UPF power model Integration, Verification, Implementation

Terminal Boundary Verification, Implementation

Ancestor-descendant relations Verification, Implementation

Driver-receiver or related supply contexts Integration, Verification, Implementation

Power state expectations Integration, Verification

Simulation state behavior Verification

Corruption semantics etc. Verification

Flat vs Hierarchical design (reason of having terminal points) Integration, Verification, Implementation

• Methodological aspects that governs 
• Macro verification, integration and implementation



Concluding Remarks
• This paper we attempted to establish a very transparent relations 

• Between UPF power model and terminal boundary and
• There after identifying and reinforcing a complete perception of 

• Soft and hard macro design, verification, implementation, and integration environment. 

• With real design examples, we exercised all the predominant factors 
• That govern the simple and manageable macro verification and integration solutions. 

• We reveal best-practice methodology but at the same time, 
• Also point out exact limitations in existing IP verification flows from UPF perspective. 

• We intentionally avoided methodological (simulation) perspective of
• Soft and hard macro corruption semantics, as it requires an extensive research on 

• liberty, UPF power model, set_simstate_behavior <ENABLE, SIMSTATE_ONLY, PORT_CORR_ONLY>,  
• inherited or parent power domain primary etc. based corruption perceptions and 

• We consider pursuing such endeavor in a future research and publications.

• Hope this paper, will serve as reference point to prepare IPs 
• For low power verification, integration as well implementation.  


