

Shift-Left on Timing Constraints Verification: Beyond Typical Front-End Execution

Vineeth B, Deepmala Sachan, Ritesh Jain Intel Technology India Pvt. Ltd.

INTRODUCTION & BACKGROUND

Definitions

More than 300

Generated Clock

Master Clock

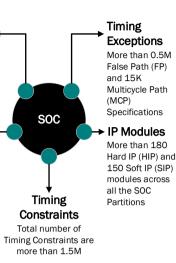
and 900

Definitions

Partitions

Modern SOCs

have multiple


including both

HIP and SIP

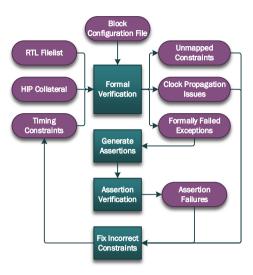
partitions

Clock

- Accuracy of timing constraints is critical for proper synthesis results and timing closure of modernday SOC designs
- Gate-Level Simulation (GLS) is traditionally used to verify the timing constraints, but it occurs too late in design cycle, has long turnaround time and offers less coverage

FORMAL VERIFICATION RESULTS

- 100% Constraint Mapping & Zero Clock Warnings at RTL1P0
- 74.36% Generated Assertion reduction by implementing formal verification improvement techniques
- Formal Verification Improvement Results


#	Formal Verification Improvement Techniques	No. of Assertions	Assertion Reduction %
1	Flat Run	508999	0.00%
2	Adding Synchronizer Cell Specification	506554	0.48%
3	Adding Input Port Constraints	455080	10.59%
4	Adding Asynchronous Reset Constraints	269077	47.13%
5	Importing CDC Constraints	135435	73.39%
6	Adding Static Signal Constraints based on Uncovered Assertions	130491	74.36%

CONCLUSIONS & FUTURE WORK

- Proposed methodology is faster, scalable and more efficient than conventional methods (such as GLS)
- Achieved significant noise reduction in timing exception verification by identifying and excluding all the timing exceptions that do not require verification upfront (such as NO PATH, SKIPPED, WAIVED exceptions)
- Identified and fixed all the incorrect MCP exceptions before timing closure of the design, thereby preventing any potential silicon bug escape and costly re-spin of the silicon
- Future efforts will focus on expanding the assertion verification to include DFX-related MCPs. The future plans also include extending the entire methodology for False Path (FP) verification as well.

TIMING CONSTRAINT VERIFICATION METHODOLOGY

- Primary Inputs are RTL File List, HIP Collateral, Timing Constraints and Block Configuration File
- Ensure 100% Timing Constraint Mapping
- Ensure Zero Clock
 Propagation Issues
- Formal Verification and Assertion Generation
- Assertion Verification in Functional Simulation

TIMING EXCEPTION VERIFICATION RESULTS

• SOC MCP Exception Formal Verification Results

% of PASSING	% of FAILING	% of NO PATH	% of SKIPPED	% of WAIVED
MCPs	MCPs	MCPs	MCPs	MCPs
66.17%	12.40%	18.18%	2.85%	0.40%

 SOC Functional (non-DFX) MCP Exception Assertion Simulation Verification Results

No. of Assertions Generated corresponding to Functional (non- DFX) MCPs	No. of PASSED Assertions		No. of UNCOVERED Assertions	No. of MCPs corresponding to Assertion Failures
4588	1385	154	3049	7

REFERENCES

[1] P. Limmer, D. Moeller, M. Mueller and C. Roettgermann, "Validation of Timing Constraints on RTL: Reducing Risk and Effort on Gate-Level," in DVCON Europe, 2016.

[2] A. Khandelwal, A. Gaur and D. Mahajan, "Gate level simulations: verification flow and challenges," EDN, 5 March 2014. [Online]. Available: https://www.edn.com/gate-levelsimulations-verification-flow-andchallenges

We extend our heartfelt gratitude to our management for orchestrating the invaluable collaboration between our Front-End and Back-End teams. The concerted effort among the RTL Design, Verification, Structural Design, and Full Chip Timing Teams has been instrumental in achieving our collective goals.