

A Scalable Gray-Box Instance-Based

Reachability Predictor for Automated DV

Regression Scheduling

Coverage closure is the process of maximizing all the coverage metrics in a Design Under Test (DUT). However, the goal

of 100% coverage is hard to achieve due to the large stimuli space and the vast number of simulations required to identify

all the possible simulation paths reaching the different DUT modules instantiated. Herein, we propose an Instance-Based

Reachability Predictor Model able to guide the test selection and simulate tests expected to contribute to the desired

coverage improvement, thus avoiding redundant tests. Moreover, we propose an optimal batch regression scheduling

approach to address traditional machine learning limitations applied to heavily parallelized simulation flow. The proposed

methodology achieves 32% time saving with respect to Constrained Random Verification (CRV) saturation time and

utilizes 40% less resources with an average improvement of 0.74% code coverage and 2.74% functional coverage.

I. INTRODUCTION

The traditional Design Verification (DV) flow relies on the execution of many different parametrized tests

affecting the stimulus provided in input to a DUT. DV engineers create tests and simulate them across the entire

lifecycle of a project. A test is created to exercise different portions of the DUT functionality, by controlling directly

and indirectly the input stimulus. The use of constrained random variables, random variables combined with user-

defined constraints, is a common practice to ensure specific design functionalities to be exercised by a test while at

the same time guaranteeing randomization of the stimulus. These tests, and a set of parameters (plusargs) affecting

the stimuli generation via CRV, are defined in Testbenches (TBs).

In the lifecycle of a project, DV engineers first aim at maximizing metrics such as functional coverage and

assertion coverage for a high-level assessment of the design functionality, and only in the later phase of the project

aim at maximizing code coverage metrics such us line, conditions, branch, finite state machine (FSM), and toggle

coverage. Ideally, the verification of a design is completed once all the code and functional coverage metrics reach

100%. Nonetheless, this goal is extremely hard to achieve due to the high complexity of the Register Transfer Level

(RTL) digital logic and the large input sampling space. To directly exercise portions of a design, directed tests are

created ad-hoc by verification engineers to further narrow the constrained input sampling space, executing a lower

number of simulations to reach a higher coverage target. However, designing directed tests is a challenging task

requiring significant time and human resources.

To help DV engineers address their need, in this work we propose a Reachability-based Test Scheduler to guide

the test selection based on the ability of a test to reach hard-to-cover portions of a design. A Machine Learning (ML)

model is trained to learn, from the test parameters (plusargs), the ability of a test to reach (cover) a specific RTL

instance. Then, an optimal regression scheduler is used to allocate tests over a regression, while dynamically changing

the coverage target over time to achieve coverage closure. The scheduler identifies the most effective tests required to

reach uncovered portions of a design, and similar to a directed testing scenario, leverages this information by allocating

the tests that are estimated to potentially improve coverage.

Our contributions are the following:

a) a Reachability Predictor Model (RPM) used to predict the ability of a given test to reach (cover) a target RTL

design instance,

b) a Hierarchical Ranking Strategy ordering the test identified by the predictor RPM in order to accelerate

coverage closure,

d) a Test Regression Scheduler optimizing the test allocation across regression batches, balancing the allocation

of tests accounting for available resources such as processors, licenses, and simulation time.

Given an initial regression, our methodology relies on test plusargs to train a model, learning the ability of a test

to reach specific design instances. The trained model is leveraged to predict the test targeting the rare instances–the

hard-to-reach, and partially covered ones. Tests most likely able to reach such instances are selected for a new

regression. Then, selected tests are scheduled balancing the resource usage and avoiding bottlenecks related to long

running tests. Once the new regression data are collected the model is updated and the process is repeated until a target

coverage closure, or a time budget is reached.

II. STATE OF THE ART

In the past years, the problem of automated DV has been extensively researched and different methodologies have

been proposed to accelerate coverage closure and replace standard CRV flows typically adopted in the industry. Two

main categories of methodologies can be identified: the first aiming at directly generating input stimulus, and the

second utilizing the existing verification environments, through available TB knobs such as plusargs, constrained

spaces etc. To the first category belong approaches leveraging static and dynamic based analysis for test generation

[1-3]. These methodologies rely on concolic testing, SMT/SAT solvers and leverage the design property extracted at

compile time combined with dynamically generated coverage information. While effective for small designs, these

approaches are often unable to scale for large industrial designs. On the other hand, methodologies utilizing the

existing TB (e.g., by directly controlling the input constrained space) usually rely on ML models to estimate the impact

of plusargs on the resulting coverage. These approaches aim at identifying the most promising tests or plusargs in

order to avoid redundant simulations and schedule new tests. Among these methods, different type of ML models

have been explored, such as Bayesian Networks [4][5], Genetic Algorithms [6] and Neural Networks [7].

 More recently Huang et al. [8] proposed Multi Armed Bandit (MAB) based regression to automatically configure

the plusargs with the goal of maximizing the coverage. This approach leverages Bayesian MAB to identify and select

the best test configuration to simulate without any knowledge of the DUT. Similarly, Jayasree et al [9] proposed to

employ decision trees to estimate the test coverage and simulation time and schedule new regressions.

Our approach, similarly, to Huang et al. [8] and Jayasree et al. [9] leverages model predictions to generate new

regression batches, but differently from previous works, leverages the DUT property and hierarchical information, to

design an instance-based reachability prediction model estimating the effectiveness of the test over specific targets of

the design hierarchy. Moreover, we propose a ML-aware scheduling strategy which accounts for the training, data

extraction, and inference of the trained model combined with the parallelization capabilities of industrial DV clusters.

Thus, we can provide a solution effectively able to address the needs of real industrial settings and large-scale designs.

III. PROBLEM FORMULATION

The goal of our methodology is to identify the optimal set of tests to schedule over a regression in order to

maximize a target coverage metric while minimizing the number of required simulations. Due to the intractability of

the input space and the complex logic of the RTL design, reaching 100% coverage across all the possible metrics is

often infeasible. Thus, verification engineers provide waivers, in the form of exclusion files, to exclude specific

coverage targets and constrain the reachable portion of a design. Moreover, due to project timelines, the maximum

number of simulations that can be run is often limited to a user defined budget or to a specific timeframe. In this work,

we refer to the maximum reachable coverage, or coverage closure, as the coverage that can be obtained after

accounting for all the user-specified exclusion files. Similarly, our simulation budget refers to the weekly regression.

In this work, a set of tests simulated over a 48-hour timeframe is considered as a weekly regression. This is a common

scenario for design verification engineers who run longer batch of simulations over a weekend during ongoing

development process.

Verification engineers create a set of different tests flavors F to exercise specific design functionality. Moreover,

they define plusargs P to parametrize the test execution. For each flavor in F, a user defined subset of plusargs can be

leveraged to affect a specific flavor functionality. The simulation of a flavor and its associated set of plusargs,

generates a coverage report. The coverage report can be represented, for each coverage metric, as logical vector 𝑐 of

zeros and ones describing the coverage obtained for each coverage target (line, assertion, cover point, branch, etc.).

The cartesian product among the set of all the available plusargs P, combined with the user-defined flavors constraints,

and the set of available flavors F defines the input test space T, such that T = P × F.

We model flavors and plusargs using categorical and numerical values to encode the input features. Plusargs

preprocessing is straightforward. For each numerical plusarg integer and binary values are used, while the categorical

ones are represented using one-hot encoding. Then, for each plusarg having numerical values, data are standardized

using mean normalization. Means standardization subtracts the mean and divides the plusarg values by it to make all

feature values fluctuate around the mean and scaling to unit variance. To define the target classes, we introduce the

notion of reachability. Reachability is used to identify the ability of a test to reach a specific set of targets in the

coverage vectors. The Methodology section discusses the details regarding the notion of reachability and its use in the

context of the model prediction to schedule batches of regression.

IV. METHODOLOGY

A. Reachability Predictor Model

In our proposed methodology, we introduce the notion of reachability. In a typical testbench, sets of plusargs are

defined for a given flavor of a test. The simulation of such under different seeds leads to different simulation output

generating different coverage vectors. We combine the coverage information obtained from the simulations with the

RTL design hierarchy to define reachability as the probability vector that a test t has of covering one or more targets

in the design hierarchy. Targets can be defined at different levels of granularity according to the desired metric of

interest. While considering code coverage metrics we target instance, and, when considering functional coverage

metrics, we target coverpoints. Thus, when selecting a test, we aim at selecting one such that it will be the most likely

to reach a target instance i. Given a history of past simulations and an RTL design hierarchy, for each test t, we can

identify the probability 𝑅𝑖,𝑡 associated to each target i of being covered by the test t, as:

𝑅𝑖,𝑡 =
1

𝑁𝑡
 ∑

𝑁𝑡
𝑘=0

∑ 𝑐𝑖,𝑘

|𝐶𝑖|
, (1)

where Nt is the number of times test t is simulated, Ci is the set of line associated with instance 𝑖 ∈ 𝐼 with 𝐼 being the

set of all possible instances, and ci,k is a coverage vector associated to lines, conditions, branches, FSM, assertions, or

coverbins for instance i obtained from a given simulation k of a test t. For the rest of this document, we discuss the

methodology as referring to code coverage in RTL instances. However, note that the same approach may be similarly

applied to coverpoint bins for functional coverage reachability.

Example: Assume that a design has two instances, instance dut.foo, and instance dut.bar, and both are

covered by a single test simulation. Instance dut.foo has 10 lines, and only 8 of them are covered during the

simulation, while instance dut.bar has 25 lines and 10 of them are covered. We say the instance dut.foo is 80%

reachable by the provided test and instance dut.bar is 40% reachable by the test. Across different seeds—simulation

of the same test flavor—we average the reachability percentages. Figure 1a) shows an example of design hierarchy

having five different instances. For each test, the line coverage vector is averaged to associate a coverage score for

each instance.

Thus, we can define 𝑅⃗ 𝑡 as the reachability vector associated to a test t reaching all the available instances I as

follow:

𝑅⃗ 𝑡 = {
𝑅𝑖,𝑡 = 1, 𝑖𝑓 𝑅𝑖,𝑡 ≥ 0.5

𝑅𝑖,𝑡 = 0, 𝑖𝑓 𝑅𝑖,𝑡 < 0.5
}, ∀ 𝑖 ∈ 𝐼 (2)

Based on the previous example, for test t, according to Eq. (2) the instance dut.foo is reachable (because 8/10 >

0.5), while instance dut.bar is not (10/25 < 0.5).

The goal of our RPM is to predict, given input feature vector of plusargs defining a test flavor f, the reachability

vector 𝑅⃗ 𝑡, such that:

RPM(f, p) = 𝑅⃗ 𝑡, (3)

where f is a specific test flavor, and p is the associated set of plusargs defining the test.

Through the RPM inference, we can approximate the reachability of an RTL hierarchy target provided an input

test—a combination of plusargs and flavor. Thus, we can leverage historical data to evaluate the impact of input

Figure 1. a) For a given number of instances, the mean of coverage information associated to each instance is calculated. Then, the mean coverage

for each instance across the test history is derived. This is termed as reachability score. A user defined threshold, in our case of 0.5, it is used to

convert scores into classes. b) Prediction sample for the instances from the RPM, showing the confidence of the model of reaching an instance for

a given set of plusargs (test).

features in reaching specific regions of a designs and approximate the expected coverage. Using these predictions, we

can identify which tests to select to reach a given target instance and schedule a batch of tests to simulate over a

regression while avoiding noncontributing ones.

Example: given the predicted test vectors in Figure 1b), test t3 is predicted as the most likely to reach instance

dut.bar, and dut.bar.qux, on the other hand, it is not a good candidate for the remaining instances.

B. Rarity-Based Hierarchical Traversal Strategy

Given that RPM is able to predict which test is more likely to reach a desired target, a ranking strategy is necessary

to define the ordering of the tests that will be simulated over a regression. Identifying the right ordering is important

since it allows us to minimize the number of redundant tests over the same regression batch. Our ranking strategy

provides the test ordering aiming at maximizing the cumulative coverage as well minimizing the number of tests

required to reach the maximum coverage. Our ranking is defined by the following optimization function:

Objective: min
𝑁

(max

∑ 𝑐𝑘𝑁), (4)

where N is the total number of simulations, and ck is the coverage vector resulting from simulation k of a test.

We leverage RPM predictions 𝑃 ⃗⃗ ⃗to accelerate coverage closure based on historical data by selecting tests having

the highest chances to maximize the cumulative coverage. Each element pi of 𝑃 ⃗⃗ ⃗ represents the probability of instance

i of being reached. Given such requirement we rank tests according to their ability to reach as many targets as possible.

Then, we introduce a threshold to filter the less effective tests by selecting the top-k performing tests. For each

prediction vector 𝑃𝑡 ⃗⃗ ⃗⃗ generated estimating the reachability of test t, we apply the thresholding from Eq. 2 to obtain a

binary vector of zeros and ones 𝑃′
𝑡 ⃗⃗ ⃗⃗ ⃗⃗ . Then, by concatenating all the 𝑃′

𝑡 ⃗⃗ ⃗⃗ ⃗⃗ vectors we can define the matrix 𝑃𝑇×𝐼 where

T is the number of tests and I the number of instances, representing all the test predictions. Top-k tests are thus defined

as:

𝐾 = Top 𝑘 (argmax
𝑡

∑ 𝑃𝑖,𝑡
𝐼
𝑖=0) ∀ 𝑖, 𝑡 𝑠. 𝑡. 𝑖 ∈ 𝐼 , 𝑡 ∈ 𝑇 (5)

where top-k tests are identified sorting the column-wise sum of the matrix P.

Example: given three tests t1, t2 and t3 and reachability probability vectors p1, p2, and p3, for the DUT’s instances

in Figure 1 dut, dut.foo, dut.bar, dut.baz, and dut.bar.qux, with p1 = [0.2,0.6,0.75,0.5,0.2], p2 =

[0.5,0.6,0.7,0.4,0.65], p3 = [0.1,0.3,0.5,0.4,0.8], post equation (5) becomes p’1 = [0, 1, 1, 1, 0], p’2 = [1, 1, 1, 0, 1] and

p’3 = [0, 0, 1, 0, 1] respectively. The ranking strategy will identify t2 followed by t1, followed by t3 as the optimal test

selection given that t2 has the highest chances to cover more targets as compared to t1 and t3, and t1 has higher chances

than t3.

While the RPM provides information for instances that were reached by past simulations, there may be targets

that were never reached–not even a single line for that given instance was covered. For these instances, which have

no coverage information associated, we explicitly leverage the RTL design hierarchy. By traversing the design

hierarchy backward—from the bottom to the top—we can identify the closest reachable instance and select the tests

able to reach such instance as the most likely ones to simulate in order to reach the original uncovered portion of the

design. The set of tests Hi, identified as the set of candidate tests able to reach an instance i by traversing the design

hierarchy is defined as:

𝐻
 = argmax

𝑡
 𝑃𝑖,𝑡

 ∀ 𝑖, 𝑡 𝑠. 𝑡. 𝑖 ∈ 𝑋 ⊆ 𝐼 , 𝑡 ∈ 𝑇 (6)

Where, 𝑋 is the set of instances having minimum distance from the target instances having associated coverage

information from past simulations. The argmax operator across all the test t provides, for each instance i, the most

likely test able to reach the closest instance. The set X is dynamically updated during the regressions once new

instances have been reached.

Example: given three tests t1, t2 and t3 and reachability probability vectors p1, p2, and p3, for the DUT’s instances

in Figure 1 dut, dut.foo, dut.bar, dut.baz, and dut.bar.qux, with reachability values as p1 =

[0.2,0.3,0.75,0.5,0], p2 = [0.4,0.6,0.7,0.4,0], p3 = [0.1,0.3,0.5,0.4,0] respectively, assuming that dut.bar.qux is not

reached, then the ranking strategy will identify t1 as the optimal test for reaching instance dut.bar.qux, being 0.75

the highest probability associated to a test reaching the target instance.

Moreover, in addition to the likelihood to reach a target instance, our strategy aims at prioritizing the selection of

hard-to-reach targets. These targets are instance for which only a small portion of the associated logic has been

covered. Based on the historical observations, we can evaluate which targets are difficult to reach based on how

often—rarely—these are covered. Instances rarity is evaluated directly on historical data used to train the model rather

than the prediction. The instance ordering based on rarity is defined as:

𝐼 = {𝐼(1) ≤ ⋯ ≤ 𝐼(𝑛)} (7)

Where, 𝐼(1) = argmin
𝐼

 (∑ 𝑅𝑖,𝑡𝑇) and 𝐼(𝑛) = argmax
𝐼

 (∑ 𝑅𝑖,𝑡𝑇) ∀𝑖 ∈ 𝐼 ∀𝑡 ∈ 𝑇. This allows to define an ordering

among the instances in according to their reachability values observed over the training data.

Then, given a rarity ordering, we can identify the ordered set of ranked tests 𝑅 for all the instance in I defined as:

𝑅
 = argmax

𝑡
 𝑃𝑖,𝑡 ∀ 𝑖, 𝑡 𝑠. 𝑡. 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 (8)

The only difference between Equation (6) and (8) is the set from which instance I is being selected.

Example: given three tests t1, t2 and t3 and reachability probability vectors p1, p2, and p3, for the DUT’s instances

in Figure 1 dut, dut.foo, dut.bar, dut.baz, and dut.bar.qux, with p1 = [0.2,0.3,0.75,0.5,0.2], p2 =

[0.4,0.6,0.7,0.4,0.65], p3 = [0.1,0.3,0.5,0.4,0.8] respectively, assuming that instance dut is the rare instance of interest,

the ranking strategy will select t2 for reaching instance dut as compared to t1 and t3.

Lastly, we define the regression batch set B as the union among the identified set of tests K, H and R.

𝐵 = 𝐾 ∪ 𝐻 ∪ 𝑅 (9)

A regression batch b is selected from B for a given budget of simulations (# sims) to run over a regression. A

randomization factor 𝜂 is accounted in the test selection while creating the batch b to guarantee that the entire tests

population is considered in the overall process, such that:

sims = (1 − 𝜂)\b| + 𝜂 |𝑟| (10)
where, |ˑ| is the cardinality operator, |b| is the number of tests selected for the batch b ⊆ 𝐵, r the entire tests population

and |𝑟| is the number randomly selected tests given randomization factor 𝜂 ∈ [0,1].

C. Optimal Regression Scheduler

While effective in selecting tests targeting rare and uncovered instances, the proposed flow is unlikely to be

effective in a real industrial DV pipeline. The use of DV farm, cluster of dedicated machines running multiple

simulations in parallel, enable higher simulation throughput compared to ML driven processes due to the inherent

sequential nature of learning processes. For each iteration of the RPM flow, and any other ML iterative process, the

longest scheduled test will bottleneck a regression batch. Thus, the adoption of a learning driven flow and their

effectiveness may lead to poor results if execution time, parallelization factor, resource constraints and coverage

information processing time are not considered.
To address this challenge, we have created an optimal regression scheduler implementing a multiple-constrained

knapsack algorithm. The algorithm considers the simulation time, the number of available parallel processes, the

number of available simulation tool licenses, and the coverage extraction time to schedule an optimal regression batch

over these constraints to be able to maximize the estimated target coverage outcome for a given regression. Moreover,

in addition to generating optimal batches, instead of waiting for the end of a regression, we train the model over a

sliding window timeframe. By training the model every fixed amount of time, we can mitigate the impact of few long-

running simulation while constantly updating the model and producing new regression batches.

IV. EXPERIMENTS

We have evaluated our model across three different DUTs: the open-source IBEX design [10], an industrial Cache

design, and an Industrial Datapath Scheduler Design. The three designs are characterized by 8370, 7166, 131999 lines

of code respectively. Each of these designs have 55, 209, 276 different (unique) tests flavors that have been created

for testing. For each of the design we have simulated a standard CRV regression flow sampling uniformly 20 seeds

for each test. Similarly, we have adopted our methodology to schedule a regression using in total an equivalent number

of simulations but with a different allocation of tests over the entire budget. The test allocation is decided by the

algorithm. For each DUT we have repeated the experiment twenty times.

A. Reachability Predictor Model Performance

Class Distribution. To evaluate the model performance over the collected data, we have decided to bin the classes

(instances) according to their reachability values and evaluate the performance across these bins. This allows to break

down the problem in subclasses such as: hard to reach (0%-40%), medium difficulty (40%-85%), and easy to reach

(>85%) ones, where the probability range identify how often these instances are reached. Figure 2 (Top-Left) provides

the class distribution across all the DUTs given these binning for the code coverage metric. This analysis provides

insight about the data distribution and the need to identify a model performing well across all the classes rather than

averaging the overall performance.

Model Performance. We have analyzed the performance of the different classifiers over the identified bin

distributions. We have evaluated the performance of Decision Tree (DT), Gaussian Naive Bayes (GNB), K-Nearest

Neighbors (KNN), LightGBM (LGBM), Random Forest (RF), Ridge Classifier (RC) and XGBoost (XGB). Figure 2

(Bottom) shows the performance of the different models over the three classes of instances: hard to reach, medium

difficulty and easy to reach. Across these classes we can observe how LGBM and RF are the best performing models.

They also have negligible difference in the training and inference time. We have adopted LGBM as model for the

RPM due to its lower training and inference time.

B. Hyperparameter Exploration

Given the choice of LGBM for the RPM, we have explored the impact of batch size and rarity ratio in Eq. 10 on

the overall results, and how these affect the overall performance both in term of final saturation coverage and total

number of testcases required to reach saturation. We have simulated the entire flow with different batch sizes (300,

600, 900, 1200, 1500 and 1800), and different rarity ratios (from 0% to 90%), to evaluate the impact of randomness

over the flow. Higher values of rarity imply relying more on the RPM and rarity-based traversal rather than random.

For each of the coverage metrics evaluated and for each of the DUTs we have identified the set of Pareto-optimal

configurations over the testcases and saturation space. Then we have identified the optimal batch size and rarity values

that performs better across all the different designs and adopted those for the final evaluation.

Figure 2 (Top-Right) shows an example of hyperparameter search for the Cache design with respect to the

conditional coverage metric. The blue dotted line represents the Pareto-optimal frontier across the explored solutions.

From the plot it is also possible to observe how the methodology achieves better results than random saturation for all

the configurations explored. From the hyperparameter exploration, a batch size of 300 and a randomization factor,

rarity_ratio in Figure 2 (Top-Right), of 0.9 have been selected and used for the remaining of the experiments. A

raity_ratio of 0.9, imply that only 10% of the tests is randomly selected while the remaining 90% is selected by our

model. It is important to note that reserving a budget of tests for random selection allows the methodology to

potentially reach all the remaining instances, likewise traditional CRV selection, even in case of model misprediction.

Nonetheless, the experiment showcases how 10% random selection lead to the optimal results with respect to a higher

ratio, highlighting the effectiveness of the model prediction in achieving higher coverage.

0%

20%

40%

60%

80%

100%

0-40% 40-85% 85-100%

Rechability Predictor Model

F1 Score mean Accuracy mean Precision mean Recall mean

Figure 2. (Top-Left) Instance reachability distribution across the three DUTs. (Top-Right) Example hyperparameter search exploration for batch

size and rarity ratio for the Cache design over the group metric. The Pareto-frontier solutions are used to identify the optimal configurations across

all the DUTs. (Bottom) Model performance across different type of models for the identified class distributions.

C. Results

Performance. Once the optimal hyperparameter values across the DUTs are identified, we have compared the

results of our RMP flow with respect to the traditional CRV one. We have evaluated the performance improvement

in terms of required simulations and final coverage achieved by CRV and the RPM given two different budgets: the

budget required by the CRV flow to reach coverage saturation (unknown to DV engineer until the end of a regression),

and the budget required by RPM to reach maximum saturation. In case of CRV this is unknown and therefore capped

at the number of required simulations to achieve the maximum budget. This last scenario showcases the net advantage

in using our approach over CRV. Table 1 presents the result of our analysis with respect to the different coverage

metrics, including both code and functional coverage results, across the three DUTs and the aggregated improvement.

On average our methodologies achieve 0.26% higher code coverage, and 1.18% functional coverage compared to

traditional CRV. This is higher improvement with respect to the one achieved by Huang et al. [8]. Moreover, our

approach achieves on average the same coverage as CRV with 64% less tests for code coverage and 42% less tests for

the functional coverage.

 Coverage Sat.
Simulations reaching Simulations reaching

 CRV Sat. Max Sat.

DUT Metrics
CRV Ranked CRV Ranked CRV Ranked

Mean Std Mean Std Mean Std Mean Std Budget Mean Std

D
P

S

Assertion 91.64% 1.1E-16 91.64% 1.1E-16 34 41.06 22 5.08 4180 22 5.08

Group 92.27% 8.4E-04 92.69% 1.3E-04 4051 0.00 1867 344.15 4180 3357 468.69

FSM 100% 0.0E+00 100% 0.0E+00 186 207.79 192 36.20 4180 192 36.20

Branch 85.53% 4.3E-04 85.62% 2.2E-16 3032 239.30 1334 123.01 4180 3692 463.30

Cond. 91.46% 1.5E-03 91.96% 2.2E-16 1963 34.00 357 46.41 4180 3048 16.02

Line 77.83% 1.3E-04 77.84% 1.1E-16 3223 676.61 1347 122.08 4180 3704 1019.98

C
A

C
H

E

Assertion 95.28% 2.2E-16 95.28% 2.2E-16 112 127.00 439 295.50 5540 439 295.50

Group 93.89% 3.0E-03 95.11% 2.2E-16 4921 810.28 2317 133.19 5540 5032 11.47

FSM 100% 0.0E+00 100% 0.0E+00 295 220.02 211 119.54 5540 211 119.54

Branch 95.98% 1.2E-03 96.53% 0.0E+00 5496 0.00 2262 47.21 5540 5495 2.49

Cond. 81.32% 8.0E-03 84.76% 0.0E+00 5496 0.00 2234 42.11 5540 5493 2.61

Line 99.35% 6.8E-05 99.39% 1.1E-16 5496 0.00 2279 41.86 5540 5498 2.73

IB
E

X

Assertion 92.89% 0.0E+00 92.89% 0.0E+00 540 11.26 641 120.34 1080 641 238.46

Group 78.04% 5.3E-03 92.85% 7.4E-05 1076 0.00 335 43.69 1080 1072 1.29

FSM 85.09% 1.5E-02 82.46% 2.0E-02 556 1.00 1080 15.92 1080 622 17.88

Branch 91.68% 7.9E-04 92.01% 4.9E-04 980 0.00 611 174.83 1080 1007 136.45

Cond. 84.03% 2.8E-03 90.45% 2.1E-03 1077 0.00 351 8.07 1080 1079 0.00

Line 96.56% 4.4E-04 96.71% 2.5E-04 744 0.00 418 111.65 1080 925 1.92

M
e
a

n

Code 90.74% 2.50E-03 91.48% 1.90E-03 2378.67 114.89 1056.33 74.07 3600.00 2580.50 151.59

Func. 90.67% 1.53E-03 93.41% 3.39E-05 1789.00 164.93 936.83 156.99 3600.00 1760.50 170.08

 Code Functional

DUTs Methods 30% 50% 70% 90% 99% 100% 30% 50% 70% 90% 99% 100%

CACHE
CRV 0 1 13 40 50 50 0 13 35 51 58 60

Ranked 100 100 100 100 100 100 49 100 100 100 100 100

DPS
CRV 2 8 26 41 48 50 0 0 2 27 49 50

Ranked 100 100 100 100 100 100 100 100 100 100 100 100

IBEX
CRV 13 100 100 100 100 100 0 0 0 14 46 52

Ranked 0 3 14 35 50 51 0 100 100 100 100 100

Table 1. Reachability Predictor Model and Scheduler (Ranked in the table) performance with respect to CRV coverage saturation and number of

simulations required to reach CRV maximum saturation and RPM maximum saturations. Note the Max Sat. column reports the number of simulations

required to reach CRV and Ranked saturation respectively. Their maximum achieved coverage is reported in the Coverage Sat. column.

Table 2. Coverage saturation convergence across DUTs. The table shows across the experiment repetitions how many times CRV and Ranked

have been able to reach the maximum code and functional coverage saturations for different budgets of simulations.

Convergence Rate. In addition to final coverage saturation and number of required simulations, we have also

evaluated the effectiveness of the methodology in converging towards the coverage saturation. This analysis allows

to evaluate how likely the adopted methodology (CRV vs Ranked) reaches saturation over an increasing budget of

simulations. Table 2 provide the convergence rate, across the three DUTs for 30%, 50%, 70%, 90%, 99%, and 100%

simulation budget. From the results we can observe that the proposed methodology can converge to maximum

functional coverage saturation in 100% of the experiments with less than 50% of the required simulations for all the

DUTs. Similar results can be observed for the Cache and DPS over code coverage saturation, while in case of the

IBEX, the CRV converge faster to coverage saturation. However, from Table 1 it is possible to observe that at the

same time our methodology is able to achieve higher code coverage metrics with less simulations, with the exception

of the FSM coverage metric, with respect to the CRV.

D. Regression Scheduler

So far, we have showcased the effectiveness of the proposed RPM in reducing the overall number of simulations

required and in improving the final coverage. However, while compared to industrial-grade DV flow it is important

to evaluate the impact of the high degree of parallelization available to perform many parallel simulations. Table 3

shows the results of our RPM combined with the optimized regression scheduler (RPMS), with different level of

parallelization, with respect to a CRV flow parallelizing simulations across 100 different CPUs (assuming the same

number of licenses is available) and a traditional ML flow where a model inference is performed sequentially at the

end of each RTL simulation. From the table we can observe how a naïve deployment of a sequential ML flow would

result in a dramatic slowdown. While leveraging the proposed optimal scheduler, allows to significantly reduce the

time required to reach CRV coverage saturation and thus dedicate the remaining time and resources to achieve better

results. In particular, when using 60 parallel jobs our proposed RPMS flow achieves, across the three DUTs 0.74%

higher code coverage and 2.74% functional coverage with 32% time saving with respect to CRV saturation time and

40% less resources required. Alternatively, while using the same number of resources (100), the simulation time

savings increase up to 53.82% across the Cache, DPS and IBEX designs.

V. CONCLUSION & FUTURE WORK

Our proposed RPM and optimized scheduling flow can identify the most effective tests reaching uncovered targets

in a DUT. Our RPMS achieves 0.74% higher code coverage and 2.74% functional coverage while saving up to 53%

of the overall verification time while compared to CRV, or 40% license saving for a 32% faster simulation time.

Our next step is to identify and create new tests by evaluating the contribution of multiple plusargs and combining

them using generative approaches to further improve coverage. By leveraging generative models to create new test

flavors we can enable exploration of design regions that the human-generated baseline is not capable of reaching.

Currently, our methodology can accelerate the coverage closure according to the testbench capability limited by the

existing plusarg and flavor space. The generation of new flavors will entail additional challenges arising from the

possible generation of invalid plusargs combination, and therefore the need to dynamically learn valid and invalid

tests, with the intent of avoiding scheduling tests more likely to fail in regression batches.

In addition to creating new tests, we aim to target different types of designs. The current flow is devised to address

coverage closure and help verification of RTL designs. Nonetheless, the proposed approach can potentially be used to

 IBEX DPS CACHE

 Time

(hh:mm)

Time

(hh:mm)
Cov.

Time

(hh:mm)

Time

(hh:mm)
Cov.

Time

(hh:mm)

Time

(hh:mm)
Cov.

Cov. w.r.t.

CRV

Accel. %

(Time)

Cov. w.r.t.

CRV

Accel. %

(Time)

Cov. w.r.t.

CRV

Accel. %

(Time)

CRV 00:46 00:46 0.00% 10:26 10:26 0.00% 04:36 04:36 0.00%

Seq 20:10 12:56 -4673.33% 05:53 11:13 -3232.16% 14:40 02:20 -3595.85%

RPMS10 04:58 03:10 -307.06% 22:06 09:03 -216.10% 04:56 23:40 -568.42%

RPMS60 01:25 00:45 3.40% 16:46 05:36 46.22% 17:56 13:35 52.58%

RPMS80 01:25 00:38 17.38% 07:11 04:18 58.84% 12:06 10:58 61.73%

RPMS100 01:25 00:31 31.56% 19:31 03:41 64.60% 09:36 09:56 65.30%

Table 3. Comparison table among constrained random running 100 parallel simulations (CRV100) and sequential baseline (Seq) w.r.t. RPMS10,

RPMS60, RPMS80, and RMPS100 where the subscripts indicate the number of required parallel simulation/CPUs/licenses. The table shows for the

three DUTs: total simulation time (hh:mm), simulation time required to reach CRV saturation (hh:mm) and acceleration with respect to CRV.

target gate-level designs, and analog ones when targeting functional coverage metrics. The applicability of the

methodology to code coverage metrics may be limited and meaningful mostly for RTL designs. While targeting gate

level, and analog designs, additional challenges related to the dimensionality of the coverage data may emerge. We

believe that the choice of lightweight models such RF or LGMB will not pose a significant challenge for the

deployment of such models over larger observation spaces. Nonetheless, larger spaces can be tackled by decomposing

the problem into smaller ones leveraging hierarchical information of cover bins, cover items, and cover groups as

done by Debarshi et al. [11] while exploring uncharted functional coverage landscape.

 Despite all these remaining challenges, we believe this is a first step for scalable AI-driven methodologies in

the direction of automating the identification and creation of directed testing in industrial-level DV flows and first

silicon success thereof.

REFERENCES
[1] H. Witharana, Y. Lyu, and P. Mishra, “Directed test generation for activation of security assertions in rtl models,” ACM TOADES, 2021.

[2] Y. Lyu and P. Mishra, “Automated test generation for activation of assertions in RTL models,” in ASP-DAC, 2020.

[3] Y. Lyu, X. Qin, M. Chen, and P. Mishra, “Directed test generation for validation of cache coherence protocols,” IEEE TCAD, 2019.
[4] S. Fine and A. Ziv, “Coverage directed test generation for functional verification using bayesian networks,” in DAC, 2003.

[5] M. Braun, S. Fine, and A. Ziv, “Enhancing the efficiency of bayesian network based coverage directed test generation,” in Proceedings. Ninth

IEEE International High-Level Design Validation and Test Workshop, 2004.
[6] M. imková and Z. Kotásek, “Automation and optimization of coverage-driven verification,” in Euromicro Conference on DSD, 2015.

[7] F. Wang, H. Zhu, P. Popli, Y. Xiao, P. Bodgan, and S. Nazarian, “Accelerating coverage directed test generation for functional verification: A

neural network-based framework,” in Proceedings of the on Great Lakes Symposium on VLSI, 2018.
[8] Huang, Qijing, et al. "Test parameter tuning with blackbox optimization: A simple yet effective way to improve coverage.". DVCon US 2022.

[9] V Jayasree, et al. " Machine Learning for Coverage Analysis in Design Verification" Proceedings of the DVCon US 2021.

[10] Schiavone, Pasquale Davide, et al. “Slow and steady wins the race? A comparison of ultra-low-power RISC-V cores for Internet-of-Things
applications.” 27th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS 2017)

[11] Debarshi Chatterjee, Spandan Kachhadia, Chen Luo, Kumar Kushal, Siddhanth Dhodhi. “GraphCov: RTL Graph Based Test Biasing for

Exploring Uncharted Coverage Landscape.”. DVCon US 2023.

