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Abstract-Timing constraint verification plays a crucial role in the development of modern complex SOCs as it ensures 

that the timing constraints used for synthesis and timing closure are proper and accurate so that the design meets the 

desired performance requirements. The conventional methodology used to verify the timing constraints is a gate-level 

simulation (GLS). Simulations such as these require long run times, offers less coverage, and occurs too late in the SOC 

development cycle. A powerful alternative to GLS is the formal verification of timing constraints, which are faster and 

more efficient. The major drawback to this approach is that it may not be entirely possible to formally verify all the 

timing exceptions in the design and in such scenarios, all the formal failures must be verified using SV assertions in 

functional simulation. However, the sheer number of assertions generated corresponding to the formal failures can make 

it difficult to verify them completely in simulation. This paper presents a methodology to improve the formal verification 

and consequently reduce the assertions generated to converge on real timing issues as fast as possible, thereby achieving 

significant shift-left in the overall timing closure of the design. 
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I.   INTRODUCTION AND BACKGROUND 

Modern System-on-Chip (SOC) designs are complex in nature which leverage the use of Intellectual Property 

(IP) to expedite the development process. Instead of designing every component from scratch, designers can 

integrate pre-existing IP blocks into their SOC design. In such designs, one of the primary goals is achieving timing 

closure which ensures that the design meets the specified timing requirements. The IP modules come from multiple 

internal as well as external vendors, along with their respective timing collateral. However, there is no guarantee that 

these timing constraints would hold true when the IPs are fully integrated into the final SOC as per the design 

requirements. Inaccurate timing constraints may result in severe issues such as data corruption, race conditions, and 

functional failures. Therefore, timing constraint verification is very crucial for design stability and to ensure that the 

design meets the desired performance requirements. 

Static Timing Analysis (STA) is employed to verify that the timing requirements for all signal paths in the 

design are met. The presence of multiple clock domains and asynchronous interfaces increases the complexity of 

these timing requirements beyond a single clock period. In STA, such paths are relaxed through the application of 

appropriate timing exceptions. However, it is imperative to ensure that this relaxation does not compromise the logic 

functionality as specified in the register-transfer-level (RTL) design [1]. The conventional approach for validating 

the timing behavior is through gate-level simulation (GLS), where the gate-level netlist is simulated with the 

relevant timing information against the RTL test bench. 

The GLS occurs too late in the design development cycle. It is usually conducted during the Back-End (BE) 

phase of design, following the completion of the Front-End (FE) RTL design. Such simulations also require long run 

times, often offers less coverage, and requires lot of effort to debug the failures [2]. This makes it very difficult to 

close all the timing violations within the scheduled project timeline and can lead to potential silicon bug escapes and 

costly re-spin of the silicon. This paper presents how formal verification along with SV assertion verification in 

simulation can be used as a faster and more efficient alternate to GLS for verifying timing constraints. The proposed 

methodology can be employed at FE during RTL development phase. This helps to uncover and resolve all the 

potential timing issues by the final RTL milestone itself, thereby providing a significant shift-left in the overall 

timing closure of the design. The methodology for formal verification of timing constraints is outlined in Section II, 

followed by the methodology for timing exception assertion verification in Section III. Section IV presents the 

results, upon which the paper is summarized and concluded in Section V. 

 

II.   TIMING CONSTRAINT VERIFICATION METHODOLOGY 

The timing constraint verification methodology is depicted in Figure 1. The primary inputs are RTL file list, 

Hard-IP (HIP) collateral, timing constraints, and the block level configuration file. The HIP collateral has liberty 



 

 

files corresponding to each HIP module. The timing constraints are provided by the full chip timing (FCT) team in 

Tool Command Language (TCL) format. The block level configuration file has the flow settings as well as the TCL 

variables that are required to properly source the timing constraints. 

A. Unmapped Constraints and Clock Warnings 

During timing constraint verification, the constraints are first mapped to RTL and all the unmapped constraints 

are reported. These can be either due to syntax issues or hierarchy mismatches between RTL and netlist. All the 

syntax issues must be fixed, and the hierarchy differences should be resolved by providing a mapping file which 

maps corresponding hierarchies in RTL with the netlist. After the constraint mapping is done, several clock linting 

checks are performed to identify issues with clock propagation in the design. All the clock warnings should be 

reviewed, fixing critical issues in constraints, and adding appropriate waivers for the rest of the violations. 

B. Formal Verification 

Once all the unmapped constraints and clock propagation issues are resolved, formal verification of timing 

exception is done, and assertions are generated for all the exceptions that fails the formal verification. There are 

numerous situations where formal verification is not necessary for timing exceptions. Such scenarios are tabulated in 

Table 1. These exceptions contribute to noise and must be excluded from the formal verification process. 

There are many scenarios where the flow may require additional inputs to formally verify a timing path. In the 

absence of such inputs the number of formally failing exceptions as well as the corresponding assertions generated 

would be large and consequently requires huge effort to validate them in simulation. The different methods to 

improve formal verification of timing exceptions are discussed below: 

1) Specifying the list of synchronizer cells in the design: The formal verification passes for all timing 

paths having synchronizer cell as the end point. 

2) Constraining the input ports and asynchronous reset ports impacting formal verification. 

a. Input ports must be constrained to its legal values. 

b. Asynchronous reset ports must be constrained to its non-reset value. 

The formal verification passes for all timing paths having static start point. 

 

Table 1: Noise Elimination from Timing Exception Formal Verification 

# Scenario Description 

1 NO PATH 
No valid start points/end points were found or no sensitizable combinational 

path found between them 

2 SKIPPED (I/O Port) 
Exceptions that can only be verified at higher block level where the logic that 

drives input ports can be inferred 

3 SKIPPED (Async Clocks) Exceptions having asynchronous launch/capture clocks 

4 SKIPPED (MCP Hold<Setup) MCPs having hold value less than setup value of the corresponding MCPs 

5 SKIPPED (Duplicate) Duplicate exceptions 

6 WAIVED 
Exceptions corresponding to timing don’t cares that are not supported by 

design logic and hence cannot be formally proven 
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Figure 1: Timing Constraint Verification Methodology 



 

 

3) Importing Clock Domain Crossing (CDC) constraints: All the static signal constraints used in CDC 

analysis should be imported for timing constraint formal verification flow. 

4) Constrain static signals based on uncovered assertions: The static start points corresponding to the 

uncovered assertions in simulation must be reviewed and should be constrained as such in the final 

sign-off formal verification run. 

C. Execution Challenges 

The different challenges faced during the execution of proposed methodology are described below: 

1) Collateral Management: Due to the scale and complexity of SOC designs, timing constraint 

verification must be done at the partition levels. This requires the respective block configuration files 

as well as waiver files to be setup at each partition level. The partition level HIP collateral has liberty 

files corresponding to multiple corners and scenarios for each HIP module and hence, if directly used 

as input to the constraint verification flow, it can lead to crashes due to memory issues. To avoid such 

issues, the HIP collateral must be uniquified by maintaining only a single liberty file for each HIP 

module. All these tasks involve a lot of manual effort and hence they must be automated. 

2) Cross Domain Collaboration: The successful execution of timing constraint verification requires the 

close collaboration between RTL, VAL, DFX and FCT teams. 

3) Separation of Functional and DFX Assertions: The functional as well as DFX assertions must be 

verified separately in functional and DFX simulation regressions respectively and hence the same must 

be separated properly from the total set of generated assertions. 

 

III.   ASSERTION VERIFICATION METHODOLOGY 

Once the formal verification of timing exceptions is completed, assertions are generated for all the exceptions 

that has failed the formal verification. These assertions capture the functional behavior of the design that must be 

satisfied for the exceptions they are associated. The assertions are then verified in functional simulation by running 

the entire verification regression suite of the design. The false path (FP) assertions check that the condition required 

to propagate a transition from start point to end point can never be true. The multi-cycle path (MCP) assertions 

check that when the start point transitions then, either in that cycle the condition required to propagate the change 

from the start point to the end point should not be true, or in the next cycle the end point should not transition. Thus, 

any assertion failure in functional simulation regression would represent real-world situations where the specified 

exception behavior does not hold. In this way, all the incorrect timing exceptions can be identified from the original 

timing constraints. 

A. Using SVAs in RTL Simulation 

The standard cells used in the design have distinct implementations in synthesis and simulation models. When 

assertions are generated from the synthesis model and directly used in simulation, it can lead to cross-module 

reference resolution errors (XMREs). This issue can be mitigated by limiting access to the internal signals of 

standard cells and referencing signals solely at the boundaries of standard cell wrappers during assertion generation. 

However, it's worth noting that signals within standard cell wrappers may still be accessed if there are sequential 

elements present between the signal and its input ports. In such scenarios, it becomes necessary to provide an 

additional mapping file that maps the synthesis hierarchy to the corresponding simulation hierarchy. This mapping 

ensures that assertions are generated with the appropriate simulation hierarchies and can be seamlessly incorporated 

into the simulation for verification. 

B. Sign-off Methodology for Uncovered Assertions 

The Figure 3 illustrates the sign-off criteria for uncovered assertions. The assertions that remain as uncovered 

during functional simulation regression can typically be attributed to one of the following two scenarios: 

1) The exception start point has not toggled. 

In these instances, it is imperative to review all the untriggered exception start points and determine 

whether they are indeed static signals or not. If they are static, they should be explicitly constrained as 

such for formal verification, enabling the formal verification to successfully verify all the timing paths 

associated with these static start points so that assertions are not generated for these paths in the first 

place. However, if these start points are not static, appropriate test cases should be executed to ensure 

coverage of these start points and the verification of associated assertions. 

2) The launch clock fails to reach the start point. 

In such scenarios, it is essential to conduct a thorough review of all uncovered assertions to confirm 

whether the launch clocks are not intended to reach the corresponding start points. Should it be 

determined that the launch clocks should indeed reach these start points, additional test cases must be 

executed to cover these assertions. 



 

 

 

IV.   RESULTS AND DISCUSSION 

The SOC design being evaluated had nearly 2M timing constraints including more than 600 master clocks, 1100 

generated clocks and 20K MCP specifications. The timing constraint verification was done at the partition level as 

per the proposed methodology. Prior to the formal verification of timing exceptions, all the unmapped constraints 

and clock propagation issues were resolved. The critical issues were fixed in the timing constraints, while 

appropriate waivers were applied to the remaining violations, thereby achieving 100% timing constraints mapping 

across all the SOC partitions. The challenges faced during execution of proposed methodology were addressed by 

developing and implementing appropriate TCL based automation scripts. The automation results are tabulated in 

Table 2. 

A. Formal Verification Results 

The formal verification improvement techniques discussed in section II were implemented at appropriate 

execution milestones, leading to significant reduction in formal failures and the corresponding assertions generated. 

The formal verification improvement results are tabulated in Table 3. The flat run had 508999 assertions generated 

corresponding to the formally failed timing exceptions. Once all the formal verification improvement methods were 

applied, the generated assertions were reduced to 130491, thereby achieving ~75% reduction in the total assertions 

generated. 

Among all the MCP exceptions that underwent verification, 66.17% of MCPs successfully passed formal 

verification, while 27.02% failed the formal verification process. The remaining MCPs were categorized as either 

skipped or waived. The formal verification results of MCP exceptions are tabulated in Table 4. For the MCPs that 

failed the formal verification, they were further classified into functional and DFX-related MCPs after a 

comprehensive review with the DFX team, and the corresponding assertions were also segregated accordingly for 

their verification in simulation. 

B. Assertion Verification Results 

Among the generated assertions, only 4588 corresponded to the functional (non-DFX) MCPs. These assertions 

were integrated into functional simulation regressions where 154 assertion failures were observed. All the assertion 

failures in simulation were correlated back to respective MCPs. The assertion verification results are tabulated in 

Table 5. The simulation failures were debugged after generating FSBD for all the failing testcases and the incorrect 

MCPs were fixed in the timing constraints. The fixed MCPs were incrementally verified until no more simulation 

failures were observed. All the assertions that remained uncovered in simulation were signed off as per the 

methodology discussed in the previous section. 

 

Table 2: Automation Results 

# Execution Tasks ETA (w/o Automation) ETA (with Automation) 

1 Block Configuration File Generation 1-2 days 15 sec 

2 Uniquify HIP Collateral 1-2 hours 2 sec 

3 Clock Warning Waivers Generation 2-3 days 2 min 

4 Unmapped Constraint Waivers Generation 3-4 days 3 min 

5 Separation of Functional and DFX Assertions 3-4 days 7 min 
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Figure 2: Uncovered Assertions Sign-off Methodology 



 

 

Table 3: SOC Formal Verification Improvement Results 

# Formal Verification No. of Assertions Assertion Reduction % 

1 Flat Run 508999 0.00% 

2 Synchronizer Cell Specification  506554 0.48% 

3 Constraining Input Ports 455080 10.59% 

4 Constraining Asynchronous Resets 269077 47.13% 

5 Importing CDC Constraints 135435 73.39% 

6 Static Signal Feedback based on Uncovered Assertions 130491 74.36% 

 

Table 4: SOC MCP Exception Formal Verification Results 

% of 

PASSING MCPs 

% of 

FAILING MCPs 

% of 

NO PATH MCPs 

% of 

SKIPPED MCPs 

% of 

WAIVED MCPs 

66.17% 12.40% 18.18% 2.85% 0.40% 

 

Table 5: SOC Functional (non-DFX) MCP Exception Assertion Verification Results 

No. of Assertions Generated 

corresponding to Functional 

(non-DFX) MCPs 

No. of 

PASSED 

Assertions 

No. of 

FAILED 

Assertions 

No. of 

UNCOVERED 

Assertions 

No of MCPs 

corresponding to 

Assertion Failures 

4588 1385 154 3049 7 

 

V.   CONCLUSION AND FUTURE WORK 

      The suggested approach discussed in this paper offers a swifter and more effective method for verifying timing 

constraints, which can be deployed at the early stages of design development. This methodology facilitates the 

identification and resolution of unmapped constraints as well as clock propagation issues prior to formal verification 

of timing exceptions. The methodology also achieved significant noise reduction by identifying and excluding all 

the timing exceptions that does not require formal verification. The use of formal verification of timing exceptions 

along with assertion verification in functional simulation has successfully pinpointed all the incorrect timing 

exceptions prior to design timing closure, thus averting potential silicon bug escapes and the need for costly re-spins. 

This results in a significant shift-left in the overall timing closure process. Consequently, the proposed methodology 

enhances the precision and reliability of timing constraints, contributing to the development of a higher-quality 

design. This adaptability ultimately improves timing constraint verification efficiency and reduces time-to-market 

for a broad spectrum of semiconductor products. 

      As of now, assertion verification is performed for the functional (non-DFX) MCPs. Future efforts will focus on 

expanding the assertion verification to include DFX-related MCPs as well. The future plans also include extending 

the entire methodology for FP verification as well. 
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