

Stimulus Diversification and Coverage Closure

of 3D NAND Flash with Artificial Intelligence

Goutham Pallela
Micron Technology, Inc.

San Jose, CA, USA

gpallela@micron.com

Peiyao Shi
Micron Technology, Inc.

San Jose, CA, USA

peiyaoshi@micron.com

Srinivas Deshmukh
Micron Technology, Inc.

San Jose, CA, USA

sdeshmukh@micron.com

Vaishnavi Venkatesh
Micron Technology, Inc.

San Jose, CA, USA

vvenkatesh@micron.com

Bill Hughes
VerifAI Inc.

Palo Alto, CA, USA

bill@verifai.ai

Rohit Suvarna
VerifAI Inc.

Palo Alto, CA, USA

rohit@verifai.ai

Sandeep Srinivasan
VerifAI Inc.

Palo Alto, CA, USA

sandeep@verifai.ai

Abstract- Given the ever-increasing complexity of 3D NAND Flash designs and tighter tape-out timelines, applying

machine learning (ML) algorithms in pre-silicon design verification (DV) has become essential to ensure satisfactory

coverage within the project schedule. This work proposes using reinforcement learning (RL) algorithms that use several

deep neural networks (DNN) coupled with Gradient Ascent approach to determine desired stimulus settings that cover the

highest number of unit coverage bins. A feedback loop is established to train the model from the coverage database to the

RL agent and from the RL agent to stimulus generation. The RL agent is trained in several iterations without the actual

design-under-verification (DUV), and the trained model is later used on actual DUV to generate the best stimulus that can

reach the highest coverage.

Index Terms: Reinforcement Learning, 3D NAND Flash, Deep Neural Networks, Functional Coverage, Gradient Ascent

I. INTRODUCTION

Verifying 3D NAND Flash[1] (NAND) full-chip functionality by meeting coverage goals is a requirement for

design tape-out. With rapidly increasing NAND design complexity driven by high-performance demands and diverse

requirements, achieving coverage goals before tape-out becomes a severe challenge to the design verification (DV)

team. This paper uses machine learning (ML) techniques to generate stimulus or knob settings, aiming to achieve

optimal verification coverage[2, 3, 4] with a significantly reduced number of verification cycles. Some specialized

categories of ML algorithms, such as Reinforcement Learning (RL), Multi-Arm Bandit algorithms, Gradient Ascent

approach and advanced neural net architectures are used to identify optimal settings of stimuli to maximize the

coverage with minimal manual intervention. This work aims for faster coverage closure giving more time to the DV

team for further expanding the scope of verification.

II. EXISTING DESIGN VERIFICATION ENVIRONMENT

3D NAND Flash (NAND) DV team follows the industry standard Coverage driven Constrained Random

Verification methodology to verify NAND designs. DV flow starts with reviewing and understanding NAND Design

Specification documents and planning for verification. Later separate verification plans are drafted for each new

NAND feature. Sequences, Functional Coverage, and behavioral white-box checks are developed in System Verilog

(SV) independently per the verification plan. After test-bench (TB) development, the DV team runs regressions,

debugs failures, and analyzes coverage gaps using the coverage reports that are generated by the simulator tool. This

cycle repeats till satisfactory coverage goal are reached. Fig. 1 illustrates this process, the part highlighted in green

will be explained in later sections.

mailto:gpallela@micron.com
mailto:peiyaoshi@micron.com
mailto:sdeshmukh@micron.com
mailto:vvenkatesh@micron.com
mailto:bill@verifai.ai
mailto:rohit@verifai.ai
mailto:sandeep@verifai.ai

Figure 1. Machine Learning in DV flow

Functional Coverage is a key metric to measure the verification, and it is widely used across the industry to sign-

off verification with confidence. Function Coverage is a collection of cover points that are grouped into cover groups

by their relevance. Each cover point is manually written by DV engineer to represent each feature, operation, or a state

of NAND. Many cover points are often crossed together to cover valid feature, register, or operation combinations.

Coverage bins count grows exponentially when cover points are crossed together, resulting in exceedingly high

number of bins to be covered before sign-off. The current NAND TB has around 500k bins that need to be covered

by random sequence generation. For highest confidence, coverage accumulated throughout the verification cycle is

reset to zero for the final tape-out netlist which makes closing coverage more challenging.

The current test-bench issues random operations in random order to NAND by enabling random configurations to

cover wide range of command, address, data, and feature requirements. Randomization in SV is enormously powerful

that it often needs to be controlled by writing constraints to direct the randomization. Sequences are developed to have

knobs (SV parameters) to control the stimulus by steering random SV constraints without modifying the sequences or

tests. The details of these knobs will be discussed in the later sections. There are several hundred knobs in the current

TB which are used to adjust the stimulus. During the coverage analysis, verification engineers use their best judgment

to adjust the values of these knobs and run targeted regressions to fill coverage holes. Considering the indirect or direct

relationships between the knobs that can nullify each other’s impact, and complex correlation from knobs to coverage

bins, this is a very tedious and arduous process. This activity can sometimes yield undesirable results, meaning that

the targeted bins are not hit even with multiple targeted regressions. This process can often take multiple weeks to

fully converge on the coverage and accounts to 10%-20% of entire verification cycle.

III. PROPOSED MODEL

A Reinforcement learning (RL) agent that uses a Deep Neural Network (DNN) is incorporated into existing DV

infrastructure (highlighted in green in Fig. 1). Reinforcement learning [5, 6] is a specialized category of machine

learning algorithms, which aims to maximize the reward by continuously modelling and optimizing the mathematical

relationship between inputs and the reward. RL algorithms can be leveraged in the current DV flow to accurately

model the relationship between input knobs that are used to generate stimuli to maximize the reward, which is the

coverage score. A framework is developed to integrate RL agent into existing testbench coverage flow independent

of design-under-verification (DUV), building a feedback loop from coverage database to the input knobs via RL agent.

RL agent will use coverage reports to find correlations and relationships from input knobs to the reward as well as

correlations between input knobs. Then, RL agent aims to produce an optimized new set of knobs that can maximize

the coverage score. There are four key requirements to accomplish this, viz: stimulus controlling knobs, a block-box

model of DUV, feedback path from coverage database to RL agent, and an RL Agent.

The RL Agent aims to produce an optimal value for each of the knobs, which collectively can maximize the

coverage score. So, it is essential that the TB’s random sequence generation is controllable by external knobs. There

are several concepts such as SystemVerilog parameters, command line $test$plusargs or UVM command line

processor that can be leveraged for controlling the stimulus generation either from command line or by modifying the

global parameter file. An example of SV distribution/weighted constraint and parameters is shown in Fig. 2 to illustrate

how knobs can control stimulus. Here SV parameters ‘MODE_X_EN,’ ‘MODE_Y_EN’ and ‘MODE_Z_EN’ can

control the random variable ‘mode.’ If MODE_X targeted for coverage, ‘MODE_Y_EN’ and ‘MODE_Z_EN’ can be

changed to 0 so that ‘mode’ will always take MODE_X as desired. After RL agent generates the knob values, an

automation is required to update the knob values in the TB and start simulations. In this example, the parameters can

be moved to a global parameter file which can be updated automatically. As described in section II, Micron NAND

test-bench is developed systematically to have these constraint controlling parameters in a global file which is updated

automatically after RL agent generates new knob settings.

parameter MODE_X_EN = 2;

parameter MODE_Y_EN = 2;

parameter MODE_Z_EN = 6;

typedef enum {MODE_X, MODE_Y, MODE_Z} mode_type_e;

class foo_test;

 rand mode_type_e mode;

 constraint mode_c {

 mode dist {

 MODE_X := MODE_X_EN,

 MODE_Y := MODE_Y_EN,

 MODE_Z := MODE_Z_EN

 };

 }

 ….

 ….

endclass

Figure 2. An example of knobs controlling the stimulus

As TB is changing rapidly throughout the verification cycle, RL agent needs to be trained periodically to

accommodate newly added knobs and coverage bins. A typical RL agent is trained in several iterations with each

iteration involving hundreds of design simulations. This can extremely delay the training process as design simulations

are slow in general. The process of learning correlations from stimulus to coverage bins is resided to the test-bench

environment, which is independent from the actual DUV, so it is highly recommended that actual DUV be removed

from this process. A black-box model or a bus functional model (BFM) mimicking the behavior of DUV can be used

to replace the actual DUV. This would also save costs related to huge computational resources and simulation licenses

that actual DUV requires.

Final requirement in the DV environment is to establish a feedback path from coverage database to the RL agent.

Any industry standard simulator can generate coverage reports per simulation in text and HTML formats. An

automation is required to be developed to parse the coverage reports, extract the coverage scores and pass that

information back to RL agent in a tabular format. Before sending the coverage data to the RL agent, extracted coverage

scores are mapped to the knob settings with which they are associated. An example table of knobs and coverage scores

that is fed back to the RL agent is shown in Fig. 3.

Figure 3. An example table of knobs and coverage scores

Reward to the RL agent is customized to be either the absolute coverage score, or the relative coverage score with

respect to the already hit coverage, using knobs as input. RL agent can be more effective when reward is relative

coverage since it aims to increase the newly hit bin count. While developing cover points, they are grouped into cover

groups based on their relevance for each feature, operation, or algorithm. Independent RL agents can be trained

parallelly to improve each cover group by changing the reward from total average coverage score to a particular cover

group score. These feature specific trained models can be extremely important to reach newly introduced feature

coverage goals to ensure highest design quality.

To minimize the risk of potential over-reliance on artificial intelligence in the proposed DV model, reward should

be customized and controlled very carefully by DV engineers. Additionally, DV engineers should review training

knob settings and coverage scores before using them on real DUV. Authors think that the chances of complete failure

of artificial intelligence is near zero with careful human involvement at each necessary step in the process. In the worst

case of complete failure of this approach, RL agent would have at least produced unique combinations of knob settings

(than traditional manual settings) that may uncover corner design bugs with less or no coverage improvement.

IV. REINFORMENT LEARNING AGENT

The RL agent used for this work is developed by VerifAI Inc. Reinforcement Learning is a technique in which an

agent takes action in an environment. The environment returns a reward and a representation of the state of the

environment to the agent. The agent takes the next action in the environment based on the reward and the state of the

environment. In applying reinforcement learning to the design verification problem, the environment is DV

environment, and the reward is typically coverage. The RL agent can be a deep neural network (DNN) that learns to

take the best actions based on the reward. RL agent used for this work utilizes advanced RL and robust optimization

algorithms, such as ‘gradient ascent approach,’ and dist-perturbation technique. It also employs sophisticated neural

network architectures including wide networks with batch normalization and Leaky ReLU (A Leaky Rectified Linear

Unit) networks.

The RL agent is given an optimization problem where we have a set of input features X (input knobs), which may

constrain relations between them if they represent relative weights. The input knobs can be continuous within a range

or have an enumerated type, i.e., have values from a list of possible values. RL agent is configured with an output/label

column representing the objective metric we want to optimize. To use reinforcement terminology, we can call this the

‘reward.’ RL agent first fits a DNN that has enough capacity to capture the relationship between input knobs and the

output metric. Then it uses gradient ascent on the output of the DNN (Y) with respect to the input features (X) to find

the best knob settings that maximize the output of the DNN subject to the constraints defined by the penalty terms. A

sample gradient ascent function is plotted in Fig. 4.

Figure 4. A sample gradient ascent surface

The fundamental idea behind gradient ascent is to update the parameters or variables iteratively in the direction of

the steepest climb of the function. The update rule for the parameters at each iteration can be represented as (1) where

‘θ’ represents the parameters of the function ‘f’ that we want to maximize, ‘η’ is the learning rate, a positive scalar

determining the size of the step to take in the direction of the gradient. ∇f(θ) is the gradient of the function ‘f’ at ‘θ,’

which points in the direction of the steepest ascent.

θnew = θold + η∇f(θ) (1)

Gradient ascent process starts with an initial set of parameters θ(0), later gradient ∇f(θ(t)) is evaluated at the current

parameter values. In the next step, parameters are adjusted in the direction of the gradient to move toward the maxima

as shown in (2). This process is repeated until the changes are sufficiently small or a maximum number of iterations

is reached. This can also include conditions like the gradient being close to zero, indicating a potential maximum. This

process is illustrated in Fig. 5.

θ(t+1) = θ(t) + η∇f(θ(t)) (2)

Figure 5. Ascending a function along the gradient

The loss function used in the gradient ascent technique as penalty can be expressed as (3) where ‘f(X)’ is the

function being maximized (the model's prediction), ‘P(X)’ is the penalty function, which computes the penalty based

on how far ‘X’ deviates from the desired constraints. ‘λ’ is the penalty weight, a scaling factor that determines the

influence of the penalty term relative to the predictive term.

L(X) = −f(X) + λ ⋅ P(X) (3)

The negative sign before f(X) is being maximized, the loss L used in gradient calculations is technically being

minimized (a common approach in optimization algorithms). The penalty function P(X) could be structured in many

ways depending on the constraints. For example, if we want the sum of certain variables in X to equal 1 (a common

constraint in probability distributions or normalized settings), P(X) might be defined as (4) where P(X) penalizes any

deviation of the sum of components of X from 1, squaring the difference to ensure the penalty is always positive and

more pronounced for larger deviations.

P(X) = ∑
i=1

n

(Xi − 1)2 (4)

Overall process of the RL agent starts with a random plausible setting for input knobs X. Later, it iteratively

adjusts the settings using gradients of the DNN output Y, with respect to the input, which includes penalties for

constraint violation. RL agent attempts to maximize the network's output by adjusting the knob based on the computed

gradients. Optimal settings and the corresponding network output after the specified number of iterations.

V. RL AGENT TRAINING

Before the training is started, RL agent is configured with testbench knobs, type, and range of each knob. This

RL based model is trained in ‘n’ iterations. Each iteration begins with model generating ‘r’ unique knob sets. With

each knob set, ‘s’ number of NAND simulations are run on the NAND model, and coverage is accumulated per knob

set. Then, each knob set is ranked based on how diverse the stimulus is, .i.e., how many unreachable bins that it can

hit. This ranking is completely customized based on the end goal which is coverage closure in this case, and this is

what will be fed back to agent as reward. In each iteration, RL agent builds and optimizes neural networks to

understand and model the relationship between input knobs and output reward. The agent then generates next knob

sets which aim to further improve the reward. After all the iterations are finished, last iteration is not necessarily the

one with highest coverage due to RL agent being not fully trained, or RL agent is learning negative correlations. So,

best knob sets that have highest coverage among the ‘n’ iterations are handpicked to run regressions with actual DUV.

This training process is illustrated in Fig. 6.

Figure 6. RL Agent training process

VI. RESULTS AND FUTURE WORK

Fig. 7 shows the coverage plot from one of our ongoing proof-of-concept project training iterations. This plot

illustrates the improvement that this work has made.

Figure 7. Comparison of Coverage ramp

ML Model
Training

Generates “r”
unique knob sets

Run ”s”
simulations with
optimizer knobs

Generate
Coverage report
from simulations

Merge Coverage
of Optimizer

knobs

Coverage
accumulated per

knob set as
reward

Model
configuration

With the ML methodology, a higher Coverage of ~2% can be reached with the same number of 1000 simulations,

and the same amount of existing coverage can be achieved with 38% fewer simulations. Given the manual efforts

spent, these results are very encouraging in pursuing AI/ML to improve design verification. Additionally, this

increased coverage trajectory and reduced simulation time give the verification team more time to further improve

verification to find more design bugs. In this work, there is more room for fine-tuning rewards, and finding the correct

balance between 'r' – number of unique knobs sets and 's' - number of seeds run per unique knob set to maximize the

Coverage. More experiments are being run by adjusting reward metrics, using different combinations of ‘r’ and ‘s,’

and by using more advanced RL algorithms to reduce training iterations and improve coverage further.

VII. CONCLUSION

An automated RL agent framework has been developed and incorporated into the existing DV flow. RL agent aims

to generate optimal knob settings to steer the random stimulus generation to reach maximum verification coverage.

RL agent will be trained on DUV Model or a BFM iteratively throughout the project cycle to learn the effect of each

knob on coverage score and on other knobs. Later, trained RL agent is used on real DUV to cover highest number of

unit coverage bins in least simulations possible. Results of this work on a proof-of-concept project are promising, and

we see an opportunity to deploy it for future NAND products to aid the DV team in improving stimulus and closing

coverage.

Efforts will continue to further fine-tune the model, improve the results, and potentially expand its use on

verification of future NAND products.

REFERENCES

[1] K. Kawai, et al., “A 1Tb Density 3b/Cell 3D-NAND Flash on a 2YY-Tier Technology with a 300MB/s Write Throughputs,” IEEE

International Solid-State Circuits Conference (ISSCC), San Francisco, USA, February 2024.
[2] M. R. Kulkarni, et al., “Improving coverage of simulation-based design verification using machine learning techniques,” 2019, Master’s

thesis, University of Texas at Austin.

[3] Z. Aref, R. Suvarna, W. Hughes, S. Srinivasan, and N. Mandayam, “Advanced Reinforcement Algorithms to optimize Design Verification,”
IEEE Design Automation Conference (DAC), San Francisco, USA, June 2024, pp. 1-6.

[4] W. Hughes, S. Srinivasan, R. Suvarna, and M. R. Kulkarni, “Optimizing Design Verification using Machine Learning: Doing better than

Random,” unpublished.
[5] R. S. Sutton, and A. G. Barto, Reinforcement Learning: An introduction, 2018, MIT press.

[6] D. Silver, et al., “Deterministic Policy Gradient Algorithms,” International conference on Machine Learning (ICML), Beijing, China, June

2014, pp. 387-395.

