
Tackling Missing Bins: Refining Functional
Coverage in SystemVerilog for Deterministic

Coverage Closure

Jikjoo Lee*, Tony Gladvin George*, Kihyun Park*, Dongkun An*, Wooseong Cheong*, ByungChul Yoo*
*Memory Division, Samsung Electronics

Email: (jjikjj.lee, tony.gg, kihyun0.park, dongkun.an, ws.cheong, byung.yoo)@samsung.com

Abstract- In the context of hardware design verification, defining functional coverage accurately in SystemVerilog
remains a challenge, often due to human errors leading to "missing bins". This paper introduces a methodology aimed at
enhancing functional coverage by identifying these overlooked bins. By treating coverage bins as a SystemVerilog queue
and employing a "waiver function", this approach provides verification engineers a mechanism to efficiently determine
whether sampled coverage bins are already accounted for in the coverage. Experimental validation, involving a cache
managing IP, underscored the method's efficacy. The results revealed 14.1% of missing bins among the coverage holes
using our proposed methodology, culminating in a 6.0% overall improvement in functional coverage. Thus, the proposed
method not only rectifies human-induced inaccuracies but also improves the overall robustness of hardware verification.

I. INTRODUCTION
In the context of functional coverage, despite achieving 100% functional coverage, bugs may still manifest. In

such instances, verification engineers can find themselves perplexed, unable to pinpoint the oversights that led to
these unexpected issues. Consequently, they are left with the disconcerting realization that they may not be able to
confidently respond to the question, "Is verification truly complete?"

This paper addresses the inherent challenges tied to defining functional coverage in SystemVerilog, emphasizing
the problems that arise due to human errors, notably the oversight of "missing bins". These are data bins that should
ideally be part of the coverage but are unintentionally omitted. The core of this study revolves around proposing an
efficient methodology to solve the recurring problem of defining functional coverage in SystemVerilog. The
approach we propose is easily applicable due to its reliance on fundamental SystemVerilog syntax. This represents
the methodology targeted towards achieving exhaustive coverage closure. The primary aim is to ensure a
comprehensive approach to coverage, leaving no aspect unaddressed, thereby enhancing the overall quality of the
verification process.

The rest of this paper is composed as follows: Section II introduces the challenges that arise when defining
functional coverage and highlights the debugging difficulties encountered with conventional methods. Section III
pertains to the relevant background and research. Section IV proposes a three-step method for composing functional
coverage to address these challenges. Section V demonstrates the effectiveness of this approach when applied to real-
world cases. Through the experiment, it is possible to ascertain the thoroughness of the validation by using the
proposed methodology to confirm the potential outputs of the cache managing Intellectual Property (IP). Finally, it
provides a conclusion and outlines potential future work.

II. PROBLEM STATEMENT

Illustrated in Figure 1 is the comprehensive set of coverage bins, each representing possible scenarios within a
coverage point. This figure showcases the complexities surrounding the definition of coverage bins. Key sets are
defined: the Universal Set (U), encompassing all potential coverage bins within a coverage point; the Ideal Set (I),
representing the desired coverage; the Defined Set (D), the coverage bins explicitly identified by engineers for
verification; and the Sampled Set (S), showcasing the coverage bins sampled during tests.

The coverage bins in the diagram are divided into five types, each of which has a specific meaning, as described in
Table 1. "Covered bins" indicate that the item sampled by the test is covered by a coverage bin defined by the
engineer. "Excluded bins" are coverage bins that are neither in the Ideal Set nor the Defined Set. "Uncovered bins"
are those that have not yet been tested because of a lack of test scenarios.

Figure 1. Coverage Points and Coverage Bins Diagram

Table 1. Meaning of the Five Coverage Bin Types

The objective is to transition all coverage bins, barring the excluded ones, into covered bins. Ideally, a good
alignment between the Ideal, Defined, and Sampled Sets is sought. This demands the engineer to meticulously adjust
the Defined Set, ensuring the absence of "missing bins" and "missed exclude bins". "Missed exclude bins" emerge
from human errors, representing ideally non-coverable bins mistakenly defined in the coverage point. Their presence
prohibits reaching 100% coverage. On the other hand, "missing bins" refer to those bins that, despite being tested,
aren't included in the coverage point due to oversights or over-exclusions. Their presence can falsely indicate
comprehensive testing, leaving potential gaps in verification.

One traditional approach to address this is the "illegal_bins" keyword, which triggers notifications upon activation.
However, its uncontrolled reporting poses challenges [1]. When solely utilizing the "illegal_bins" keyword, it
becomes challenging to pinpoint the specific timing and rules under which illegal bins were triggered. In addition, it
is necessary to use the Electronic Design Automation (EDA) tool to determine if you have hit any illegal bins. This
complexity not only hinders debugging but also ultimately extends the time required to achieve coverage closure. In
essence, there is a lack of a straightforward mechanism to prevent the reporting of errors in this context. Given that
illegal bins manifest as errors, there exists a potential for test failure associated with their presence.

III. BACKGROUND

In other research related to functional coverage, it has been suggested that validation is necessary to ensure all
generated coverage bins are reachable. The Functional Coverage Management System (FCMS) [2] automatically
converts table-based specifications into coverage. While the previous work has the advantage of being able to
generate a SystemVerilog Assertion (SVA) model for formal

 verification and a SystemVerilog functional coverage model for simulation verification, it requires the use of a
separate tool called SpecGen and suffers from a performance drop of about 30%. The method we propose focuses
on detecting "missing bins", and it can be easily and simply applied by just changing the way SystemVerilog
functional coverage is written. When using our method, the performance degradation occurs within 3%, which is
approximately ten times less compared to the conventional work.

Several EDA Tools provide features for the analysis of functional coverage, like merging coverage from multiple
runs [3]. They also provide various insights from the perspective of analyzing cross-coverage. For instance,
vManager has an "aggregate analysis" feature that analyzes the uncovered bins of cross-coverage, making it easy to
understand the patterns of uncovered bins [3]. It also shows whether excluded coverage bins like "ignore_bins" and
"illegal_bins" have been hit, along with their scores. However, it does not provide information on which test and at
what time the excluded bins were hit. When verification engineers become aware of the existence of "missing bins",
they need to check through which scenario that coverage bin was covered for accurate analysis. Our proposed
method enhances the EDA Tool by incorporating a feature to analyze missing bins, which was not previously
available. This new functionality provides detailed log information when missing bins occur. This saves the
verification engineer's time in determining whether "missing bins" are reachable. Meanwhile, the EDA Tool remains
the primary resource for analyzing uncovered bins.

IV. PROPOSED SOLUTION

To achieve exhaustive coverage closure, we use a process of iteratively modifying the coverage model to find and
correct differences from the ideal coverage. Figure 2 depicts the process of modifying coverage. Initially, the
functional coverage is defined. The coverage model initially designated is highly likely to include holes, indicating
the coverage that was inaccurately defined at the beginning. After conducting the test, the engineer analyzes the
coverage results. When analyzing bins not covered in the coverage results, those deemed incapable of being covered
are classified as "uncovered bins", while those assessed as coverable are labeled "missed exclude bins". If a bin is
determined to be an "uncovered bin", we enhance the test scenario. If it's classified as a "missed exclude bin", we
add the bin to the waive conditions. "Uncovered bins" can be easily detected using the traditional method of EDA
Tools. The method we propose should be used in conjunction with the EDA tool approach, and it complements the
existing methods.

Following the state-of-the-art methodology for functional coverage creation, engineers can review reports on
"missing bins". If it is feasible to cover the reported "missing bins", they are removed from the conditions of the
"waiver function". If coverage is indeed impossible, it necessitates an investigation into potential issues within the
design or verification environment. If the coverage does not reach 100% or there are still missing bins, the process
reverts to the run test stage, and the following steps are repeated. However, if the coverage becomes 100% and there
are no longer any missing bins, the process terminates, and the coverage at that point is deemed the final coverage.
Through this iterative process of refining coverage, tests are executed repeatedly to bolster coverage.

Figure 2. Process of Refining Coverage

This paper introduces a three-step approach to writing functional coverage in SystemVerilog. Through this

methodology, engineers can effectively detect missing bins with ease. This approach purely leverages the coverage
syntax of SystemVerilog. The relevant code snippets are provided in Figures 3, 4, and 5.

A. Defining Coverage bins in Queue
The first step involves defining the desired coverage bin within a queue, a specific data structure in

SystemVerilog. The data pushed into this queue constitutes the coverage points for cross-coverage. The reason for
defining coverage using the queue is to use "ignore_bins" flexibly and reactively in cross-coverage. As illustrated in
Figure 3, a queue named StateCoverBin is defined with the capability to store 10-bit data. This is done to establish a
cross-coverage that intersects 10 coverage points of one-bit. A critical component of this process is the "waiver
function", determining if the data is reachable and ensuring only valid data is entered into the queue. This function,
apart from verifying data, also offers reusability across multiple coverage points and can be utilized across various
scopes or classes. The code snippet includes a "waiver function" named WaiveState. This function takes 10-bit data
as input and provides an "IllegalIdx" as output. If, in the engineer's judgment, input data is feasible to be covered, the
"IllegalIdx" is output as zero. If not, a value can be checked to see which rule includes it in the illegal condition. For
all conceivable states, corresponding to the Universal Set, only those assessed as coverable, with a result of zero
from the WaiveState function, are placed in the StateCoverBin. The queue now represents the Defined Set.
B. Defining Cross-Coverage Using CrossQueueType

The subsequent phase is about defining the cross-coverage using the CrossQueueType keyword. It is a
SystemVerilog keyword utilized for the automatic definition of queues of tuples within each cross [5]. Our unique
approach is to convert the queue used in step A to CrossQueueType to define the ignore bins in cross-coverage. This
type of bin is advantageous for specifying bins for exclusion [4]. A unique function, createIgnoreBins, is defined to
return a CrossQueueType. This function pushes all non-included instances from the queue, ensuring only the
necessary coverage bins are retained in the cross-coverage. As depicted in Figure 4, we have defined ten coverage
points from s9 to s0 as cross-coverage. The s9~s0 are coverage points created by dividing the sampled 10-bit data
into ten bins, each consisting of 1 bit. The createIgnoreBins function incorporates into the output CrossQueueType
only those states that are not present in the StateCoverBin. The keyword "ignore bins" is utilized for the cross-
coverage bins that are the outcome of the createIgnoreBins function, to exclude them from coverage. This procedure
allows for the transformation of states defined in the StateCoverBin into a cross-coverage bin format.
C. Reporting Missing Bins Pre-Sampling

The concluding step is about inspecting potential "missing bins" before sampling. The data intended for sampling
is fed into the previously mentioned "waiver function". This process identifies if the data should be excluded. If the
exclusion is deemed necessary, the return value from the "waiver function" exceeds zero, indicating the data pertains
to the "missing bins". Such data is then reported via an error syntax, allowing verification engineers to quickly detect
the presence of data from these "missing bins" in the logs. As demonstrated in Figure 5, the WaiveState function is
utilized to procure "RespState", the data set for sampling, as an input and yielding "IllegalIdx" as an output. The
implication of an "IllegalIdx" exceeding zero signifies a state where coverage is impossible. In such scenarios, an
ERROR statement is employed to report the situation. The method of reporting is subject to modification depending
on the configuration. This data's subsequent discovery facilitates an evaluation of the coverage definition's accuracy.
Any discrepancies observed lead to modifications in the coverage definitions or in the test cases, thus refining the
coverage reliability and enhancing verification quality.

Figure 3. Defining Coverage Bins in Queue

Figure 4. Defining Cross-Coverage Using CrossQueueType

Figure 5. Reporting Missing Bins Pre-Sampling Defining

V. EXPERIMENTAL RESULTS

Experimental Setup
A series of tests were conducted to validate the effectiveness of the proposed method. These involved a Design

Under Test (DUT) diagram showcasing the structure of the CacheManager (CM), a pivotal IP managing caches and
their states. Figure 6 effectively illustrates the command flow of the CM. The CM incorporates modules referred to
as StateMachines and several cache entries. These cache entries possess their 10-bit states, with each bit carrying a
distinct meaning. For instance, the 0th bit could represent 'Latest', while the 1st bit may signify 'Dirty'. State
transitions invariably occur due to the StateMachine.

Figure 6. The Command Flow of the CacheManager

The StateMachine module is a type of deterministic finite state machine. There exist two types of StateMachines

in CM: StateMachine_curr is utilized to modify the state of the cache currently being processed, while
StateMachine_infl is used to alter the state of the neighboring cache influenced by the cache currently being
processed. If the affected cache does not exist, StateMachine_infl will not work. The CM receives, as input, the
index of the cache that needs to be currently processed (current cache ID) and the cache influenced by it (influenced

cache ID), along with the command (CmdInput). The StateMachines receive the request state from the cache entry,
determined from each respective cache ID, as ReqState_curr and ReqState_infl, accompanied by the CmdInput,
serving as an input. A state-transition table is embedded within the StateMachine. This table describes information
on how to modify the state based on the combination of command and request state, i.e., which bits to set or clear,
and what output command (CmdOutput) to produce. The altered states, following the guidelines of the state-
transition table, are outputted from the StateMachines as RespState_curr and RespState_infl. Subsequently, these
states are stored as the state of the corresponding cache entries.

During the testing process, we implemented sampling each time an output of RespState was generated to confirm
that every conceivable state had been transformed. The optimal strategy to examine the entire sample space of
potential coverage (Ideal Set) is to predict every incoming command and its respective state. However, this approach
encounters issues due to the following reasons: 1) Commands are received in a non-sequential or random order; 2)
The Input Command is determined not only by the preceding Output Command but also by other external modules
to the CM; 3) State transitions can occur in either the StateMachine_curr or StateMachine_infl. To predict the
subsequent state, it is necessary to know the previous state as well as the upcoming Input Command. For the non-
deterministic nature of such inputs, engineers are unable to define perfect coverage from the outset, which introduces
the possibility of human error. Hence, we employed an approach of initially defining coverage for simple scenarios,
then enhancing the coverage through repeated testing utilizing the method in Section III.
Results

Table 2 pertains to the results of our experiments. The experiment saw two cross-coverages, resulting in a total of
2048 states when all possible cases were examined. The study revealed complexities when isolating the Ideal Set (I,
a set of valid states) from the Universal Set (U), given that the state-transition table elucidated bit transformations
without detailing the resulting RespState. This complexity stems from the complex interplay between a myriad of
input combinations and the ReqState.

For the sake of efficiency, the team initially outlined coverage for basic scenarios, named "Initially Defined Set"
(Dinit), and then improved coverage iteratively based on tests. As a result, the "Initially Sampled Set" (Sinit) for
RespState_curr and RespState_infl was found to be 202 in RespState_curr and 119 in RespState_infl out of a defined
304 and 296 bins, respectively. It implies that the initial coverage definition and test scenario only cover 53.5% of
the total. After refining the coverage using our proposed method, we were able to achieve 100% coverage, with 228
coverage bins derived for RespState_curr and 165 for RespState_infl, which we have termed the "Final Defined Set"
(Dfinal). Having achieved 100% coverage and with no further missing bins emerging, we concluded that the "Final
Defined Set" is identical to the "Final Sampled Set" (Sfinal), the latter being the collection of samples obtained from
the final test. Since the "Final Defined Set" and the "Final Sampled Set" are the same, we were able to designate
them as the Ideal Set. Comparing the "Initially Defined Set" with the "Final Defined Set", there were 380
overlapping coverage bins, confirming that the "Initially Defined Set" has an accuracy of 63.3%, a figure derived by
dividing the overlapping coverage bins by the total size of the "Initially Defined Set".

Table 2. The Size of Coverage Set

Throughout the process of improving the coverage using the method proposed in Section III, we tackled the

uncovered bins by analyzing their properties to determine whether they fit within the Ideal Set. By tracking the
transition of the previous states, the engineer could verify if the Input Commands were received in the correct
sequence and determine whether that state could indeed be covered. If a bin was not covered but could be covered,
test scenarios were constructed to cover these bins. If a bin was not covered and could not ideally be covered, they
were earmarked on the "waiver function", effectively excluding them. By deploying the methodology proposed,
"missing bins" - bins that should have been incorporated but weren't due to human error - were identified and the
corresponding condition was removed from the "waiver function".

The results were encouraging, referring to Table 3. The paper's methodology assisted in efficiently uncovering
14.1% of bins that would have been overlooked using conventional techniques. Out of 255 total coverage holes, 14
and 22 "missing bins" were detected respectively, which represents a proportion of 14.1%. The remainder are
"initially uncovered bins" that can be verified using traditional methods. There were 35 "uncovered bins" due to
scenario deficiencies, and 184 "missed exclude bins" required exclusion.

Leveraging our proposed method arms verification engineers with a reliable strategy to identify and rectify
"missing bins". Figure 7 illustrates the importance of eliminating missing bins in the process of enhancing the
accuracy of functional coverage. Through our experiment, we were able to discover a total of 7 (Register Transfer
Level) RTL bugs related to missing bins. Upon examining the results of the experiment, it was found that the method
enabled the identification of a total of 36 "missing bins" out of the initially defined 600 coverage bins, equivalent to
6.0%. This indicates an enhancement of 6.0% in the overall quality of functional coverage, a significant
improvement attributable to the implementation of our proposed method.

Table 3. Analyzing the Number of Coverage Bins with Holes

Figure 7. Coverage Bin Set Before and After Refinement

VI. CONCLUSION AND FUTURE WORK

This paper introduces a methodology for writing functional coverage that effectively detects "missing bins" caused
by human error. This methodology is motivated by the intent to confirm which functionalities of the design have
been thoroughly verified. Despite achieving 100% coverage, the existence of these "missing bins" raises questions
about the need for additional testing. To address this issue, we propose a methodology that defines a "waiver
function" to describe the conditions of bins that cannot be covered and verifies whether a bin can be covered through
the "waiver function" before sampling the coverage bin. This method, which exclusively utilizes SystemVerilog
syntax, offers the advantage of being easy to use. Through the proposed method, engineers can identify and eliminate
"missing bins", thereby enhancing the completeness of functional coverage. In the experiment, this methodology was

used for the verification of the deterministic finite state machine, detecting a total of 36 "missing bins", thereby
enhancing the overall verification completeness by 6.0%. The application of our proposed method has demonstrated
effectiveness in addressing coverage points that demand thorough validation. For simpler coverage points,
conventional methods can be consistently applied without encountering any issues.

Our proposed methodology is versatile, allowing for the sampling of not only 10-bit data but also of data in
varying formats, including structured or object-oriented data. When defining transition bins to verify the command
order, human error may occur during the functional coverage definition process. This methodology is capable of
counteracting this by identifying "missing bins" during the transition bin definition.

A distinct advantage of utilizing the proposed method for functional coverage is its ability to detect previously
overlooked "missing bins". Nevertheless, this process necessitates an engineer's intervention to validate whether the
coverage bin corresponding to the "missing bins" resides in the Ideal Set. As a future development, we plan to
research enabling reactive coverage closure through script automation. Through automation, we aim to diminish the
necessity for human intervention in determining if a coverage bin belongs to the Ideal Set. This advancement aims to
streamline the process and enhance the efficiency of coverage closure tasks.

REFERENCES
[1] "what is difference between ignore bins and illegal bins.", Verificaton Academy, last modified July 29, 2021, accessed Sep 1, 2023,

https://verificationacademy.com/forums/systemverilog/what-difference-between-ignore-bins-and-illegal-bins.
[2] S.Ikram, J.Perveilier, I.Akkawi, J.Ellis, D.Asher, " Table-based Functional Coverage Management for SOC Protocols" in DVCon 2015,

https://dvcon-proceedings.org/wp-content/uploads/table-based-functional-coverage-management-for-soc-protocols.pdf
[3] Cadence Incisive vManager User Guide, https://support.cadence.com/apex/ProductManuals?pageName=ProductManuals
[4] "How to Ignore Cross Coverage Bins Using Expressions in SystemVerilog", AMIQ Consulting, last modified September 17, 2014, accessed

Sep 1, 2023, https://www.amiq.com/consulting/2014/09/17/how-to-ignore-cross-coverage-bins-using-expressions-insystemverilog/
[5] IEEE Standard for SystemVerilog,19.6.1.3, https://ieeexplore.ieee.org/document/8299595/metrics#metrics

