(2024

DESIGN AND VERIFICATION ™

DVCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

Metric Driven Microcode Verification:
Navigating Microcode Coverage Complexities

Seungyeon Yu, Damin Son, Tony Gladvin George, Kihyun Park,
Dongkun An, Wooseong Cheong, ByungChul Yoo

Samsung Electronics

Agenda

* Motivation

* Problem Statement

» Assertion-based Coverage Checker For Microcode
* Automated Checker File Generation

* Experimental Results

* Conclusion

2024

DESIGN AND VERIEICATIOMN™

DV

CONFERENCE AND EXHIBITION

Agenda

* Motivation

DESIGN AND VERIEICATIOMN™

DV

CONFERENCE AND EXHIBITION

Motivation

* Microprocessor applications to an in-house project

* Changes in architecture kA P_A
* Expansion of verification scope C&D%ﬁ?@ = mL
* FSM Logic = FSM Logic + Microcode | ? j 5

2024

DESIGN AND VERIEICATIOMN™

DVGCON

CONFERENCE AND EXHIBITION

Motivation

* The absence of indicators for the completion of microcode verification

* Unpredictable whether all microcode is covered.
* Possibility of bugs in microcode that has not been covered yet.

* The problem repeats whenever microcode is changed.
* So We propose a methodology to analyze the coverage of microcode.

2024

DESIGN AND VERIEICATIOMN™

DVGCON

CONFERENCE AND EXHIBITION

Agenda

 Problem Statement

2024

ESIGN AND VERIEICATION™

How to analysis the coverage of microcode?

* The coverage analysis tool only supports coverage analysis results for
microprocessors(DUT), not microcode(Data).

* For coverage analysis of microcode, verification engineers must write
functional coverage manually.

nCode =)
Processor (DUT) (Data) + m
—]

\Vy \Vy
coverage analysis tool coverage analysis tool
/ % \ / % \
code coverage functional coverage

2024

DESIGN AND VERIEICATIOMN™

OVCON

CONFEREMNCE AND E

An Increase in workload

 Whenever microcode is updated, verification engineers are required to
manually modify the functional coverage.

* This approach increases the workload of verification, which affects the
project schedule.

wo)] o)) veam) wew M)

1 uCoderelease
|

1 1
! 3" release N release
1 1
A\ ' |
2" rc?lease Ny e v
‘7‘00 ! ! A A
. C)) <
@ 73] 3 dooDh doo)b VV
Rty VG @[
)
(; " (1= (LS~
q @ {13

(——D]

2024

DESIGN AND VERIEICATIOMN™

DVGCON

CONFERENCE AND EXHIBITION

Agenda

» Assertion-based Coverage Checker For Microcode

2024

DESIGN AND VERIEICATIOMN™

FC Checker: Operating concept

* Assumption

* What if the criterion for achieving coverage 100% is to
perform all operations?

* The operation flow implemented in microcode

¢ blue path ope*tionl
* op0 = (condition A==T) 2 opl 2> op2
i green path opera\onz operat n4

* op0 > (condition_A==F) 2 op3 = (condition_ B==T) > op4 'l “

2024

DESIGN AND VERIEICATIOMN™

FC Checker: Operating concept

* |f only the blue path and the green path are executed,
it satisfies 100%.

 However, there is an additional path that needs to be
covered.
* vellow path
* 0op0 = (condition_A==F) - op3 =2 (condition B==T) 2 op4

* Therefore, the important part is where the flow
changes according to the condition.

ope*tion 1

condition N
B

opera

operat‘sn 4

FC Checker: Coverpoints of the Checker

* Implement a checker by monitoring the path of the microcode address (PC).

* Check these two cases to generate functional coverage for microcode.
e Cover Point 1 : Condition A == TRUE -2 Branch
* Cover Point 2 : Condition A == FALSE - Step Next Command

C Start)

Condition

True

A 4

Branch Step Next Cmd
CoverPoint @ CoverPoint

2024

DESIGN AND VERIEICATIOMN™

DVI:I:IN

NFERENCE AMND EX|

FC Checker: Coverpoints of the Checker

* Check these two cases to generate functional coverage for microcode.
e Cover Point 1 : Condition A == TRUE -2 Branch

<Microcode Example>
00020178 <SRC_LABELO> :

20178 : c0002017 CMP 2, 112 <-----mmmmmmmmmmmoopoooooes Condition A
2017c: 7e 80a0 32 bge *+1f8 <DST_LABELO> «f------- Branch

20180: 00 00 00 00 0] el Rty Branch delay slot
20184 : fc 00 f0 2c Isr r12, r15, $0xf

6(50201f8 <DST_ LABELO>:
201f8: 1b 00c02e add ri11, r12, $0x1 <-------===-f------- CoverPoint @

2024

DESIGN AND VERIEICATIOMN™

DV

CONFERENCE AND EXHIBITION

FC Checker: Coverpoints of the Checker

* Check these two cases to generate functional coverage for microcode.

* Cover Point 2 : Condition A == FALSE = Step Next Command

<Microcode Example>
00020178 <SRC_LABELO> :

20178 : c0002017 CMP 2, 112 <-----mmmmmmmmmmmoopooooeos Condition A
2017c: 7e 80 a0 32 bge *+1f8 <DST_LABELO> «{------- Branch

20180: 00 00 00 00 10 I Branch delay slot
20184 : fc 00 fO 2c Isr r12,r15, $Oxf <---------=-f-mmmmo- CoverPoint @

660201f8 <DST_LABELO> :
201f8 : 1b 00 c0 2e add r11, r12, $0x1

2024

DESIGN AND VERIEICATIOMN™

DVGCON

CONFERENCE AND EXHIBITION

FC Binder : A file that binds checkers

 Binder file contains SV bind commands which bind multiple checker
instances into the simulation environment.

Simulation Env

Binder Microcode e uCode

——— 1 c q * uCode address (PC) with br instruction
e] uCode
Checker? | *- < Data parsing ‘l * uCode address (PC) after br instruction

| Microcode operation label

CheckerN

i * uProcessor
Microprocessor(DUT)

e RTL signal drive

- /0 I PO P1 PN
RTL signal — —> e

connect

2024

DESIGN AND VERIEICATIOMN™

OVCON

CONFEREMNCE AND E

Implementation of FC checker

module uCodeFcChecker #(parameter SRC_PC='h@, parameter DST_PC='h@) (

input i clk , .

input iTrstn , * Coverpoints

input i_inst_mem_csn ,

input i_inst_mem_wen , °

input [15:0] i inst_mem_a UCOde—Step—neXt
); * Case not branched due to unsatisfied condition
wire inst_mem_rd = !i_inst mem_csn & i _inst_mem_wen;

* ucode_branch

property ucode_step_next(src_pc);

disable iff (!i_rstn) %nst_mem_r‘d & (?_%nst_mem_a == src_pc) |-> e (Case branched due to satisfied condition
##1 inst_mem_rd & (i_inst_mem_a == src_pc+1l) |->
##1 inst mem_rd & (i_inst_mem_a == src_pc+2);
endproperty
property ucode_branch(src_pc, dst_pc); |
disable iff (!i_rstn inst mem_rd & (i_inst_mem_a == src_pc -> H 1 H 1
) e T ke 3 15 * Monitoring the memory signals where uCode is
##1 inst mem_rd & (i_inst mem_a == dst pc);
endproperty |Oa d Ed .
_COV_UCODE_STEP_NEXT : cover property (ucode_step_next(SRC_PC));
_COV_UCODE_BRANCH : cover property (ucode_branch(SRC_PC, DST_PC));

endmodule

DESIGN AND VERIEICATIOMN™

DV

CONFERENCE AND EXHIBITION

Implementation of FC Binder

bind “XX_TOP UcodeBinder z_uCode Checker();

module UcodeBinder();

uCodeFcChecker #(.SRC_PC('h807f), .DST_PC('h8@8e))
u_CHKR@_SRC_LABEL®_ DST_LABEL® (

.1_clk (i_clk)
.i_rstn (i_rstn)
.i_inst_mem_csn (o_inst_mem_csn),
.i_inst_mem_wen (o_inst_mem_wen),
.i_inst_mem_a (o_inst_ mem_a)

)5

uCodeFcChecker #(.SRC_PC('h8082), .DST_PC('h8087))
u_CHKR1_SRC_LABEL1_DST_LABEL1 (

.i_clk (i_clk)
.i_rstn (i_rstn)
.i_inst_mem_csn (o_inst_mem_csn),
.i_inst_mem_wen (o_inst_mem_wen),
.i_inst_mem_a (o_inst mem_a)
)
endmodule

* The number of checker instances is generated as
many as the number of branch instructions in the
microcode.

* The binder provides the address information
required for the FC checker instances as a
parameter.

* The binder connects the checker instances and
the RTL signal.

DESIGN AND VERIEICATIOMN™

DV

CONFERENCE AND EXHIBITION

Agenda

e Automated Checker File Generation

2024

DESIGN AND VERIEICATIOMN™

Automated Checker File Generation

* The high flexibility of microcode leads to frequent modifications, making it
difficult for verification engineers to respond every time.

* The driving of inputs and parsing of uCode information particularly
increases the workload of verification engineers.

* Therefore, we propose a method of automatically creating an assertion
coverage by introducing a Python-based automated script.

Automated Checker File Generation

 When an uCode file is inputted, the python script generates a checker file
and a binder file containing uCode information and RTL connections.

Microcode Python-based Binder
automated script

|
cod binder - > Checker2 |*.,
uCodeN generator -

g]

" L

/ 7
address 14 CheckerN

parameter f---]--- //,,‘ 14,

parser

-

-------------- 2 RTL signal
address information connector
uCode label

2024

DESIGN AND VERIEICATIOMN™

DVI:I:IN

NFERENCE AMND EX|

Agenda

* Experimental Results

2024

ESIGN AND VERIEICATION™

Experimental Condition

e Custom microprocessors in the [P

* Processor has a branch delay slot. TestBench
* It is based on RISC-V.

|
uCode

e DUT takes h/w and uCode into consideration '

together. T s
. e . . . SRAM ||, L[| SRAM
* The verification test suite contains many N N
. —inputy —outputH
different combinations of external stimuli. |

IP_Logic_Top(DUT)

2024

DESIGN AND VERIEICATIOMN™

DVGCON

CONFERENCE AND EXHIBITION

Experimental Results

 Branch

& Bachelires == T4 321 T
EF| Cursor-Baseline w s T8 22na

[Mame o~ Cunsoro- ||EEREE

E |
B EO _Cov_UCODE_BRANCH firished ELEIEEE

| 0408 | 04E9

@ branch delayslot @ jump

e Execute next instruction

) Bachelires =n T4 321 TS
EF| Corsor-Baseling == -1 15.5ns

@~ [Cursere~

DESIGN AND VERIEICATIOMN™

DVGCON

CONFERENCE AND EXHIBITION

Experimental Results

performed.

verification.

Through the ucode checker, we can confirm that 98% of FC has been achieved.

The code coverage of the processor does not indicate whether the IP operation flow has been

Since it is coverage for the DUT that operates the ucode, it cannot be an indicator for uCode

The solution is reusable for all IPs that use the processor and has been applied to several projects in

practice.

Type MName

UcodeOBinder
UcodelBinder
Ucode2Binder
Ucode3Binder

Overall Average Grade
] 94.44%
100%
100%
[97.56%

Cwverall Covered
34736 (94.44%)
58 /58 (100%)
26 /26 (100%)
B0/ 82(97.56%)

Fjoverbin _ Code Coverage (%) Functional Coverage
Project (Covered bin / Total Cover bin) (%)
Processor Microcode Processor Microcode
IPA 673/911 198/202 73.8 98.0
IPB 852/1143 389/422 74.5 92.2
IPC 849/1143 431/460 74.3 93.7

DESIGN AND VERIEICATIOMN™

DV

CONFERENCE AND EXHIBITION

Agenda

 Conclusion

DESIGN AND VERIEICATIOMN™

DV

CONFERENCE AND EXHIBITION

Conclusion

* Universally applicable and easily reused
 Serve as a criterion for signing off on microcode verification
* Significantly reduce the time and effort required for microcode verification

* Improve the quality and reliability of microcode

2024

DESIGN AND VERIEICATIOMN™

DV

CONFERENCE AND EXHIBITION

Questions

* ssyeon.yu@samsung.com

2024

DESIGN AND VERIEICATIOMN™

mailto:ssyeon.yu@samsung.com

	기본 구역
	슬라이드 1: Metric Driven Microcode Verification: Navigating Microcode Coverage Complexities
	슬라이드 2: Agenda

	motivation
	슬라이드 3: Agenda
	슬라이드 4: Motivation
	슬라이드 5: Motivation

	problem statement
	슬라이드 6: Agenda
	슬라이드 7: How to analysis the coverage of microcode?
	슬라이드 8: An Increase in workload

	SVA-based Coverage Checker
	슬라이드 9: Agenda
	슬라이드 10: FC Checker: Operating concept
	슬라이드 11: FC Checker: Operating concept
	슬라이드 12: FC Checker: Coverpoints of the Checker
	슬라이드 13: FC Checker: Coverpoints of the Checker
	슬라이드 14: FC Checker: Coverpoints of the Checker
	슬라이드 15: FC Binder : A file that binds checkers
	슬라이드 16: Implementation of FC checker
	슬라이드 17: Implementation of FC Binder

	Automated Checker File Generation
	슬라이드 18: Agenda
	슬라이드 19: Automated Checker File Generation
	슬라이드 20: Automated Checker File Generation

	experimental results
	슬라이드 21: Agenda
	슬라이드 22: Experimental Condition
	슬라이드 23: Experimental Results
	슬라이드 24: Experimental Results

	conclusion
	슬라이드 25: Agenda
	슬라이드 26: Conclusion
	슬라이드 27: Questions

