
Metric Driven Microcode Verification:
Navigating Microcode Coverage Complexities

Seungyeon Yu, Damin Son, Tony Gladvin George, Kihyun Park,
Dongkun An, Wooseong Cheong, ByungChul Yoo

Samsung Electronics

Agenda

• Motivation

• Problem Statement

• Assertion-based Coverage Checker For Microcode

• Automated Checker File Generation

• Experimental Results

• Conclusion

Agenda

• Motivation

• Problem Statement

• Assertion-based Coverage Checker For Microcode

• Automated Checker File Generation

• Experimental Results

• Conclusion

Motivation

IP_A
Logic_0

Logic_1

...

Logic_N

Logic_2

Logic_3

FSM

IP_A'
Microprocessor

P0 PNP1 ...

Logic_1 Logic_2

...

Logic_N Logic_3

• Microprocessor applications to an in-house project

• Changes in architecture

• Expansion of verification scope
• FSM Logic → FSM Logic + Microcode

Motivation

• The absence of indicators for the completion of microcode verification
• Unpredictable whether all microcode is covered.

• Possibility of bugs in microcode that has not been covered yet.

• The problem repeats whenever microcode is changed.

• So We propose a methodology to analyze the coverage of microcode.

Agenda

• Motivation

• Problem Statement

• Assertion-based Coverage Checker For Microcode

• Automated Checker File Generation

• Experimental Results

• Conclusion

How to analysis the coverage of microcode?

• The coverage analysis tool only supports coverage analysis results for
microprocessors(DUT), not microcode(Data).

• For coverage analysis of microcode, verification engineers must write
functional coverage manually.

code coverage

coverage analysis tool

Processor (DUT)

functional coverage

coverage analysis tool

μCode
(Data) +

An Increase in workload

• Whenever microcode is updated, verification engineers are required to
manually modify the functional coverage.

• This approach increases the workload of verification, which affects the
project schedule.

DesignKick-off Verification After DV

2nd release

1st uCode release
3rd release Nth release

... ...

Agenda

• Motivation

• Problem Statement

• Assertion-based Coverage Checker For Microcode

• Automated Checker File Generation

• Experimental Results

• Conclusion

• Assumption
• What if the criterion for achieving coverage 100% is to

perform all operations?

• The operation flow implemented in microcode
• blue path

• op0 → (condition_A == T) → op1 → op2

• green path
• op0 → (condition_A == F) → op3 → (condition_B == T) → op4

FC Checker: Operating concept

operation 0

condition
A

Start

End

operation 1

operation 3

condition
B

operation 2 operation 4

Y

N

Y

N

• If only the blue path and the green path are executed,
it satisfies 100%.

• However, there is an additional path that needs to be
covered.
• yellow path

• op0 → (condition_A == F) → op3 → (condition_B == T) → op4

• Therefore, the important part is where the flow
changes according to the condition.

FC Checker: Operating concept

operation 0

condition
A

Start

End

operation 1

operation 3

condition
B

operation 2 operation 4

Y

N

Y

N

• Implement a checker by monitoring the path of the microcode address (PC).

• Check these two cases to generate functional coverage for microcode.
• Cover Point 1 : Condition A == TRUE → Branch

• Cover Point 2 : Condition A == FALSE → Step Next Command

FC Checker: Coverpoints of the Checker

Branch

Start

Condition A

FalseTrue

Step Next Cmd

CoverPoint ① CoverPoint ②

• Check these two cases to generate functional coverage for microcode.
• Cover Point 1 : Condition A == TRUE → Branch

• Cover Point 2 : Condition A == FALSE → Step Next Command

FC Checker: Coverpoints of the Checker

00020178 <SRC_LABEL0> :

 20178 : c0 00 20 17 cmp r2, r12

 2017c : 7e 80 a0 32 bge *+1f8 <DST_LABEL0>

 20180 : 00 00 00 00 nop

 20184 : fc 00 f0 2c lsr r12, r15, $0xf

…

000201f8 <DST_LABEL0> :

 201f8 : 1b 00 c0 2e add r11, r12, $0x1

…

Condition A

<Microcode Example>

Branch delay slot

CoverPoint ①

Branch

• Check these two cases to generate functional coverage for microcode.
• Cover Point 1 : Condition A == TRUE → Branch

• Cover Point 2 : Condition A == FALSE → Step Next Command

FC Checker: Coverpoints of the Checker

00020178 <SRC_LABEL0> :

 20178 : c0 00 20 17 cmp r2, r12

 2017c : 7e 80 a0 32 bge *+1f8 <DST_LABEL0>

 20180 : 00 00 00 00 nop

 20184 : fc 00 f0 2c lsr r12, r15, $0xf

…

000201f8 <DST_LABEL0> :

 201f8 : 1b 00 c0 2e add r11, r12, $0x1

…

Condition A

<Microcode Example>

Branch delay slot

CoverPoint ②

Branch

• Binder file contains SV bind commands which bind multiple checker
instances into the simulation environment.

FC Binder : A file that binds checkers

• uCode
• uCode address (PC) with br instruction

• uCode address (PC) after br instruction

• Microcode operation label

• uProcessor
• RTL signal drive

Simulation Env

Binder

Checker
Checker
Checker2

Checker
CheckerN

Microprocessor(DUT)

P0 PNP1 ...

Data parsing

RTL signal
connect

Microcode

uCode0uCodeuCode0uCode0uCodeuCode
N

Implementation of FC checker

module uCodeFcChecker #(parameter SRC_PC='h0, parameter DST_PC='h0) (
 input i_clk ,
 input i_rstn ,
 input i_inst_mem_csn ,
 input i_inst_mem_wen ,
 input [15:0] i_inst_mem_a
);

wire inst_mem_rd = !i_inst_mem_csn & i_inst_mem_wen;

property ucode_step_next(src_pc);
 disable iff (!i_rstn) inst_mem_rd & (i_inst_mem_a == src_pc) |->
 ##1 inst_mem_rd & (i_inst_mem_a == src_pc+1) |->
 ##1 inst_mem_rd & (i_inst_mem_a == src_pc+2);
endproperty

property ucode_branch(src_pc, dst_pc);
 disable iff (!i_rstn) inst_mem_rd & (i_inst_mem_a == src_pc) |->
 ##1 inst_mem_rd & (i_inst_mem_a == src_pc+1) |->
 ##1 inst_mem_rd & (i_inst_mem_a == dst_pc);
endproperty

_COV_UCODE_STEP_NEXT : cover property (ucode_step_next(SRC_PC));
_COV_UCODE_BRANCH : cover property (ucode_branch(SRC_PC, DST_PC));

endmodule

• Coverpoints
• ucode_step_next

• Case not branched due to unsatisfied condition

• ucode_branch
• Case branched due to satisfied condition

• Monitoring the memory signals where uCode is
loaded.

Implementation of FC Binder

bind `XX_TOP UcodeBinder z_uCode_Checker();

module UcodeBinder();

 uCodeFcChecker #(.SRC_PC('h807f), .DST_PC('h808e))
u_CHKR0_SRC_LABEL0__DST_LABEL0 (

 .i_clk (i_clk),
 .i_rstn (i_rstn),
 .i_inst_mem_csn (o_inst_mem_csn),
 .i_inst_mem_wen (o_inst_mem_wen),
 .i_inst_mem_a (o_inst_mem_a)
);

 uCodeFcChecker #(.SRC_PC('h8082), .DST_PC('h8087))
u_CHKR1_SRC_LABEL1__DST_LABEL1 (

 .i_clk (i_clk),
 .i_rstn (i_rstn),
 .i_inst_mem_csn (o_inst_mem_csn),
 .i_inst_mem_wen (o_inst_mem_wen),
 .i_inst_mem_a (o_inst_mem_a)
);

…

endmodule

• The number of checker instances is generated as
many as the number of branch instructions in the
microcode.

• The binder provides the address information
required for the FC checker instances as a
parameter.

• The binder connects the checker instances and
the RTL signal.

Agenda

• Motivation

• Problem Statement

• Assertion-based Coverage Checker For Microcode

• Automated Checker File Generation

• Experimental Results

• Conclusion

Automated Checker File Generation

• The high flexibility of microcode leads to frequent modifications, making it
difficult for verification engineers to respond every time.

• The driving of inputs and parsing of uCode information particularly
increases the workload of verification engineers.

• Therefore, we propose a method of automatically creating an assertion
coverage by introducing a Python-based automated script.

Automated Checker File Generation

• When an uCode file is inputted, the python script generates a checker file
and a binder file containing uCode information and RTL connections.

Python-based
automated script

Binder

Checker
Checker
Checker2

Checker
CheckerN

Microcode

uCode0uCodeuCode0uCode0uCodeuCodeN

address information
uCode label

binder
generator

address
parameter

parser

RTL s ignal
connector

Agenda

• Motivation

• Problem Statement

• Assertion-based Coverage Checker For Microcode

• Automated Checker File Generation

• Experimental Results

• Conclusion

Experimental Condition

• Custom microprocessors in the IP
• Processor has a branch delay slot.

• It is based on RISC-V.

• DUT takes h/w and uCode into consideration
together.

• The verification test suite contains many
different combinations of external stimuli.

IP_Logic_Top(DUT)

TestBench

input output
Processor

SRAM

Processor

SRAM...

uCode

Experimental Results

• Branch

• Execute next instruction
① branch delay slot ② jump

① branch delay slot ② execute next

• The code coverage of the processor does not indicate whether the IP operation flow has been
performed.

• Since it is coverage for the DUT that operates the ucode, it cannot be an indicator for uCode
verification.

• Through the ucode checker, we can confirm that 98% of FC has been achieved.

• The solution is reusable for all IPs that use the processor and has been applied to several projects in
practice.

Experimental Results

Project

Coverbin
(Covered bin / Total Cover bin)

Code Coverage (%)
Functional Coverage

(%)

Processor Microcode Processor Microcode

IP A 673/911 198/202 73.8 98.0

IP B 852/1143 389/422 74.5 92.2

IP C 849/1143 431/460 74.3 93.7

Agenda

• Motivation

• Problem Statement

• Assertion-based Coverage Checker For Microcode

• Automated Checker File Generation

• Experimental Results

• Conclusion

Conclusion

• Universally applicable and easily reused

• Serve as a criterion for signing off on microcode verification

• Significantly reduce the time and effort required for microcode verification

• Improve the quality and reliability of microcode

Questions

• ssyeon.yu@samsung.com

mailto:ssyeon.yu@samsung.com

	기본 구역
	슬라이드 1: Metric Driven Microcode Verification: Navigating Microcode Coverage Complexities
	슬라이드 2: Agenda

	motivation
	슬라이드 3: Agenda
	슬라이드 4: Motivation
	슬라이드 5: Motivation

	problem statement
	슬라이드 6: Agenda
	슬라이드 7: How to analysis the coverage of microcode?
	슬라이드 8: An Increase in workload

	SVA-based Coverage Checker
	슬라이드 9: Agenda
	슬라이드 10: FC Checker: Operating concept
	슬라이드 11: FC Checker: Operating concept
	슬라이드 12: FC Checker: Coverpoints of the Checker
	슬라이드 13: FC Checker: Coverpoints of the Checker
	슬라이드 14: FC Checker: Coverpoints of the Checker
	슬라이드 15: FC Binder : A file that binds checkers
	슬라이드 16: Implementation of FC checker
	슬라이드 17: Implementation of FC Binder

	Automated Checker File Generation
	슬라이드 18: Agenda
	슬라이드 19: Automated Checker File Generation
	슬라이드 20: Automated Checker File Generation

	experimental results
	슬라이드 21: Agenda
	슬라이드 22: Experimental Condition
	슬라이드 23: Experimental Results
	슬라이드 24: Experimental Results

	conclusion
	슬라이드 25: Agenda
	슬라이드 26: Conclusion
	슬라이드 27: Questions

