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Motivation

* Microprocessor applications to an in-house project

* Changes in architecture kA P_A
* Expansion of verification scope C&D%ﬁ?@ = mL
* FSM Logic = FSM Logic + Microcode | ? j 5
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Motivation

* The absence of indicators for the completion of microcode verification

* Unpredictable whether all microcode is covered.
* Possibility of bugs in microcode that has not been covered yet.

* The problem repeats whenever microcode is changed.
* So We propose a methodology to analyze the coverage of microcode.
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How to analysis the coverage of microcode?

* The coverage analysis tool only supports coverage analysis results for
microprocessors(DUT), not microcode(Data).

* For coverage analysis of microcode, verification engineers must write
functional coverage manually.

nCode =)
Processor (DUT) (Data) + m
—]

\Vy \Vy
coverage analysis tool coverage analysis tool
/ % \ / % \
code coverage functional coverage
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An Increase in workload

 Whenever microcode is updated, verification engineers are required to
manually modify the functional coverage.

* This approach increases the workload of verification, which affects the
project schedule.
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» Assertion-based Coverage Checker For Microcode
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FC Checker: Operating concept

* Assumption

* What if the criterion for achieving coverage 100% is to
perform all operations?

* The operation flow implemented in microcode

¢ blue path ope*tionl
* op0 = (condition A==T) 2 opl 2> op2
i green path opera\onz operat n4

* op0 > (condition_A==F) 2 op3 = (condition_ B==T) > op4 'l “
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FC Checker: Operating concept

* |f only the blue path and the green path are executed,
it satisfies 100%.

 However, there is an additional path that needs to be
covered.
* vellow path
* 0op0 = (condition_A==F) - op3 =2 (condition B==T) 2 op4

* Therefore, the important part is where the flow
changes according to the condition.

ope*tion 1

condition N
B

opera

operat‘sn 4




FC Checker: Coverpoints of the Checker

* Implement a checker by monitoring the path of the microcode address (PC).

* Check these two cases to generate functional coverage for microcode.
e Cover Point 1 : Condition A == TRUE -2 Branch
* Cover Point 2 : Condition A == FALSE - Step Next Command

C Start )

Condition

True

A 4

Branch Step Next Cmd
CoverPoint @ CoverPoint
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FC Checker: Coverpoints of the Checker

* Check these two cases to generate functional coverage for microcode.
e Cover Point 1 : Condition A == TRUE -2 Branch

<Microcode Example>
00020178 <SRC_LABELO> :

20178 : c0002017 CMP 2, 112 <-----mmmmmmmmmmmoopoooooes Condition A
2017c: 7e 80a0 32 bge *+1f8 <DST_LABELO> «f------- Branch

20180: 00 00 00 00 0] el Rty Branch delay slot
20184 : fc 00 f0 2c Isr r12, r15, $0xf

6(50201f8 <DST_ LABELO>:
201f8: 1b 00c02e add ri11, r12, $0x1 <-------===-f------- CoverPoint @
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FC Checker: Coverpoints of the Checker

* Check these two cases to generate functional coverage for microcode.

* Cover Point 2 : Condition A == FALSE = Step Next Command

<Microcode Example>
00020178 <SRC_LABELO> :

20178 : c0002017 CMP 2, 112 <-----mmmmmmmmmmmoopooooeos Condition A
2017c: 7e 80 a0 32 bge *+1f8 <DST_LABELO> «{------- Branch

20180: 00 00 00 00 10 I Branch delay slot
20184 : fc 00 fO 2c Isr r12,r15, $Oxf <---------=-f-mmmmo- CoverPoint @

660201f8 <DST_LABELO> :
201f8 : 1b 00 c0 2e add r11, r12, $0x1
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FC Binder : A file that binds checkers

 Binder file contains SV bind commands which bind multiple checker
instances into the simulation environment.

Simulation Env

Binder Microcode e uCode

——— 1 c q * uCode address (PC) with br instruction
e ] uCode
Checker? | *- < Data parsing ‘l * uCode address (PC) after br instruction

| Microcode operation label

CheckerN

i * uProcessor
Microprocessor(DUT)

e RTL signal drive

- /0 I PO P1 PN
RTL signal — —> e

connect
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Implementation of FC checker

module uCodeFcChecker #(parameter SRC_PC='h@, parameter DST_PC='h@) (

input i clk , .

input iTrstn , * Coverpoints

input i_inst_mem_csn ,

input i_inst_mem_wen , °

input [15:0] i inst_mem_a UCOde—Step—neXt
); * Case not branched due to unsatisfied condition
wire inst_mem_rd = !i_inst mem_csn & i _inst_mem_wen;

* ucode_branch

property ucode_step_next(src_pc);

disable iff (!i_rstn) %nst_mem_r‘d & (?_%nst_mem_a == src_pc ) |-> e (Case branched due to satisfied condition
##1 inst_mem_rd & (i_inst_mem_a == src_pc+1l) |->
##1 inst mem_rd & (i_inst_mem_a == src_pc+2);
endproperty
property ucode_branch(src_pc, dst_pc); |
disable iff (!i_rstn inst mem_rd & (i_inst_mem_a == src_pc -> H 1 H 1
) e T ke 3 15 * Monitoring the memory signals where uCode is
##1 inst mem_rd & (i_inst mem_a == dst pc );
endproperty |Oa d Ed .
_COV_UCODE_STEP_NEXT : cover property ( ucode_step_next(SRC_PC) );
_COV_UCODE_BRANCH : cover property ( ucode_branch(SRC_PC, DST_PC) );

endmodule
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Implementation of FC Binder

bind “XX_TOP UcodeBinder z_uCode Checker();

module UcodeBinder();

uCodeFcChecker #(.SRC_PC('h807f), .DST_PC('h8@8e))
u_CHKR@_SRC_LABEL®_ DST_LABEL® (

.1_clk ( i_clk )
.i_rstn ( i_rstn )
.i_inst_mem_csn ( o_inst_mem_csn),
.i_inst_mem_wen ( o_inst_mem_wen),
.i_inst_mem_a ( o_inst_ mem_a )

)5

uCodeFcChecker #(.SRC_PC('h8082), .DST_PC('h8087))
u_CHKR1_SRC_LABEL1_DST_LABEL1 (

.i_clk (i_clk )
.i_rstn ( i_rstn )
.i_inst_mem_csn ( o_inst_mem_csn),
.i_inst_mem_wen ( o_inst_mem_wen),
.i_inst_mem_a ( o_inst mem_a )
)
endmodule

* The number of checker instances is generated as
many as the number of branch instructions in the
microcode.

* The binder provides the address information
required for the FC checker instances as a
parameter.

* The binder connects the checker instances and
the RTL signal.
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Automated Checker File Generation

* The high flexibility of microcode leads to frequent modifications, making it
difficult for verification engineers to respond every time.

* The driving of inputs and parsing of uCode information particularly
increases the workload of verification engineers.

* Therefore, we propose a method of automatically creating an assertion
coverage by introducing a Python-based automated script.




Automated Checker File Generation

 When an uCode file is inputted, the python script generates a checker file
and a binder file containing uCode information and RTL connections.

Microcode Python-based Binder
automated script

|
cod binder - > Checker2 |*.,
uCodeN generator -

g ]

" L

/ 7
address 14 CheckerN

parameter f---]--- //,,‘ 14,

parser

-

-------------- 2 RTL signal
address information connector
uCode label
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Experimental Condition

e Custom microprocessors in the [P

* Processor has a branch delay slot. TestBench
* It is based on RISC-V.

|
uCode

e DUT takes h/w and uCode into consideration '

together. T s
. e . . . SRAM ||, L[| SRAM
* The verification test suite contains many N N
. . . . . —inputy —outputH
different combinations of external stimuli. |

IP_Logic_Top(DUT)
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Experimental Results

 Branch
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Experimental Results

performed.

verification.

Through the ucode checker, we can confirm that 98% of FC has been achieved.

The code coverage of the processor does not indicate whether the IP operation flow has been

Since it is coverage for the DUT that operates the ucode, it cannot be an indicator for uCode

The solution is reusable for all IPs that use the processor and has been applied to several projects in

practice.

Type MName

UcodeOBinder
UcodelBinder
Ucode2Binder
Ucode3Binder

Overall Average Grade
] 94.44%
100%
100%
[ 97.56%

Cwverall Covered
34736 (94.44%)
58 /58 (100%)
26 /26 (100%)
B0/ 82(97.56%)

Fjoverbin _ Code Coverage (%) Functional Coverage
Project (Covered bin / Total Cover bin) (%)
Processor Microcode Processor Microcode
IPA 673/911 198/202 73.8 98.0
IPB 852/1143 389/422 74.5 92.2
IPC 849/1143 431/460 74.3 93.7
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Conclusion

* Universally applicable and easily reused
 Serve as a criterion for signing off on microcode verification
* Significantly reduce the time and effort required for microcode verification

* Improve the quality and reliability of microcode
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Questions

* ssyeon.yu@samsung.com
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