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Abstract- One of the goals of power-aware simulation verification is to detect X-propagation and Isolation violations in 

the design. The current methods devised to mitigate these issues largely depend on the scoreboard to detect data integrity 
failures caused by X-propagation. In this traditional approach, a significant amount of time is necessary to trace the 
origin of invalid X-values using waveforms. Hence, the turn-around time for bug detection and validating the 
corresponding bug fix is high for the power-aware simulation. The proposed automation approach automatically 
translates the power design into checkers with assertions. The generated checkers are capable of detecting X-propagation 
and Isolation violations and are instantiated in a hierarchy parallel to the SoC-design. These checkers will enable the 
verification engineer to pinpoint the origin of invalid X-values with low turn-around time. This paper covers detailed 
methods to generate assertions & checkers for power domains, signal isolation, state retention, and restoration, which 
essentially left-shift the power-aware verification. The unexpected challenges in generating such automated assertions are 
addressed in this paper, and practical solutions are provided. 
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I.   INTRODUCTION 
This paper facilitates verification engineers who write power-aware test benches at the SoC level. Despite its 

importance, power design is often added at later stages to the SoC because it is beyond regular functional operation 
[1]. The new release of Wilson Research Group and Mentor Functional Verification Study [2] finds that the third 
leading cause of chip re-spin is due to issues in Power Design. This observation suggests the need for completion of 
power-aware verification with a shorter verification cycle. 

In an SoC design with multiple IPs, each IP can move between power modes (power-off/power-on/sleep) to 
reduce leakage power. Depending on the power mode in operation, the independently powered regions of the IP, 
namely power domains, can be turned on and off, as shown in Figure 1. During such power on/off situations, 
retention cells save & restore memories and register values before and after shut down, respectively. There are 
isolation cells that keep the turned-off IP outputs in a previously defined value, and this is how the shut-down IP 
does not corrupt other active IP functionality [3]. Successful development of low-power semiconductor designs 
includes checking UPF descriptions as well as verifying UPF against the design at multiple stages in the project [4]. 
The power-management verification approach described in this paper verifies the functionality of the power-
management elements described above and addresses the challenges in left-shifting the verification. 

 

Figure 1: SoC with Power Design 



 

Figure 2: X-Propagation and distribution 

A. Problem Statement 
For low-power design and verification, the debug challenges are complicated, resource, and time-consuming due 

to complex power management architectures and instrumentation implications on the actual design [5]. Power-aware 
verification, which employs a UPF file describing the power intent, requires significant simulation time compared to 
the simulation without UPF. The power switches described in the UPF file control the power supply to the power 
domains based on the power modes. Since not all blocks are powered down during a UPF simulation, X-propagation 
can occur and poses challenges to root-cause-analysis (RCA) of the bugs for the origin of X-propagation. A single 
X-Value can propagate and gets distributed to thousands of signals within a few clock cycles, as shown in Figure 2. 
Among those signals, many can have valid X-value during the power-down phase, but the rest of the signals are 
supposed to retain the binary values. Waveform analysis for RCA is time-consuming, and it is necessary to leverage 
the automation approach. 

Tool-generated assertions (or low-power checks) are used widely in low-power verification. However, they may 
not be exhaustive in all the designs for the following reasons [5]. a) Specific design requirements, b) New set of 
protocols appears now and then c) Not all EDA vendors support both UPF and CPF-based automated assertion 
generation [6]. The static checker provided by a major EDA company can cover the 'Missing isolation Cell', which 
checks the presence of the isolation cells at the inputs/outputs of a power domain. However, this strategy does not 
cover the operation of control signals of the isolation & retention cells that need functional verification to ensure 
seamless switching between power modes, as shown in Figure 3.  

 

Figure 3: Power Sequence. ISO enable → Retention Enable → Power off → Power On → Retention Disable→ ISO disable  

 
 



B. Possible Root cause of X-propagation bugs  
X-propagation can occur for multiple reasons [5], and it can be categorized into four.  
1) Missing isolation cell  
2) Missing control signal  
3) Missing connection in the data signal  
4) Wrong power sequence control 
These scenarios must not be present in power-aware simulation to eliminate issues like X-propagation and other 

bugs.  
C. Proposed Solution 

To address the issues mentioned above, we propose an approach by generating automated checkers before 
simulation to verify the power controls/sequencing in the SoC. The proposed approach will also enable the early 
detection of design bugs, independent of the simulator tool used.  

At first, the UPF and RTL files are compiled, and from the elaboration log, the list of all UPF objects and the RTL 
signals connected to those UPF objects are extracted. A python based parser was developed to automate this process. 
Then assertions are generated from template and instantiated in the testbench via checker modules.  

The added advantage of the automated assertions is the left shift of RCA. Unexpected X-value in the signals will 
fail the corresponding assertions. This failure of automated assertions enables the verification team to RCA the X-
propagation instantly. Unlike simple assertions provided by static checking tools, these automated assertions are 
aware of the SoC design hierarchy along with the SoC's power control signals, which is the prime feature that 
enables easy detection of X-propagation. 

This paper is organized as follows. In section II, background and related works about specification and 
verification of power-aware design are studied. Section III details the solution for generating automated checkers 
and assertions to verify the power controls/sequencing. The case study in section IV describes our observations in a 
real SoC design. Finally, section V summarizes our work and outlines future work. 

 
II.   BACKGROUND AND RELATED WORK 

A. Unified Power Format 
HDL-independent power specification format is standardized by the Electronic Design and Automation (EDA) 

industry because of the benefits of early power-aware design. Two similar formats to specify the power design was 
developed by industrial consortiums, the Common Power Format (CPF) and the Unified Power Format (UPF) [7]. 
The new IEEE 1801 standard extends UPF [8]. In this paper, we discuss the approach using the UPF standard. 
B Power Domains, Retention and Isolation Cell 

The power-management module is the one that controls the power-up and power-down sequences. It uses power 
switches to turn off unused parts of the design that needs to be isolated by power domains. The power domains can 
also contain retention cells. A register's power is turned off when its power domain or IP is turned-off. Some 
registers also need to retain their values after being turned off.  These are called retention registers, which restore 
their previous active value after being shut down. An Isolation Cell passes logic values during normal operation 
mode and clamps its output to some specified logic value when a control signal is asserted. It is required when the 
driving logic supply is switched off while the receiving logic supply is still on [5]. 
C Automated Assertion Generation from use cases 

Traditionally, designers manually generate assertions according to their understanding of the design, which 
demands specialized knowledge. Even for experts, creating all required instances manually can be time consuming. 
These assertions can be grouped into two main categories, static and dynamic [9]. We utilize the static extraction 
technique, which analyzes the UPF description statically to derive the assertion. The UPF elaboration log is parsed, 
and RTL hierarchical signals in the UPF objects are obtained, eliminating the need to check the validity of the 
generated assertions by design engineers or other techniques [9]. 
D Verification of the power design 

In general, verification of the power design falls into three steps. First, it is verified that the design correctly enters 
the power state. Second, the SoC has to provide the correct signal transitions at each power state. Third, it is ensured 
that the logic behaves correctly when the SoC enters a power state; for example, the unit has no activity when 
powered down [1]. 



 

Figure 4: Traditional Approach for verifying Power-Design 

Many functional defects can be exposed by simulating the power design. The most important among them are 
incorrect switching of power switches for power domains, falsely timed power-state transitions, wrong power states, 
and improper save/restore sequences for retention. Moreover, inadequate isolation, problems resetting the blocks to 
an operating state when power is restored, and incorrect level shifting between domains can also be detected [10], 
[3]. 

The traditional approach to verify the X-propagation is to simulate the functional verification testcases and check 
if any of the scoreboards for data integrity check is failing. This traditional approach adds delay in detecting bugs in 
power-aware simulation. It is because the maturity of the design to support data integrity will be available at a later 
point of time in the development cycle. As shown in Figure 4, it also adds additional overhead to the root cause of 
the bug. On average, Lint/Compilation/Elaboration with UPF takes a day, then sanity simulation for two days, and 
regression simulation takes five days. After the regression, the triage takes five days in case multiple failures are 
detected, and finally, fixing the design in the UPF file takes two days. Exact timelines per bug were not tracked 
during the original project; hence, we estimate an average of 5 days for triage after each regression. 
E Related Work 

In the paper "Confidently Sign-off any Low-Power Designs without Consequences" [5], multiple low-power 
design issues and debugging strategies are discussed. The paper states, "With verification tools dynamic checking 
capability combined with user's custom low-power assertions, one is ensured that all the low-power checks are built 
into the design or simulation run". The solutions proposed in this paper are a combination of the tool's dynamic 
checks and custom LP-Checks. Our paper extends this approach by automating the generation of custom LP-Checks, 
reducing the necessity of manual intervention, and enabling scaling at the SoC level. 

 
III.   SOLUTION 

To address the issues mentioned above, we introduce a novel approach by generating automated checkers before 
simulation to verify the power controls/sequencing of the SoC. This approach comprises three stages. In the first 
stage, RTL and UPF files are compiled and elaborated. The resulting elaboration log contains the list of all UPF 
objects and RTL signals connected to those UPF objects. In the second stage, the elaboration log and UPF files are 
passed through a python-based text parser to extract relevant information related to isolation and retention strategies. 
The parser generates an intermediate file that contains the extracted data, which is necessary for the next stage. In 
the third and final stage, the python checker generator uses this intermediate file to generate checkers & assertions to 
meet the power sequence shown in Figure 3. Python is applied to automate the stages mentioned above. The 
generated assertions are instantiated in the testbench via checker modules, as shown in Figure 11. Cover-bins are 
included in the checkers to track Checker Coverage. 
A.   Extending UPF Verification Environment by adding Automated Assertions 

The python-based text parser is invoked from Makefile after the compile and elaboration is succeeded. The 
generated assertions/checkers for verifying the power controls/sequencing are written in System Verilog. During 
simulation, the verification environment applies testcases to the testbench. It invokes a behaviour corresponding to 
the functionality described in power intent. Once the checker coverage meets the target coverage, the power 
controls/sequencing is verified.  



 

Figure 5. Automated generation checkers with assertions in Python 

B. First Stage – Preparation for Automation 
One of the challenges in creating assertions is, UPF file alone is insufficient to gather the RTL hierarchy 

information. An elaboration log is a readily available source to gather details of the RTL hierarchy because the RTL 
files are compiled and elaborated along with the UPF file. In our case, we use the Cadence tool flow, and the 
elaboration log is generated by Xcelium. We can also consider developing a script to parse RTL instead of parsing 
the elaboration log, which is beyond this paper's scope. 
C. Second Stage - Text Parser and Intermediate file generation 

In the second stage, the elaboration file along with the UPF file is parsed to fetch the signal hierarchy that matches 
the power controls/sequencing, as shown in Figure 5. UPF syntax structure is parsed/evaluated, and information on 
power domains is extracted as an intermediate file named Design-Hierarchy List File (DHLF). Information about 
supply states for the power domains, isolation for inactive domains, memory retention, and RTL hierarchy is 
gathered.  

The following is an example of UPF elements that are parsed by the python script. As shown in Figure 6, the 
isolation cells can have many input elements such as domain, clamp value, isolation sense, etc. UPF file simplifies 
how to describe how the rules apply to a power domain as a whole. For example, -applies_to_inputs can apply to all 
inputs instead of explicitly mentioning all individual ports. This rule can be overridden by additional rules for 
specific ports. This syntax limits the parser to rely on the UPF file solely, so we have to use an elaboration log, as 
stated before. 

Figure 6 defines the Isolation Cell for power domain PD0, with power supply VDD_ON and ground VSSI. The 
clamp value is defined by –clamp_value construct. These definitions are in line with UPF standards. -
applies_to_inputs makes the rule apply to all inputs in the power domain PD0 so that the elaboration log will help 
the parser with the list of all the signals. 

 
## Controller Input signal 

set_isolation_control PD_ISO \ 

-domain PD0 \ 

-isolation_signal SoC_design 
/power_manager /ISO_PD0_EN \ 

-isolation_sense low \ 

-location self 

 

 

## ISO Rule Declaration 

set_isolation PD_ISO \ 

-domain PD0 \ 

-isolation_power_net VDD_ON \ 

-isolation_ground_net VSSI \ 

-clamp_value 0 \ 

-applies_to inputs 

 

## ISO Rule Exception cases 

set_isolation PD_ISO \ 

-domain PD0 \ 

-isolation_power_net VDD_ON \ 

-isolation_ground_net VSSI \ 

-clamp_value 1 \ 

-elements { \ 

SoC_design /power_manager/*axi* } 

Figure 6: Identifiers for isolation 

 
 



## Retention Cell Control 

set_retention_control PD_RET -domain PD0 \ 

-save_signal {SoC_design /power_manager 
/PD0_RETENB high} \ 

-restore_signal { SoC_design /power_manager 
/PD0_RETENB low} 

 

 

## Retention Policy 

set_retention PD_RET -domain PD0 \ 

-retention_power_net VDD_ON -
retention_ground_net VSSI \ 

-elements { \ 

SoC_design /Logic_0/RETEN_0  

} 

## Retention Cell 

map_retention_cell PD_RET -domain PD0 \ 

-lib_cells {*SDRFF*} 

Figure 7: Identifiers for Retention Memory 

Figure 7 shows how the Retention cell is defined, and the retention policy is set for power domain PD0. 
PD0_RETENB is the save and restore signal with sense Low and high, respectively. In Figure 8, supply Net 
VDD_ON  and supply port AVD_TS are created per the UPF constructs. 

 
## Supply Net 

create_supply_net VDD_ON 

 

 

## Supply Set 

create_supply_set S_VDD_ON \ 

-function {power VDD_ON} \ 

-function {ground VSSI} 

## Supply Port 

create_supply_port AVD_TS 

Figure 8: Identifiers for Power Domains 

 

D. Third Stage – Generation of Assertion and Checkers 
In the third stage, the assertions and checker are generated from templates, and the verification environment is 

extended by adding assertions and checkers. From the DHLF file, RTL hierarchy information is furnished into the 
checker template, as shown in Figure 9. The generated checker will be compiled along with the necessary assertions, 
and that will be included in the testbench. Two types of assertions are generated and added to checkers. The first 
type of assertion is for basic power flow, all signals going outside the power domain, and the second type of 
assertion are for retention cells. We have two types of checkers to verify isolation cells: 

1) Check if the control signals get toggled correctly in a power state. Sequences/properties are used to capture this 
logic, and assertions are coded, which helps us check the operation of the SoC during different power states.    

2) Check if the signals connected to the isolation strategy are clamped to the correct value, as mentioned in the 
UPF object. The RTL hierarchical signals for these assertions are obtained automatically using the python parser as 
discussed above. 

Figure 9 shows how the property power_gating is used to check the low-power state entry and if the ISO is 
enabled. This assertion fails if the ISO_EN is not set. This property is used with cover property to facilitate 
coverage. This cover property helps us to ensure that all the power domains are covered for entering a low-power 
state. 

Sequences seq_power_gating, seq_iso_check_*N, and property iso_check_*N are used to check the clamp value. 
These assertions will help us detect the X prop if the clamp value is improper. This will also help us to find the root 
cause of the functional failures during low-power simulations. 

Retention cells do the save and restore operation, as stated earlier. So, we need to check if the signals for save and 
restore are toggling during power down and power up, respectively. Similar to the isolation checkers, we have two 
categories of checkers:  

1) Save and restore signals toggling at the appropriate power states, i.e., during power down and power up, 
respectively.  

2) The signals connected to retention cells should have the same value before power down and after power up. 
This is achieved by using automated assertions. 

In Figure 10, Sequences seq_power_gating, seq_ret_check_*N, and property ret_check_*N are used to check if the 
value is retained during sleep. As mentioned earlier, cover property is used to enable coverage for this retention 
check and will make sure all the retention cells are covered for low-power entry. This assertion helps easy debug 
and find the root cause of functional failures in low-power simulation. 

 
 



module isolation_checker; 

  property power_gating; 

  @(posedge clk) (Power_state = POWER_DOWN) |=> (ISO_EN == *h1); 

  Endproperty 

  assert property (power_gating) $display ("power gating enabled for POWER_DOWN "); 

  else `uvm_error("PMU_CHECKER power gating", $sformatf("power gating and iso en not matching in POWER_DOWN ")); 

 

  c_p_power_gating: cover property(power_gating);  

 

  Sequence seq_power_gating; 

       @ (posedge clk) (Power_state = power down) |=> (ISO_EN == *h1); 

  end sequence 

 

  Sequence seq_iso_check_*N 

     @(posedge clk) $rose (ISO_EN) |=> <RTL_HIERARCHY.ISO_*N>.signal = Clamp_value; 
  end sequence 

 

  property iso_check_*N 

     seq_power_gating |=> seq_iso_check_*N  

  end property  

  assert property iso_check_*N  

     $display ("ISO _*N enabled in pg_all"); 

  else  

     `uvm_error ("PMU_CHECKER ISO Check ", $sformatf ("ISO _*N  Not enabled ")); 

 

   cp_iso_check_*N cover property iso_check_*N; 

endmodule 

Figure 9: Template for checker with Assertions 

Module retention_checker; 

  Sequence seq_ret_check_*N 

     Bit v; 

     @(posedge clk) $rose (save_en) v = <RTL_HIERARCHY>.signal |->  [1:*] (restore_en) <RTL_HIERARCHY>.signal == v; 

  end sequence 

 

  property ret_check_*N 

     seq_power_gating |=> seq_ret_check_*N  

  end property  

 

  assert property ret_check_*N  

     $display ("RET _*N enabled in pg_all"); 

  else  

     `uvm_error ("PMU_CHECKER RET Check ", $sformatf ("RET _*N Not enabled in power state ")); 

 

  cp_ret_check_*N cover property ret_check_*N; 

endmodule 

Figure 10: Template for Save Restore - for retention cells 



 

Figure 11: Insertion of generated checkers and assertions 

Putting all together, the parser will look out for UPF syntax (ex: set_isolation), and the RTL hierarchy paths are 
inferred from the elaboration log file. The assertions are then generated based on template files. These assertions  are 
grouped into power, retention, and isolation for generating the checker. Finally, the generated checkers are 
instantiated in the testbench, as shown in Figure 11. 

The added advantage of the automated assertions is the left shift of RCA (Root Cause Analysis). Unexpected X-
value in the signals will fail the corresponding assertions. This failure of automated assertions enables the 
verification team to RCA the X-propagation quickly. Unlike simple assertions provided by static checking tools, 
these automated assertions are aware of the SoC design hierarchy along with the SoC's power control signals, which 
is the prime feature that enables easy detection of X-propagation. 

IV.   CASE STUDY AND RESULTS 
In this case study, a chip tape out which took 40 days starting from sanity-clean-RTL to the beginning of synthesis 

phase is used for analysis. At the beginning of the project, it was not practical to predict the categories of issues we 
could encounter while the verification was progressing. It was also impossible to expect any of those issues could 
slow down the verification effort. Once the project commenced, a few bugs were detected at the early stage, which 
belonged to basic sanity. After the initial bug findings, the detection of the rest of the bugs was delayed despite 
continuous verification efforts by the verification team. This is due to the complexity of root cause analysis and 
associated long simulation cycles. This impact on schedule can be observed in Figure 12, which shows the number 
of bugs accumulated over time. Here most of the bugs were reported mid-way through the project timeline, and the 
bug trend was stabilized only towards the tape out. 

 

Figure 12: Project without automation module. 



 

 

Figure 13: Project with automation module.  

To left-shift the verification cycle and avoid the delays mentioned above for future projects, the team re-evaluated 
all the bugs reported and the time taken for RCA of each bug. Based on this analysis, the team concluded to 
introduce automated checkers that can accelerate the bug detection process and reduce the time necessary for RCA. 
The reusability of checkers was also important, which could further reduce the effort essential in upcoming projects. 
Hence the checkers were developed generically to ensure reusability. After the proposed automation approach was 
developed, the same project was executed to observe the expected advantages. For proof of concept, we evaluated 
the time taken to find the same amount of bugs in real project, i.e., 11 bugs, after introducing the proposed 
methodology into the verification pipeline.  

The key observation in this exercise was that the effort for Root-Cause-Analysis had reduced significantly since 
the checker failures brought the attention of the RCA engineer closer to the root cause of the bug. As observed in 
Figure 13, the most number of the bugs are identified at the early stage of verification, and the bug trend is stabilized 
nine days before the synthesis phase, which is approximately 20% shift-left. The observed results met the 
expectation by introducing automation into the verification pipeline. 

Figure 14 shows the timelines for the traditional vs. automation approach and the left shift achieved for reducing 
the verification cycle. It is also important to point out that the simulation time necessary to find the same bug using 
the traditional approach and automation approach is comparatively lesser. In the traditional approach, the simulation 
has to wait until the X-value propagates through the SoC and reaches the scoreboard for the assertion to fail. On the 
contrary, in the automation approach, the assertions in the checker will fail the moment an unexpected X-value is 
found or the power sequence is violated. 

To implement the proposed approach, the effort necessary is approximated as follows. For the preparation of 
scripts and checkers, 10% of additional effort was required at the beginning of the project. However, 25% time-
saving was observed in the triage phase since checkers helped to pinpoint the root cause. Since we prepared the 
proposed approach with reusability as a key factor, the subsequent projects had reduced effort at the deployment 
stage. 

 
V.   CONCLUSION  

Our contribution comprises the automatic generation of checkers with assertions and cover points from the UPF 
design. The generated checkers compactly describe the functionality of the power controls/sequencing. Simulating 
the power-aware scenarios which include generated checkers, will automatically verify the SoC's power 
controls/sequencing. The key benefit of this approach is the high degree of scalability irrespective of the number of 
power domains present in the design and the reduction in the need for manual intervention for each of the assertions 
generated. Additionally, the assertion coverage enables metric-driven verification for verification sign-off. A shorter 
verification cycle for the power design lowers the risk of late and costly re-design. 

 
 



 

Figure 14: RCA – Left Shift 

 
In this contribution, we are motivated by the need for a left shift of verification effort by leveraging the 

automation approach to avoid the detection of bugs while nearing the tape-out schedule. Without automated 
checkers, most bugs were reported mid-way through the project timeline, and the bug trend stabilized towards the 
tape-out. However, in the case of automated checkers, the most significant number of the bugs are identified at the 
early stage of verification, and the bug trend stabilized much before the tape out. The observed results met the 
expectation by introducing automation into the verification process. A small investment in automation will 
significantly reduce the verification cycle and unnecessary design iterations during later phases of the design. 
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