2023

DESIGN AND VERIEFICATION ™

DV OIN

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 27-MARCH 2, 2023

Automation for Early Detection of X-propagation in
Power-Aware Simulation Verification using UPF IEEE 1801

Tony Gladvin George, Ramesh Kumar, Kyuho Shim, Karan K,

Wooseong Cheong, ByungChul Yoo

Memory Division, Samsung Electronics 2ccellera
snMSUNG SYSTEM

S INITIATIVE

Table of Contents

* Introduction
- Verification of SoC with Power Design
- Power Sequence for each Power Domain

* Challenges
- The Challenge of X-Propagation
- How X—propa}gation can happen?
- Limitations of Traditional Approach of UPF simulation
verification
- Case Study on a finished Project

* Solution
- Generation of checkers with assertions in Python
- Steps to generate Automated Checkers
- Verification of SoC with Checkers in Power Design
ation

* Results
- Observations with improved approach
- Conclusion
- Additional Benefits

accellera) -

SYSTEMS INITIATIVE

Without Automated Checkers

With Automated Checkers

Verification of SoC with Power Design

* Power States
* Power Off
e Sleep
* Power On

Power Domain - 0 Power Domain - 1 Power Domain - n ° Du rlng On/off
) > | — * Retention cell — save
* Retention cell —restore
* Manage Isolation cells

VDD

Isolation Cell Level Shifter

¢ (2023

SYSTEMS INITIATIVE

Power Sequence for each power domain

e Power Down

* ISO enable - Retention Enable - Power off 6 Fnable Pzl
i B
* Power On \ /
* Power On - Retention Disable—> I1SO disable Retentio save Restore
ntion _| I—
Power —\IOFF ONI/_

Abbreviations:

I1SO —> Isolation

_TIE %,

SYSTEMS INITIATIVE

The Challenge of X-Propagation

1. X Propagation and Amplification

* Manually tracing back the X-value from
hundreds of signal is slow process.

Power Domain - 0 Power Domain - 1 Power Domain - n

[,> 2. Execution of correct power sequence in
) : ;
I independently operated power domains.
— . * Validating the power sequence is executed
correctly.
* The wrong power sequence can cause X-
propagation.
B X propagation * Number of Power domains in our project was
Distribution 38, which increases the scale of problem

* Non-Scalable verification effort when the power
domains scales up.

: ‘ i b " | ¥ bl DESIGN AND V 29c2T30N~
() Q- DVCON

CONFERENCE AND EXHIBI

- : | | | UNITED STATES

How does X-propagation happen?

o

accellera) -

SYSTEMS INITIATIVE

(ISOE -> RENE -> POFF >
PON -> REND-> ISOD)

A 4

Power Domain - 1

¥

(ISOE -> RENE -> POFF -
PON - REND-> ISOD)
y

Power Domain - 3

n
»

X propagation

(ISOE -> RENE -> POFF -
PON -> REND-> ISOD)

Power Domain - 2

X

propagation
origin

—_—

X propagation

1) Missing isolation cell
* Design Issue

2) Missing control signal
* Connection Issue

3) Missing connection in the
data signal

¢ Connection Issue

4) Wrong power sequence
control

* Design Issue

DESIGN AND \g\ON ~
CONFERENCE

Limitations of Traditional Approach of UPF
simulation verification

1
i<- -------------------------- Single Iteration for Single Bug Fix ------========c-mmmmmmmoe >E
1

1
Check
UPF + RTL . . Test Scenario Design
Database Simulation hang Waveform to o
/ Root cause

~3 weeks for each iteration

()

SYSTEMS INITIATIVE

Case Study on a finished project

Without Automated Checkers

Issues faced during UPF verification

1. Bugs found were late in the
verification cycle

2. Root causing of the X propagation
is time consuming

3. Waveform based analysis of power
sequence is time consuming

()

SYSTEMS INITIATIVE

Generation of checkers with assertions in
Python

* Three stages
RTL Files
- _— .
Compiler Checker
UPF File with
L — Assertion
Templates
Elaboration
File
Python DHLE Python based Checker with
based Generator Assertions
| Parser |
' : :
1 1 .
. First Stage -===* | <------ Second Stage -~~~ S Third Stage ===~===~-~ > i
1 1

SYSTEMS INITIATIVE

THhoE (0023
() o . BDVEON

Generation of checkers with assertions in
Python

* First Stage

* Challenge — Need for RTL
Compiler Checker hierarchy

RTL Files
/

UPF File with
L — Assertion

* Use Elaboration file to gather
RTL hierarchy information.

Templates
Elaboration
File
Python DHLE Python based Checker with
based Generator Assertions
Parser
i i
First Stage -=—-* - Second Stage ----- > i Jommomes Third Stage ---------- > i

¢ @073

SYSTEMS INITIATIVE

Generation of checkers with assertions in
Python

e Second Stage
RTL Files . .
- * Parse elaboration file.
_ Compiler Checker * Get the RTL hierarchy
UPF File with information.
L — Assertion
T Templates * Parse the UPF syntax.
aboration .
/ File * Get power domains, control
signals and in/out signals.
Python DHLE Python based Checker with
5::;1 e Assertions
: |
i Dty First Stage --=-=*> [| <------ Second Stage -——--» i} <~ "="- Third Stage —==——----- > i

O 2073

CONFERENCE

- : | ' | UNITED STATES

Generation of checkers with assertions in
Python

* Third Stage
RTL Files .
* Use the Assertion Templates
T C iler i
. ompi Checker * Generate Checkers with
UPF File with Assertions included.
L — Assertion
Templates
Elaboration
File
Python DHLF Python based Checker with
based Generator Assertions
Parser
i i
i TCEELII First Stage ----* i eSS Second Stage ————-

SYSTEMS INITIATIVE

¢ @073

Checkers insertion into SoC Simulation
Verification

VDD

Power Domain - 0

Isolation Cell

Power Domain - 1

r\

A A

V]

Level Shifter

Power Domain - n

Checker

=

Checker

Test Bench

Checker

" e o

()

SYSTEMS INITIATIVE

* Instantiate into the RTL
hierarchy

* Bind the Checkers to
Testbench

* Run Simulation.

Observations with improved approach

Ny | * Executed the old
Traditional Sequentlalép?proach project agqin and
LSZ:L:;:> Simulation Test Scenario hang > Waveform Check to Rootcause> Disi;gn> Observed time ta ken
2 for RCA of each bugs.
< Fix one Bug at a time to uncover next bug I
* Re-run the same
Automation Approach with Parallelism project again (pretend

oot cause N\ execution)
l;z:;):;rel' >| Simulation

Assertion
Failure

— * Multiple checkers

oot Cavze | pesn m failures, which enabled

parallel debugging

Assertion
Failure

Root Cause
Analysis

Assertion
Failure

U

< Fix multiple Bugs at a time]
: ‘ i b " | ¥ T DESIGN AND V ZUQCgT%N"
doelerd) - Q. DVEON

SYSTEMS INITIATIVE

Conclusion

* Most number of the
bugs was |dent|f|ed at Without Automated Checkers With Automated Checkers
the early stage of] |] |
verification

* The bug trend is
stabilized before the
tape out.

D+0 D+20 D+40

 The introduction of
automation can left-shift
the verification process.

accellera) -

SYSTEMS INITIATIVE

Additional Benefits

e Reusability.
* The checker and assertion templates are prepared with reusability in mind.
* Hence the effort necessary to setup this environment is same for future project as well

 Scalability
* Number of Power domains in our project is 38
* Scalability of verification effort

B ¢ 2023
() s e L Ty
. : ’ : % : . A .) ‘ CONFERENCE AND EXHIBI

SYSTEMS INITIATIVE

Questions

 Ihnn @023

SYSTEMS INITIATIVE

Back up

()

SYSTEMS INITIATIVE

Tool Based Checkers

Datasheet Sy n []PSVS

* User written checker
module

+ Checker module can
contain
—Assertions

Assertions

VCS Native Low Power with MVSIM

Accurate, Comprehensive Low Power Simulation

~Cavergroups for coverage

» Bullt-in automated assertions, based
on years of low power verification

expertise, is transparently available

in VCS native low power flows. The

~module custom_ret_checker™,

rich set of low power assertions Is { (inputclk, rst, save, restore, ‘E
Q, primary_power, |
generated based on the design and retention_power); i
- always @ (save) |
Wer in * a ir- . |
power intent and helps pin-point nase & (eiore) i »
complex bugs. This feature augments srdiodule
VCS Xprop Debug

{ module custom_iso_checker (input EN, Din,

Dout, primary_power, isolation_power); :
always @ (EN) :

t of test fa always @ (primary_power)
X a » J—, endmodule

Figure 2: PAVE infrastructure

DESIGN AND VERIFICATION™

() T S Vi

CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

Tool Based Checkers

Mixed-signal verification of advanced SoCs
using VCS AMS

No Comments
IP Topics. EDA - Verification CustomSim. |P mixed-signal SPICE VCS VCS AMS

Microelectronics. Synopsys

|m
b

AMS Testbench

Synopsys' AMS Testbench extends digital verification strategies based on UVM to mixed-signal design. It includes
predefined automated simulation generators, assertion-based checking logic, observation points defined by functional
coverage, and verification planning

Features include
= checking connectivity between electrical and real conversion, for example, to check for asynchronous analog events
within a digital testbench

= assertions and checkers for analog
= specific sources to mimic some analog characteristics

CONFERENCE AND EXHIB

o @075
| 2 . - . - . ‘ ﬁGNvAN'DV RnFlclATlor\j

SYSTEMS INITIATIVE

Tool Based Checkers

Confidently Sign-off any Low-Power Designs
without Consequences

Madhur Bhargava (Madhur bhargava@mentor.com), Siemens EDA
Jitesh Bansal (Jitesh bansal@mentor.com), Siemens EDA
Progyna Khondkar (Progyna_khondkar@mentor.com), Seimens EDA

Tool generated assertions (or low-power checks) are used widely i low-power verification. However they may not
be exhaustive 1n all the designs, as highlighted by the reasons below:

e A design can have a very specific requirement which 1s not being provided by the tool-generated low-power
checks

e The low-power technology 1s still evolving and hence a new set of protocol appears every now and then, which
may require a different set of checks which 1s not yet supported by the verification tool.

SYSTEMS INITIATIVE

¢ . (2023

Abstraction Levels of Checkers for UPF simulation

 Static Check — Tool Based BEEE
* Synopsys VC-LP EEE Lower Abstraction Level
* Cadence Jasper

* Dynamic Checkers - Tool Generated Checkers
* |SO cell checkers
e Retention Cell Checkers

* Power Use case Checkers
e Checkers based on the intent of Power

* (ISO AND is deployed instead of ISO OR) ->
this bug will escape from above simple
Checkers

Higher Abstraction Level

SYSTEMS INITIATIVE . - ' . _

References

[1] B. Wile, J. Goss, and W. Roesner, Comprehensive Functional Verification the Complete Industry Cycle. Elsevier/Morgan
Kaufmann, 2005.

[2] Foster H., 2020 Functional Verification Study, Wilson Research Group and Mentor, A Siemens Business, 2020

[3] F. Bembaron, S. Kakkar, R. Mukherjee, and A. Srivastava, 2009. “Low Power Verification Methodology Using UPF,” in
Conference on Electronic SoCs Design and Verification Solutions, DVCON, pp. 228-233.

(4] Himanshu Bhatt, Kiran Vittal. Four Steps for Static Verification of Low Power Designs Using UPF with VC LP, Synopsys
white paper.

[5] Madhur Bhargava, Jitesh Bansal, and Progyna Khondkar, 2022. “Confidently Sign-off any Low-Power Designs without

Consequences,” DVCON2022.
[6] John Decker, Neyaz Khan, and Richard Goering, Power-Aware Verification Spans IC Design Cycle A Plan-To-Closure Approach
Helps Ensure Silicon Success, Cadence Design Systems

[7] Christoph Trummer, Simulation-based Verification of Power Aware SoC-on-Chip Designs Using UPF IEEE 1801, 2010.

[8] IEEE Std 1801™-2015 for Design and Verification of Low Power Integrated Circuits. IEEE Computer Society, 05 Dec 2015.
[9] Tong Zhang, 2017. Automatic Assertion Generation for Simulation, Formal Verification and Emulation" IEEE Computer
Society Annual Symposium on VLSI https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7987564

[10] A. Crone and G. Chidolue, 2007. “Functional Verification of Low Power Designs at RTL,” Lecture Notes in Computer

Science, vol. 4644, pp. 288-299.

() O DVEON

- : | | | UNITED STATES

