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Verification of SoC with Power Design

* Power States
* Power Off
e Sleep
* Power On

Power Domain - 0 Power Domain - 1 Power Domain - n ° Du rlng On/off
) > | — * Retention cell — save
* Retention cell —restore
* Manage Isolation cells

VDD

Isolation Cell Level Shifter
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Power Sequence for each power domain

e Power Down

* ISO enable - Retention Enable - Power off 6 Fnable Pzl
i B
* Power On \ /
* Power On - Retention Disable—> I1SO disable Retentio save Restore
ntion _| I—
Power —\IOFF ONI/_

Abbreviations:

I1SO —> Isolation

_TIE %,
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The Challenge of X-Propagation

1. X Propagation and Amplification

* Manually tracing back the X-value from
hundreds of signal is slow process.

Power Domain - 0 Power Domain - 1 Power Domain - n

[,> 2. Execution of correct power sequence in
) : ;
I independently operated power domains.
— . * Validating the power sequence is executed
correctly.
* The wrong power sequence can cause X-
propagation.
B X propagation * Number of Power domains in our project was
Distribution 38, which increases the scale of problem

* Non-Scalable verification effort when the power
domains scales up.
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How does X-propagation happen?

o

accellera) -

SYSTEMS INITIATIVE

(ISOE -> RENE -> POFF >
PON -> REND-> ISOD)

A 4

Power Domain - 1

¥

(ISOE -> RENE -> POFF -
PON - REND-> ISOD)
y

Power Domain - 3

n
»

X propagation

(ISOE -> RENE -> POFF -
PON -> REND-> ISOD)

Power Domain - 2

X

propagation
origin

—_—

X propagation

1) Missing isolation cell
* Design Issue

2) Missing control signal
* Connection Issue

3) Missing connection in the
data signal

¢ Connection Issue

4) Wrong power sequence
control

* Design Issue
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Limitations of Traditional Approach of UPF
simulation verification

1
i<- -------------------------- Single Iteration for Single Bug Fix ------========c-mmmmmmmoe >E
1

1
Check
UPF + RTL . . Test Scenario Design
Database Simulation hang Waveform to o
/ Root cause

~3 weeks for each iteration
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Case Study on a finished project

Without Automated Checkers

Issues faced during UPF verification

1. Bugs found were late in the
verification cycle

2. Root causing of the X propagation
is time consuming

3. Waveform based analysis of power
sequence is time consuming
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Generation of checkers with assertions in
Python

* Three stages
RTL Files
- _— .
Compiler Checker
UPF File with
L — Assertion
Templates
Elaboration
File
Python DHLE Python based Checker with
based Generator Assertions
| Parser |
' : :
1 1 .
. First Stage -===* | <------ Second Stage -~~~ S Third Stage ===~===~-~ > i
1 1
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Generation of checkers with assertions in
Python

* First Stage

* Challenge — Need for RTL
Compiler Checker hierarchy

RTL Files
\_/_

UPF File with
L — Assertion

* Use Elaboration file to gather
RTL hierarchy information.

Templates
Elaboration
File
Python DHLE Python based Checker with
based Generator Assertions
Parser
i i
First Stage -=—-* - Second Stage ----- > i Jommomes Third Stage ---------- > i
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Generation of checkers with assertions in
Python

e Second Stage
RTL Files . .
- * Parse elaboration file.
_ Compiler Checker * Get the RTL hierarchy
UPF File with information.
L — Assertion
T Templates * Parse the UPF syntax.
aboration .
/ File * Get power domains, control
signals and in/out signals.
Python DHLE Python based Checker with
5::;1 e Assertions
: |
i Dty First Stage --=-=*> [ | <------ Second Stage -——--» i} <~ "="- Third Stage —==——----- > i
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Generation of checkers with assertions in
Python

* Third Stage
RTL Files .
* Use the Assertion Templates
T C iler i
. ompi Checker * Generate Checkers with
UPF File with Assertions included.
L — Assertion
Templates
Elaboration
File
Python DHLF Python based Checker with
based Generator Assertions
Parser
i i
i TCEELII First Stage ----* i eSS Second Stage ————-
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Checkers insertion into SoC Simulation
Verification

VDD

Power Domain - 0

Isolation Cell

Power Domain - 1

r\

A A

V]

Level Shifter

Power Domain - n

Checker

=

Checker

Test Bench

Checker

" e o
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* Instantiate into the RTL
hierarchy

* Bind the Checkers to
Testbench

* Run Simulation.



Observations with improved approach

Ny | * Executed the old
Traditional Sequentlalép?proach project agqin and
LSZ:L:;:> Simulation Test Scenario hang > Waveform Check to Rootcause> Disi;gn> Observed time ta ken
2 for RCA of each bugs.
< Fix one Bug at a time to uncover next bug I
* Re-run the same
Automation Approach with Parallelism project again (pretend

oot cause N\ execution)
l;z:;):;rel' >| Simulation

Assertion
Failure

— * Multiple checkers

oot Cavze | pesn m failures, which enabled

parallel debugging

Assertion
Failure

Root Cause
Analysis

Assertion
Failure

U

< Fix multiple Bugs at a time ]
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Conclusion

* Most number of the
bugs was |dent|f|ed at Without Automated Checkers With Automated Checkers
the early stage of ] | ] |
verification

* The bug trend is
stabilized before the
tape out.

D+0 D+20 D+40

 The introduction of
automation can left-shift
the verification process.
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Additional Benefits

e Reusability.
* The checker and assertion templates are prepared with reusability in mind.
* Hence the effort necessary to setup this environment is same for future project as well

 Scalability
* Number of Power domains in our project is 38
* Scalability of verification effort
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Questions

 Ihnn @023

SYSTEMS INITIATIVE




Back up
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Tool Based Checkers

Datasheet Sy n []PSVS

* User written checker
module

+ Checker module can
contain
—Assertions

Assertions

VCS Native Low Power with MVSIM

Accurate, Comprehensive Low Power Simulation

~Cavergroups for coverage

» Bullt-in automated assertions, based
on years of low power verification

expertise, is transparently available

in VCS native low power flows. The

~module custom_ret_checker™,

rich set of low power assertions Is { (inputclk, rst, save, restore, ‘E
Q, primary_power, |
generated based on the design and retention_power); i
- always @ (save) |
Wer in * a ir- . |
power intent and helps pin-point nase & (eiore) i »
complex bugs. This feature augments srdiodule
VCS Xprop Debug

{ module custom_iso_checker (input EN, Din,

Dout, primary_power, isolation_power); :
always @ (EN) :

t of test fa always @ (primary_power)
X a » J—, endmodule

Figure 2: PAVE infrastructure
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Tool Based Checkers

Mixed-signal verification of advanced SoCs
using VCS AMS

No Comments
IP Topics. EDA - Verification CustomSim. |P mixed-signal SPICE VCS VCS AMS

Microelectronics. Synopsys

|m
b

AMS Testbench

Synopsys' AMS Testbench extends digital verification strategies based on UVM to mixed-signal design. It includes
predefined automated simulation generators, assertion-based checking logic, observation points defined by functional
coverage, and verification planning

Features include
= checking connectivity between electrical and real conversion, for example, to check for asynchronous analog events
within a digital testbench

= assertions and checkers for analog
= specific sources to mimic some analog characteristics
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Tool Based Checkers

Confidently Sign-off any Low-Power Designs
without Consequences

Madhur Bhargava (Madhur bhargava@mentor.com), Siemens EDA
Jitesh Bansal (Jitesh bansal@mentor.com), Siemens EDA
Progyna Khondkar (Progyna_khondkar@mentor.com), Seimens EDA

Tool generated assertions (or low-power checks) are used widely i low-power verification. However they may not
be exhaustive 1n all the designs, as highlighted by the reasons below:

e A design can have a very specific requirement which 1s not being provided by the tool-generated low-power
checks

e The low-power technology 1s still evolving and hence a new set of protocol appears every now and then, which
may require a different set of checks which 1s not yet supported by the verification tool.
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Abstraction Levels of Checkers for UPF simulation

 Static Check — Tool Based BEEE
* Synopsys VC-LP EEE Lower Abstraction Level
* Cadence Jasper

* Dynamic Checkers - Tool Generated Checkers
* |SO cell checkers
e Retention Cell Checkers

* Power Use case Checkers
e Checkers based on the intent of Power

* (ISO AND is deployed instead of ISO OR) ->
this bug will escape from above simple
Checkers

Higher Abstraction Level
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