
Automation for Early Detection of X-propagation in 
Power-Aware Simulation Verification using UPF IEEE 1801 

Tony Gladvin George, Ramesh Kumar, Kyuho Shim, Karan K, 
Wooseong Cheong, ByungChul Yoo

Memory Division, Samsung Electronics



Table of Contents
• Introduction

- Verification of SoC with Power Design
- Power Sequence for each Power Domain

• Challenges
- The Challenge of X-Propagation
- How X-propagation can happen?
- Limitations of Traditional Approach of UPF simulation 
verification
- Case Study on a finished Project

• Solution
- Generation of checkers with assertions in Python
- Steps to generate Automated Checkers
- Verification of SoC with Checkers in Power Design
ation

• Results
- Observations with improved approach
- Conclusion
- Additional Benefits



Verification of SoC with Power Design

Power Domain - 0

Power 
Management 

Unit

Power Domain - 1

Logic_0 Logic_1Logic_A Logic_B

Power Domain - n

Logic_n

SwitchVDD Switch Switch

Retention
Memory

Retention
Memory

Retention
Memory

Level ShifterIsolation Cell

• Power States
• Power Off
• Sleep
• Power On

• During On/Off
• Retention cell – save
• Retention cell – restore
• Manage Isolation cells



Power Sequence for each power domain

• Power Down
• ISO enable → RetenƟon Enable → Power off 

• Power On
• Power On → RetenƟon Disable→ ISO disable 

Abbreviations:

ISO –> Isolation

ISO
Enable Disable 

Save Restore 

OFF ON 
Power

Retention



The Challenge of X-Propagation

Power Domain - 0 Power Domain - 1

Logic_0 Logic_1
Logic_A Logic_B

Power Domain - n

Logic_n

Switch Switch Switch

Retention
Memory

Retention
Memory

Retention
Memory

X propagation
Origin X propagation

Distribution

1. X Propagation and Amplification
• Manually tracing back the X-value from 

hundreds of signal is slow process.

2. Execution of correct power sequence in 
independently operated power domains.
• Validating the power sequence is executed 

correctly. 
• The wrong power sequence can cause X-

propagation.
• Number of Power domains in our project was 

38, which increases the scale of problem
• Non-Scalable verification effort when the power 

domains scales up.



How does X-propagation happen?

Power Domain - 3

Logic

(ISOE -> RENE -> POFF → 
PON → REND→ ISOD)

Control Register

PMU

State machine 
orchestrates 

multiple power 
domains

(ISOE -> RENE -> POFF → 
PON → REND→ ISOD)

(ISOE -> RENE -> POFF → 
PON → REND→ ISOD)

X propagation

X 
propagation

origin

ISO

Power Domain - 1

Logic

Control Register

ISO

Power Domain - 2

Logic

Control Register

ISO

1) Missing isolation cell 
• Design Issue

2) Missing control signal
• Connection Issue

3) Missing connection in the 
data signal
• Connection Issue

4) Wrong power sequence 
control
• Design Issue

1

2

3

4

X propagation



Limitations of Traditional Approach of UPF 
simulation verification

UPF + RTL
Database Simulation Test Scenario 

hang

Check 
Waveform to 
Root cause

Design 
Fix

~3 weeks for each iteration

Single Iteration for Single Bug Fix



Case Study on a finished project
Issues faced during UPF verification
1. Bugs found were late in the 

verification cycle
2. Root causing of the X propagation 

is time consuming
3. Waveform based analysis of power 

sequence is time consuming



Generation of checkers with assertions in 
Python

Elaboration 
File

Compiler

Python 
based 
Parser

RTL Files

Checker 
with 

Assertion 
Templates

Checker with 
Assertions

UPF File

Python based 
Generator

First Stage Second Stage Third Stage

DHLF

• Three stages



Generation of checkers with assertions in 
Python

Elaboration 
File

Compiler

Python 
based 
Parser

RTL Files

Checker 
with 

Assertion 
Templates

Checker with 
Assertions

UPF File

Python based 
Generator

First Stage Second Stage Third Stage

DHLF

• First Stage
• Challenge – Need for RTL 

hierarchy
• Use Elaboration file to gather 

RTL hierarchy information.



Generation of checkers with assertions in 
Python

Elaboration 
File

Compiler

Python 
based 
Parser

RTL Files

Checker 
with 

Assertion 
Templates

Checker with 
Assertions

UPF File

Python based 
Generator

First Stage Second Stage Third Stage

DHLF

• Second Stage
• Parse elaboration file.
• Get the RTL hierarchy 

information.
• Parse the UPF syntax.
• Get power domains, control 

signals and in/out signals.



Generation of checkers with assertions in 
Python

Elaboration 
File

Compiler

Python 
based 
Parser

RTL Files

Checker 
with 

Assertion 
Templates

Checker with 
Assertions

UPF File

Python based 
Generator

First Stage Second Stage Third Stage

DHLF

• Third Stage
• Use the Assertion Templates
• Generate Checkers with 

Assertions included.



Checkers insertion into SoC Simulation 
Verification

Power Domain - 0

Power 
Management 

Unit

Power Domain - 1

Logic_0 Logic_1Logic_A Logic_B

Power Domain - n

Logic_n

SwitchVDD Switch Switch

Retention
Memory

Retention
Memory

Retention
Memory

Level ShifterIsolation Cell

Test Bench

Checker

Assertions

Checker

Assertions

Checker

Assertions

• Instantiate into the RTL 
hierarchy

• Bind the Checkers to 
Testbench

• Run Simulation.



Observations with improved approach

UPF + RTL
Database Simulation Test Scenario hang Waveform Check to Root cause

UPF + RTL
Database

Simulation

Root Cause 
Analysis

Design 
Fix

Design 
Fix

Assertion 
Failure

Left Shift

Traditional Sequential Approach

Automation Approach with Parallelism

Root Cause 
Analysis

Assertion 
Failure

Root Cause 
Analysis

Assertion 
Failure

Fix one Bug at a time to uncover next bug

Fix multiple Bugs at a time

• Executed the old 
project again and 
observed time taken 
for RCA of each bugs. 

• Re-run the same 
project again (pretend 
execution)

• Multiple checkers 
failures, which enabled 
parallel debugging 



Conclusion
• Most number of the 

bugs was identified at 
the early stage of 
verification

• The bug trend is 
stabilized before the 
tape out.

• The introduction of 
automation can left-shift 
the verification process.



Additional Benefits
• Reusability.

• The checker and assertion templates are prepared with reusability in mind.
• Hence the effort necessary to setup this environment is same for future project as well

• Scalability
• Number of Power domains in our project is 38
• Scalability of verification effort



Questions



Back up 



Tool Based Checkers



Tool Based Checkers



Tool Based Checkers



Abstraction Levels of Checkers for UPF simulation
• Static Check – Tool Based

• Synopsys VC-LP
• Cadence Jasper

• Dynamic Checkers - Tool Generated Checkers
• ISO cell checkers  
• Retention Cell Checkers

• Power Use case Checkers  
• Checkers based on the intent of Power
• (ISO AND  is deployed instead of ISO OR) -> 

this bug will escape from above simple 
Checkers

Higher Abstraction Level

Lower Abstraction Level



References
[1] B. Wile, J.  Goss, and W. Roesner, Comprehensive Functional Verification the Complete Industry Cycle. Elsevier/Morgan 
Kaufmann, 2005.
[2] Foster H. , 2020 Functional Verification Study, Wilson Research Group and Mentor, A Siemens Business, 2020
[3] F. Bembaron, S. Kakkar, R. Mukherjee, and A. Srivastava, 2009. “Low Power Verification Methodology Using UPF,” in 
Conference on Electronic SoCs Design and Verification Solutions, DVCON, pp. 228–233.
[4] Himanshu Bhatt, Kiran Vittal. Four Steps for Static Verification of Low Power Designs Using UPF with VC LP, Synopsys 
white paper.
[5] Madhur Bhargava, Jitesh Bansal, and Progyna Khondkar, 2022. “Confidently Sign-off any Low-Power Designs without 
Consequences,”  DVCON2022.
[6]    John Decker, Neyaz Khan, and Richard Goering, Power-Aware Verification Spans IC Design Cycle A Plan-To-Closure Approach 
Helps Ensure Silicon Success, Cadence Design Systems 
[7] Christoph Trummer, Simulation-based Verification of Power Aware SoC-on-Chip Designs Using UPF IEEE 1801, 2010.
[8] IEEE Std 1801™-2015 for Design and Verification of Low Power Integrated Circuits. IEEE Computer Society, 05 Dec 2015.
[9] Tong Zhang, 2017. Automatic Assertion Generation for Simulation, Formal Verification and Emulation" IEEE Computer 
Society Annual Symposium on VLSI https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7987564 
[10] A. Crone and G. Chidolue, 2007. “Functional Verification of Low Power Designs at RTL,” Lecture Notes in Computer 
Science, vol. 4644, pp. 288–299.


