
Automation for Early Detection of X-propagation in 
Power-Aware Simulation Verification using UPF IEEE 1801 

Tony Gladvin George, Ramesh Kumar, Kyuho Shim, Karan K, 
Wooseong Cheong, ByungChul Yoo

Memory Division, Samsung Electronics



Table of Contents
• Introduction

- Verification of SoC with Power Design
- Power Sequence for each Power Domain

• Challenges
- The Challenge of X-Propagation
- How X-propagation can happen?
- Limitations of Traditional Approach of UPF simulation 
verification
- Case Study on a finished Project

• Solution
- Generation of checkers with assertions in Python
- Steps to generate Automated Checkers
- Verification of SoC with Checkers in Power Design
ation

• Results
- Observations with improved approach
- Conclusion
- Additional Benefits



Verification of SoC with Power Design
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Power Sequence for each power domain
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The Challenge of X-Propagation
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1. X Propagation and Amplification
• Manually tracing back the X-value from 

hundreds of signal is slow process.

2. Execution of correct power sequence in 
independently operated power domains.
• Validating the power sequence is executed 

correctly. 
• The wrong power sequence can cause X-

propagation.
• Number of Power domains in our project was 

38, which increases the scale of problem
• Non-Scalable verification effort when the power 

domains scales up.



How does X-propagation happen?
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Limitations of Traditional Approach of UPF 
simulation verification
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Case Study on a finished project
Issues faced during UPF verification
1. Bugs found were late in the 

verification cycle
2. Root causing of the X propagation 

is time consuming
3. Waveform based analysis of power 

sequence is time consuming



Generation of checkers with assertions in 
Python
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Generation of checkers with assertions in 
Python
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• First Stage
• Challenge – Need for RTL 

hierarchy
• Use Elaboration file to gather 

RTL hierarchy information.



Generation of checkers with assertions in 
Python
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• Second Stage
• Parse elaboration file.
• Get the RTL hierarchy 

information.
• Parse the UPF syntax.
• Get power domains, control 

signals and in/out signals.



Generation of checkers with assertions in 
Python
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• Third Stage
• Use the Assertion Templates
• Generate Checkers with 

Assertions included.



Checkers insertion into SoC Simulation 
Verification
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Observations with improved approach
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Fix one Bug at a time to uncover next bug

Fix multiple Bugs at a time

• Executed the old 
project again and 
observed time taken 
for RCA of each bugs. 

• Re-run the same 
project again (pretend 
execution)

• Multiple checkers 
failures, which enabled 
parallel debugging 



Conclusion
• Most number of the 

bugs was identified at 
the early stage of 
verification

• The bug trend is 
stabilized before the 
tape out.

• The introduction of 
automation can left-shift 
the verification process.



Additional Benefits
• Reusability.

• The checker and assertion templates are prepared with reusability in mind.
• Hence the effort necessary to setup this environment is same for future project as well

• Scalability
• Number of Power domains in our project is 38
• Scalability of verification effort



Questions



Back up 



Tool Based Checkers



Tool Based Checkers



Tool Based Checkers



Abstraction Levels of Checkers for UPF simulation
• Static Check – Tool Based

• Synopsys VC-LP
• Cadence Jasper

• Dynamic Checkers - Tool Generated Checkers
• ISO cell checkers  
• Retention Cell Checkers

• Power Use case Checkers  
• Checkers based on the intent of Power
• (ISO AND  is deployed instead of ISO OR) -> 

this bug will escape from above simple 
Checkers

Higher Abstraction Level

Lower Abstraction Level
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