SSTA -Smart Signature Triage and Assignment

Automating Regression Triage and Reporting in Design Verification using Al-Based Random Forest Models

> Lingkai Shi Rohit Mathur

Sr Manager @AMD MSIP team Director @AMD MSIP team

Introduction

- Every IP/block generates 1000's of failures every week from Hardware Verification Regression Testing across testbenches and views
- Unique failure modes (signatures) need to be assigned to owner to root cause and fix the issue.

Objectives

- Improve accuracy of signature assignment with machine learning
- Eliminate engineer-time spent on repetitive and tedious signature assignment task.
- Assign the failure right after the failure show up, enabling faster bug fixing eventually resulting in faster design qualify sign off

Old system

Failure1 report time	Failure1 debug time	Failure2 report time	Failure2 debug time	Failure3 report time	Failure3 debug time	Project Sign off
New system						

Introduction to Random Forest Model Decision Tree

Introduction to Random Forest Model

Random Forest Example

Robustness

- Overfit
- Training Data Noise

Versatility

- Easy to remove or add property to existing model
- Flexible on choice of property

[AMD Official Use Only - General]

SSTA Flow Diagram

Domain Knowledge is an optional input because it only get used to improve accuracy for new failure that never seen in the Historical data before. The new signature will become historical data afterwards.

Triage System Introduction

Preprocessing

- Convert String categorical variables into numerical variables
- Filtering erroneous input
- Uniform the input format

Training

- CPU is powerful enough. No need for GPU. Training itself runs in 1 minute. (>30000 training set)
- Utilize Python Built-in Random forest model
- Dump the model into files to run anywhere and anytime.

	С	SV for	mat				
В	c	D	E	F	G	н	T.
Signature	Signature	SIM ID	Testcase	Testcase	Environment	Original Owr	ner Prediction Own
N[NOA] Null object access umc_rec_checker_gddr7.sv	rec	12072-0-79611	sanity::bank_state_self_che	generic_t	umc13_0umo	nan	pengtali
N[NOA] Null object access umc_rec_checker_gddr7.sv	rec	12072-0-79904	beq_dfi_tb::dfi_beq_SramL	beq	umc13_0_umo	nan	pengtali
N[NOA] Null object access umc_rec_checker_gddr7.sv	rec	12072-0-80041	beq_dfi_tb::dfi_beq_SramL	beq	umc13_0_umc	nan	pengtali
Ntb.umc_w_phy.umc_phy_if_inst_*_*.UMC_headsup	generic_s	12030-0-43592	dcqarb_real_phy_tb::real_tr	generic_t	umc13_0_umc	nan	mparyeka
Ntb.umc_w_phy.umc_phy_if_inst_*_*.UMC_headsup	generic_s	12030-0-43397	mp_real_phy_tb::umc_mp_	generic_t	umc13_0_umc	nan	mparyeka
Ntb.umc_w_phy.umc_phy_if_inst_*_*.UMC_headsup	generic_s	12030-0-43942	mp_real_phy_tb::umc_mp_	generic_t	umc13_0umc	nan	mparyeka
Ntb.umc_w_phy.umc_phy_if_inst_*_*.UMC_headsup	generic_s	12030-0-44134	mp_real_phy_tb::umc_mp_	generic_t	umc13_0_umc	nan	mparyeka
Ntb.umc_w_phy.umc_SmnTarg*_vif.axi_errs_rdata_x	generic_s	12072-0-79582	sanity::csr_hw_reset	generic_t	umc13_0_umc	nan	guizhang
Ntb.umc_w_phy.umc_SmnTarg*_vif.axi_errs_rdata_x	generic_s	12072-0-79998	sanity::csr_hw_reset	generic_t	umc13_0_umc	nan	guizhang
Ntb.umc_w_phy.umc_SmnTarg*_vif.axi_errs_rdata_x	generic_s	12072-0-80098	sanity::csr_hw_reset	generic_t	umc13_0_umc	nan	guizhang
	A	13073 0 30033	bies off shubles establing	hist	umeth 0 ume		Intel a la second

Inferencing

- Running on a CPU. No GPU is required.
- Take the pending assignments list in CSV format.
- Output in CSV format containing all required info including predicted failure owner.

	State	# Fails	# Batches	# Builds	# Envs	Owner(s)	Bu
	ASSONED	38	4	4	2	thomotien	
	ASSIGNED	1	1	1	1	pengtali	
	ASSCRED	26	2	2	1	taojiang	ione.
	ASSAUD	30	5	5	1	mparyeka	2010
	ASSOMED	24	2	2	1	taojiang	200
	ASSCRED	21	2	2	1.	absubin	084
	ASSCRED	131 SPLIT 75A+ 580	5	5	1	tacheng	0.0.0
	ASSONED	15	7	7	2	skruthi	09.0
	ASSIMED	14 19111 124 + 20	6	6	2	siyuan yan@amd.com, pengtali, siyan, taojiang	.084
	ASSIGNED	9	3	3	2	jduh	0.00
	ATACANED	5	5	5	1	siyan	444
6							
	ASSONED	87 SPUT 26A + 61PD	5	5	1	tom jiang@amd.com	210.0

Reporting

- Use Regression System API to report signature.
- The automation of triage system is transparent to the team. Deployment cost is minimal.

Model Details

• Deployed in multiple team in AMD with 100+ users for multiple project.

Model Details

	Training Data Metrics
No. Training Data Set	33460
No. Owner	67
No. Config	5
No. Unique Signature	523

Model Evaluation

Compare Model Updated data with manual assignment result

Variant 1 result (Around feature complete)

Week	Signature Count	Match Count	Test Count	Accuracy Rate	New Signature
1	83	76	1159	91.57%	11
2	112	106	1932	94.64%	42
3	85	82	1468	96.47%	10
4	80	74	1200	92.5%	13

Variant 2 result (2 weeks after DV regression start)

Week	Signature Count	Match Count	Test Count	Accuracy Rate	New Signature
1	75	71	2014	94.57%	5
2	75	71	1653	94.57%	10
3	62	65	1122	91.94%	15
4	68	57	503	95.58%	4

Model Evaluation (contd)

Regression Failure Category

Index	Content
1	Patterns observed in historical data.
2	Patterns are not observed in historical data but can be derived from domain knowledge.
3	Patterns were not observed in historical data, and the domain knowledge did not include such information during training.
4	Patterns are observed in historical data, but historical data is not applicable.

SSTA Highlights

- Fully automated process eliminates ~99% of current tedious and repetitive manual workload.
- Prediction and reporting system are independent modules so it can be extended to other triage system.
- Resource (HW/SW) cost is negligible (no need of GPU!).

*Downloading current unassigned signatures is a manual process due to unavailability of API in CRDB. Solution is under development from CRDB team

Observations - ML

- ML works well in classification problem.
- The system can be extended to other flow easily as the metrics can be removed/added easily.
- 100% accuracy is hard to achieve, may not worth the effort.
- ChatGPT is very helpful during the tool development to learn AI domain knowledge

[AMD Official Use Only - General]

Thank you!

Any questions or suggestions? Lingkai.Shi@amd.com