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      Abstract- Functional models are crucial for demonstrating the functional correctness of Neural Network compute 

accelerator IPs. Neural network workloads are based on the brain floating point (bfloat16) data type. Proposed functional 

model incorporates a native bfloat16 generator to address the incompatibility between gcc / g++ compilers and brain float 

datatypes. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) 

Work Loads (Dense or Sparse) and debugging the failures related to data integrity is incredibly difficult. This paper 

addresses the quality and TTM (Time to Market) challenge of complex neural network accelerator design by proposing a 

functional model-based scoreboard (for hardware debug) or software model (ISS as a virtual model for software developers) 

using SystemC.  

  

I.  INTRODUCTION  

A CISC (Complex Instruction Set Computer) ISA (Instruction Set Architecture) program can be extremely complex 

to debug as a hardware implementation. The proposed Functional Model (FM) executes the assembly code based on 

ISA of processor IP, decodes all instruction, and executes as expected to be done by the DUT. With the said model, 

there would be greater visibility and debugging capabilities for the DUT bring up in micro steps of execution.   

 

• The proposed model is developed in SystemC using High level synthesis (HLS) flow.   

• ISA related architectural changes can be accommodated easily in the FM.  

• FM is golden and pre-validated separately, so it eases RTL / SystemC debugging as it has all the 

internal debug information/details of the Instruction Processing.  

• FM is the source of Debug Trackers. Trackers are very helpful for deep internal Data Mismatch debugs.  

• Validates the NN Compiler Generated program HEX code – an additional advantage, sanitizing the 

compiler/assembly flow as well.  

  

II.  DESCRIPTION  

  

     For a Neural Network workload, we have designed the compiler output in a JavaScript Object Notation (JSON) 

format which is then parsed to generate an associated program HEX code. The HEX code then gets fed as an input to 

both FM and synthesizable design IP. Depending upon the design, the environment takes up either the SystemC FM 

or its SV variant.  

 

• In SV FM, the C++ pseudo memory is accessed with the help of SV DPI function calls.  

• Both the FM and the synthesizable design gets instantiated inside the same testbench (TB) where they receive 

stimulus for preloading the data in a shadow memory and configuring the Control Status Registers (CSR) for 

their functioning. 

•  FM dumps out partially processed data at every stage of the design and thus acts as a source of debug 

trackers. Both the DUT and FM completes processing a given WL as two different parallel threads and their 

outputs are compared in a post processing step.  

 

FM played a crucial role in identifying many issues in the compiler operation very early in the design cycle which 

would have been otherwise caught only at a later part. Also, the FM trackers eased the data integrity debugs and 

fastened the RTL bring up. Thus, beyond a golden reference model, FM helped improve the TTM of the ip. The 

following figure describes single cluster verification environment.                                      



 
Fig. 1 Single Cluster Verification Environment 

 

III. BFLOAT16 MODELING 

 

   The proposed FM environment makes use of brain floating-point format (bfloat16 or BF16) data precision with the 

help of a native BF-16 generator integrated to the environment. The native BF-16 generator is a union-based construct 

and consists of APIs that performs the required math operation in float32 (FP32) precision and represents the results 

in BF-16. This exploits the ease of conversion between BF-16 and FP32 datatype formats thereby overcoming the 

absence of a C++ brain float16 compiler.  

 
IV. FUNCTIONAL MODEL STRUCTURE 

 

    FM possess a header file which defines the data structures that tackles architectural breakdown of bigger workload 

data into various smaller granularities and thereby used in synchronization purpose across concurrent threads where 

individual threads interact among each other using Transaction Level Modeling (TLM). The four concurrent threads 

which majorly constitutes FM functionality are IFETCH, LOAD, COMPUTE and STORE.   

  

A. iFETCH Thread  

 

    iFETCH (or Instruction Decode) thread gets triggered when a specific CSR write happens from the FM TB. iFETCH 

collects the program start address and program size from the CSRs which are loaded by the FM environment. iFETCH 

grabs the instructions in chunks of Maximum Read Request Size and processes them accordingly. It decodes the 

compiler generated program HEX file in an instruction-by-instruction manner and pushes the instructions to 

corresponding TLM queues for further consumption by LOAD/COMPUTE/STORE threads. Also, iFETCH maintains 

a track of all byte availabilities for correct ordering of data processing.  

 
Fig. 2 Functional Model Top Module 



 

  

B. Load Thread  

  

     LOAD thread perceives a load instruction once the iFETCH pushes an entry in the respective queue. Associative 

Arrays using C++ map constructs are used inside the FM to mimic SRAM like behavior. Each LOAD contains 

information about the size of data to be fetched from memory, DRAM start address and a flag bit to indicate whether 

the instruction belongs to A-Matrix (Processing-Element-Matrix) or B-Matrix (Weight-Matrix). Thus, LOAD thread 

fetches the data present in the DRAM into corresponding associative arrays as shown below and waits for the next 

available instruction in the TLM queue.  

  

 
 

Fig. 3 Functional Model LOAD thread 

 

 

TLM  
Q 

From MAIN Thread 

intr = TLM.get() 

If (Conditions) { 
Step 1 
Step 2  

.. 
} 

  ID Value ? 
ID1 ID2 

Obj = new(ID1) Obj = new(ID2) 

addr = getAddr() 
read(addr) 

rsp = respTLM.get();  
if (rsp.status = OKAY) { 
Obj.Data[i] = rsp.data; 

} 

  idx < Size of  
matA() 

ID1 

YES 

NO 

AssocArray[ID].Map[idx] = Obj 

Wait For Next 

push() 

repeat() 

addr = getAddr() 
read(addr) 

rsp = respTLM.get();  
if (rsp.status = OKAY) { 
Obj.Data[i] = rsp.data; 

} 

  idx < Size of  
matB() 

YES 

NO 

AssocArray[ID].Map[idx] = Obj push() 

Wait For Next 

repeat() 

Matrix A 

Matrix B 

idx = 0  idx = 0  

idx ++  idx ++  



C. Compute Thread  

  

     COMPUTE thread has a dependency on LOAD. Once the LOAD thread completes its execution, it communicates 

the same to COMPUTE thread via SystemC semaphores. A COMPUTE instruction typically holds information on the 

granular data to be fetched from the associative arrays to perform Multiplication and Accumulation operation (MAC). 

The resultant MAC data is also kept inside a temporary buffer for partial processing’s. COMPUTE requires specific 

operands to be made available for its operation and thereby keeps a track of the entire Matrix multiplication. Once the 

result of the MAC compute doesn’t need any further accumulation on the top of existing partials, a new entry gets 

created inside the associate array storage element to store the final computed value. Compiler sets a ‘DONE’ flag bit 

when a given COMPUTE marks the completion of computation in a common direction. Based upon the DONE Flag, 

COMPUTE sends out a note to STORE thread to move the temporary final computed values (stored inside Associative 

Array-C) back to DRAM.  

 
  

Fig. 4 Functional Model COMPUTE thread  

  

Granular_data_A = assoc _array[ID] .Map[COMPUTE.idx_A ] 
Granular_data_B = assoc _array[ID] .Map[COMPUTE.idx_B ] 

Wait for next  
COMPUTE  
instruction 

Resultant_MAC_data = multiply(Granular_data_A, Granular_data_B) 

COMPUTE = compute_tlm.get() 
             if (condition){ step 1} 

m = COMPUTE.idx_A 
n = COMPUTE.idx_B 

Partial_result[m][n] += Resultant_MAC_data 

wait (assoc_array[ID].available(COMPUTE.idx_A) ) 
wait (assoc_array[ID].available(COMPUTE.idx_B) ) 

If(conditions) 
{  step  1 

     step 2 } 

TLM  
Q 

From MAIN Thread 

Completion of COMPUTE  
in common direction 

NO 

set DONE flag  

YES 

  



  

D. Store Thread  

  

     STORE maintains a dependency with COMPUTE as per as ordering of processing is concerned. STORE instruction 

holds the index of the entry which is to be fetched from the C Matrix Array, and the final DRAM destination address. 

Once the STORE gets completed, the given entry gets deleted from the temporary associative array. When FM finishes 

the processing of all STORE instructions, it marks the completion of the workload. At this point, different CSRs get 

set from FM_TOP module for end of workload detection. Upon completion the storage elements in all the FM threads 

goes back to reset to take up another workload.  

  

 
  

  

  
Fig. 5 Functional Model STORE thread  

 

addr = get_addr(); 
wr_data =   partial_result[m][n].get_row(row); 

write (addr, wr_data); 
row++ 

m = STORE.idx_A ;   n = STORE.idx_B ;   row=0; 

row < SIZE YES 

Wait for next  

STORE instruction 

STORE_instr = store_tlm.get(); 

   assoc_array_c.delete(partial_result[m,n]) 

NO 

wait (partial_result[m][n].DONE);  

TLM Q 

From MAIN Thread 



V.  RESULTS  

  

• Verified 95% Functional Correctness of IP Design prior to FPGA prototyping  

• Validated the Neural Network IP ISA (Instruction Set Architecture) very early in the project, giving feedback 

to architecture definition  

• Done early verification of Compiler operation, finding several issues in compiler architecture as well  

• Very early freezing of collateral (.HEX / disassembly) file formats  

• Used as verification scoreboard for both HLS Design (SystemC) and Generated RTL (System Verilog)  

• Enabled data integrity checks in pre-silicon verification environment, which were also reused at the FPGA 

Platform  

• Solution provides flexibility to the end user to pick either SystemC or its System Verilog variant, while reusing 

C++ memory and checkers using SV DPI feature of System Verilog  

• FM code has gone through Profiling and has got improvisations for simulation throughput optimizations.    

• FM is also integrated with end-to-end GEMM checker (simple high level C code) for Dense Matrix 

multiplication Operations. GEMM checker is a generic matrix multiplication algorithm which has a 

computational complexity on the order of  𝑛3 to multiply two n x n matrices. 

• Trackers and Debug Hooks are available in FM for ease of use, which enabled faster RTL1.0 design freeze 

with highest quality prior to FPGA and for SOC  

  

  


