(2024

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
MARCH 4-7, 2024

Unleashing the Power of Whisper for block-level
verification in high performance RISC-V CPU

Chenhui Huang, Yu Sun, Joe Rahmeh

® Tenstorrent Inc.

What is Whisper?

* Open-Source RISC-V Instruction Set Simulator (ISS)

* Initially developed by Western Digital for SweRV Core Project
e Support different RISC-V Ext.

 Serve as Golden reference model for RISC-V

e APl Supports for debugging and analysis

We extend our gratitude to Joe Rahmeh for being one of the main contributors to the 'whisper' repository, a pivotal resource available on
GitHub (https://github.com/chipsalliance/).

DESIGN AND VERIEICATION™
W § N
y L) N

https://github.com/chipsalliance/

CPU Verification Methodology Comparison

Core-level Verification Block-level Verification
Advantages: VS Advantages :
* Streamlined Testbench Architecture * Rapid Compilation Times N
« Straightforward Architectural Verification * Enhanced Test Control Precision
* Assembly Tests are reusable cross projects * Easier Debugging
e Straightforward to bring up new
Challenges: features
 Complex Debugging Process Challenges :
e Limited Stimulus Control * Require more TB knowledges
* Not Easy for new features bring-up * Intensive Bus Functional Model (BFM)
* More complex Micro-Arch Verification Demands

DESIGN AND \/RlF_ICAT\ION ™

Traditional Block-level TB for Load Store Unit
/ \ [Checker] . .

Instruction Generator 1 1
Address Generator —— [000 Scheduler | — (\ Share Cache
> 4h [BFM] “— || Load and Store BEM
Random Control Unit RTL
L J
\ UVM Sequence / _ DUT) o

UVM Testbench for Load afd Store Unit
Not friendly for RTL

designer to bring up new
features.

Complicated and High
maintenance cost.

DESIGN AND VERIE] 1

ELF

Block-level Testbench using Whisper [

Assembly]

Use Whisper as Checker

\ : : < | Shared Memo
(Assembly . Whisper IWhlsper Checking [Model 1"}’]
ELF ISS I — — —

| I |

[Random Control] I /- ~ M\
| — [00O Scheduler] — .
UVM Sequence } 4_ BFM D Load e}nd Store - Share
N —— - — Unit RTL Cache
T BFM
k DUT)

Use Whisper as Stimulus

DESIGN AND VERIEICATION™

DPI Functions Whisper supports

“DRI=C”
"DPI-C"
"DPI-C"
"DPI-C"
"DPI-C"
"OPL=C"
“DP1~C"

function
function
function
function
function
function
function

void
void
void
void
void
void
void

(input int hart, input longint iTime, input longint instrTag

(input int hart, byte i

ce, longint addr, output

(input int hart, input longint addr, output byte

(input int hart, byte resource, longint addr, value,
(input int hart, input longint addr, input byte v
(input int hart, output int resource, output longint ad

(input int hart, output bit

)5

DESIGN AND VERIEICATION™

e - : -

‘ Assembly in ELF Format ‘ Step | | Whisper| g, | Non-L5 —p | SEQTEM with

‘ : ‘ Whisper Decode oP Random Delay
memcopy loopl:

i addi x4, x4, 0x8 Whisper Non-LS [SEQITEM With]

. addi x14, x14, Ox& . - . o

! 1d x10. 0(x4) ' Whisper Decode OoP Random Delay ~ .
I sd x10, 0(x14) Step Whisper - Load Peek SRC EQITEM

i « o Whisper Decode oP ! Reg X4 -> LLD with Ader

'\ . Step Whisper Store Peek SRC [SEQTEM |
................... . : —p —p — == | SD with Addr and
Whisper Decode op Reg X14, X10 M oata)

Driving Phase

I IS S S B B B B B B S S
" car)

Step Get
Whisper = | whisper (\ (ﬁ
memcopy loopl: (L 1SPe) , Changes)
dd i 4, 4, 0x8 Get
ORI . | P | = | whisper End-to-End
1d e .\ Whisper) Changes nd-to-en “ LS RTL
; e X‘) Get “ Ch k r
sd x10, 0(x14) Step > | whisper ecke DUT
T M Changes
Get
St_ep o Whisper k))
_JWhlsper Changes

(2024

DESIGN AND VERIEICATION™

DV

CONFERENCE AND EXHIBITION

Why doing that?

Whisper can be the missing parts of your unit testbench
- Decoding the Instructions
- Data Value calculation
- Memory Model for checking
- Any architectural states

DESIGN AND VERIEICATION™

DVCON

Whisper Memory Consistency Model (MCM)

o Overlapping-Address Orderings:

PY W h is p e r- S u p p O rts t h e IVI e m O ry 1. b is a store, and a and b access overlapping memory addresses

2. a and b are loads, z is a byte read by both a and b, there is no store to between a

CO n Si Ste n Cy M O d e | i n g and b in program order, and a and b return values for z written by different memory

operations

3. a is generated by an AMO or SC instruction, b is a load, and b returns a value written

C h ecC ki N g 1 3 P reserve d P ro g ram by a o Explicit Synchronization
O rd er (P P O) ru | es fo r R I SC_V o Syntactic Dependencies
' 9. b has a syntactic address dependency on a
We a k M e m O ry O rd e rl n g 10. b has a syntactic data dependency on a
(RVW M O) 11. b is a store, and b has a syntactic control dependency on a

o Pipeline Dependencies

. There is a FENCE instruction that orders a before b
. a has an acquire annotation
. b has a release annotation

a and b both have RCsc annotations

® N > ot e

. a is paired with b

° -
Ca n b €ad d 0 pte d at th e b I oC k |eve' 12. b is a load, and there exists some store m between a and b in program order such that
te St b enc h W |t h mu |t| p | e I_S un |t m has an address or data dependency on a, and b returns a value written by m
t e St b enc h arc h |t e Ct ure 13. b is a store, and there exists some instruction m between a and b in program order such

that m has an address dependency on a

DVLC N

CONFERENCE AND EXHIBITION

How to check MCM in the testbench using Whisper

1: Time Stamp when the Load data is visible
2: Time Stamp when the Load is Retired

1: Time Stamp when the Store data is into
Merge Buffer
2: Time Stamp when the Store data is drained

out of Merge Buffer
3: Time Stamp when the Store is Retired
4: Time Stamp of bypass if the Store is

import
import
import
import
import

"DPI-C"
"DPI-C"
"DPI-C"
"DPI-C"
"DPI-C"

function
function
function
function
function

void
bool
void
void
void

reaching 10/uncacheable/AMO

(input int hart, longint mtime, longir

(input int hart, longint mtime, longint instrTag)
(input int hart, longint mtime, long

(input int hart, longint mtime, long

(input int hart, longint mtime, long

DESIGN AND VERIEICATION™

DVCON

CONFERENCE AND EXHIBITION

Multiple LS units with Shared Cache

Random Control

_ UVM Sequence)

()

Assembly | = Whisper
ISS

000 .
Scheduler (\:Ylhlif.er
BFM ecking
g J

LS DUT

Random Control

Assembly | = Whisper
ISS

_ UVM Sequence)

~

r
000 .
Scheduler WhlSPer
BFM Checking
G J

Random Control

Assembly | = Whisper
ISS

_ UVM Sequence)

~

(oo)

r
000
Whisper
Scheduler Checki
BFM ecking
\ J

Share Cache

(o)

DESIGN AND VERIEICATION™

DVCON

CONFERENCE AND EXHIBITION

Whisper Python Interface

whisper
whisper_ins = whisper.system () <= Load Configuration
whisper_ins ([]) <= Load ELF File
me_ha rt = whisper_ins ()[?] <= Create object for Hart 0
my_hart (1) <= Step Instruction
->> my_hart (1)

(hex(my_hart.mstatus)) <= Peek CSR Value

my_hart (1)

((my_hart.x2)) <= Peek Scalar Register Value

(my_hart.vl) €= Peek Vector Register Value

[’

’ ’ ’]
my_hart.x2 <+— Poke Register Value

We extend our gratitude to Jiahan Zhang for his support for Whisper Python Interface.

DESIGN AND VERIEICATION™

DVCON

CONFERENCE AND EXHIBITION

2

ration usin Whlsper

‘ l Give me RISC-V \

Assembly test focus

\r—l-
1)
I('D

D)
(D

i | I

Line X has syntax error I I I I
Missi fl.....
i

| I

[Assembly Test]

(N | (= Yu | (=)
Assembly Compile Whisper Standalone I I Architecture
Coverage

§

Good Coverage ?

Step 3

|
|
|
/> I
@Clem? I
|
]

Step 1
]

SYSTEMS INITIATIVE. Syntax Check Yes

summary

Integration of Whisper in Block-Level Testbench

e Used as Stimulus:
- Empowering RTL Designers with new capabilities
- Shorten the development cycle during the features bring-up

* Used as Checker:
- Inherently used for End-to-End checker
- Memory consistency checking at block-level

* Applying Whisper with LLM for test generation:
- Narrative Test Scenarios converted into Assembly test

- Open-source or In-house LLM will be investigated in the future

Thank you for Listening

Questions

