Discover Over-Constraints by Leveraging
Formal Tool

accellera

2023

DESIGN AND VERIFICATION™

DV L LN

Dongsheng Ouyang, Ray Zhang, Lucas Liu, Doris Yin, Wayne coNFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

INTRODUCTION

Constrained Random Testing (CRT) is a dominant and powerful stimulus generation
methodology. One of the most challenging problems of CRT is over-constraint. Over-
constraints are constraints that are too narrow, ruling out certain legal input scenarios.

Over-constraints will cause RTL bug escape and project schedule slip. Traditionally,
verification engineers rely on code review or simulation with coverage to find over-
constraints, but this workflow is very time and resource-consuming and does not work very
well.

We propose to use formal to identify over-constraints. With formal, we can report random
variables' reachable space, identify unreachable expressions in constraints, and report
unreachable bins in stimulus coverage. With the help of these reports, we identify over-
constraints in a short turnaround time during the constraint composition stage.

Random solver]

Constraint spec
Random space
a !=0 ->b !=0

Random stimuli
a = 0001
DUT b = 1001

TECHNICAL SOLUTION

We propose a workflow to use formal to discover over-constraints. With formal, a series of
reports are generated, which help to identify over-constraints quickly.

1. Use Synopsys UCLI (Unified Command-line Interface) to generate a constraint random database.
2. Convert random constraints and optional stimulus coverage into formal readable.
3. Run aformal tool to explore reachable space accurately. Formal reports will be generated after formal runs.

4. Generate constraints qualify reports. The review can find over-constraints from these reports quickly.

p
Stimulus Coverage
(optional)

\

v random constraints SVA properties

v inside {5, 10}; v inside {5, 10};

x dist {100 := 1, 200 := 2, 300 := 5}; * | x inside {100, 200, 300};
mode == little -> len < 10; mode == little |-> len < 10;
if (mode == little) if (mode == little)

(Formal-readable)
simv Run + UCLI Constraint Constrains and }

Database | Coverage

len < 10; len < 10;
else if (mode == big) else if (mode == big)
len > 100; len > 100;

| unique {a, b, c}; Unsupported
Formal Report solve s before d; Ignored
soft length inside {32,1024}; Ignored
Formal Run
Report

Coverage
Database

CONSTRAINT REPORTS — I

Unreachable stimulus coverage report. User-defined stimulus coverpoints can be
optionally added as random state targets, these coverpoints can feed into formal, and
formal will report all its unreachable bins. Reviewers can judge whether those unreachable
bins are over-constrained cases or can be added in a waiver.

Targets: ALL
| status | depth name | tocation | type | engine | cover_grou | s5_bin

Cross,_|
22 d [y topcvg mode cg 22 g svls covergroyp sl Lyg mode sLmode Ax [MODE OIMODE 1
2 b 4 fv_top.ovg_mode_cg_21 cvEg s lh | coverngroup el cvg_mode [MODE_QIMODE_2]

formal failure target®s" Seue t=m Scar=
=1 & tv_top:ovo_mode I 57 92% 24 1

1
7 covergroup covg_mods @ (poasdge clk); I - |BB cp_rriode_A I 100 00% 4 a

cp_mod=_A: coverpoint mod=_& L e - e a
T Y R T

ing MODE_O
bins MODE_1
bine MODE_Z2
bins MODE_3

"hO};
"hl};
"h2};

rLb holes in coverage report

cp_mods_E: coverpoink
bing MODE_O
bBins MODE

!
=

1
R
PRERE
=
4|

g
o o
'

[
Flooooo

I
" oo
L

o
2

[a]

=
=L
-]
[
=
El
n

o
o

=

W
Z|Z 2| E|E
cloolals
oo gals
M
—_ (=]

e A |« cp_mede B - Typ - At Leasl Size

ovg_mode (COVEragegroup ; 3 o
MODE_3 Auto

]

MODE_

-

MODE_3

e

property p_mode_cross;
| (mode_A==0 && mode B==2); // over constraint
endproperty

asm_p mode_cross : assume property(p mode cross);

i

MODE_3 MODE_Z

= BEBBEEEEE
d|d|g c o|g|e

|

unwanted overconstraint 4 ,MD'DE'_D, [MODE_ 23

Ding
NVIDIA Semiconductor Technology (Shanghai) Co., Ltd.

FEBRUARY 27-MARCH 2, 2023

RANDOM SPACE

A random variable’s random space is the feasible region that satisfies all constraints on this
variable.

After we get the random space, we can check if this variable is over-constrained or not by
comparing the intended space against the random space. Once we get the list of over-
constrained variables, we can discover over-constraints by a simple analysis of constraint
expressions.

But when a set of complex constraints limit random variables, it is impossible to manually
figure out a variable’s random space. We should rely on a tool to exhaust a variable’s
random space.

Variable = Reachable space
a {2,3}

b {3,4,5}

d {5.6,7}

Random Space

Constraints Compare
Code ‘/\

; ’In(ndedsp)

x X b

~l

o)
1l
~N o

X OX X X X X X X N
X X X X X 0 X X w
(@)
|
X X X X X 0 x X u
X X X X X X X X o
XX X X X X X X N

xX X X X f

CONSTRAINT REPORTS — |

Unreachable code report. Formal can help to prove the reachability of constraint
expressions. These unreachable expressions are sources of over-constrained and under-
constrained stimuli.

rand bit[3:0] a;
rand bit[3:0] b;

rand bit[1:0] error; Unreachable Precondition of Constraints

Precondition Constraint Source
error == 1. [(@a + b > 4'hf) |[cons [test.sv:10]

else if(a+b < 4'h2)
error == 2;

else
error ==0;

}

Random space report. Unreachable spaces will be marked red, and reachable spaces will be
marked green. We develop a smart algorithm to divide random variables into 2 categories:
enum variables with all possible values, and continuous variables with a min~max range.
Reviewers can check variables’ random space with design spec requirements to find over-
constrained variables quickly.

ENUM Variable Stimulus Space Review Table CONTINOUS Variable Stimulus Space Review Table

Variable Supported Possibilities Actual Possibilities Gap Tsity Variable Theory M model localeize [O]
vinowner[0]gll1 model.Core[0].SetClockFrequency. Hertz||0 *

Dive:

BP0 |

B [e . quency.Hertz . el L
winowner|[0] odel.Core[2].SetClockFrequency 0 Bin Reachablility Distributio

od tClockFres 0 [0:2107]
Bin Reachablility Distribution mod L2e[0 0 [2108:2108] reachable
= odellocalRSizell o [2109:133297]

[0:0] achable 10.30% odel localRSizel2) :
[1:1] achable 10.26% odel.localRSize[3 0 [133298:133298]
[2:2] |reachable 11.00%
[3:3] achable 10.93%
[4:4] achable 11.71%
[5:5] achable 12.64%
[6:6] achable 12.47%
[7:7] achable 12.36%
15-11] | SR DO
[15:15] reachable | SRR

=]

‘g‘.
g
g

CONCLUSIONS

We proposed a new solution to over-constraints detection by leveraging the formal tool in
the simulation world. It creates a working model with a speed-of-light turnaround from
constraint directly to report. It is much more advanced than the original turnaround from
constraint writing to test creating, to coverage regression, and finally to coverage report
analysis to fix possible constraint issues.

REFERENCES

[1] Systematic Constraint Relaxation (SCR): Hunting for Over-Constrained Stimulus, Debarshi Chatterjee, DVCon US 2022.
[2] Synopsys, VCS® Unified Command Line Interface User Guide R-2020.12, December 2020, https://www.synopsys.com/
[2] https://www.jenkins.io/

We would like to thank your colleagues Liang Li, Mark Zhang, and Farmer Wang at NVIDIA for their valuable suggestions during this effort.

<D For any questions, please contact us through email at douyang@nvidia.com

NVIDIA.

© Accellera Systems Initiative

	Slide 1

