
Constrained Random Testing (CRT) is a dominant and powerful stimulus generation
methodology. One of the most challenging problems of CRT is over-constraint. Over-
constraints are constraints that are too narrow, ruling out certain legal input scenarios.

Over-constraints will cause RTL bug escape and project schedule slip. Traditionally,
verification engineers rely on code review or simulation with coverage to find over-
constraints, but this workflow is very time and resource-consuming and does not work very
well.

We propose to use formal to identify over-constraints. With formal, we can report random
variables' reachable space, identify unreachable expressions in constraints, and report
unreachable bins in stimulus coverage. With the help of these reports, we identify over-
constraints in a short turnaround time during the constraint composition stage.

We propose a workflow to use formal to discover over-constraints. With formal, a series of
reports are generated, which help to identify over-constraints quickly.

1. Use Synopsys UCLI (Unified Command-line Interface) to generate a constraint random database.

2. Convert random constraints and optional stimulus coverage into formal readable.

3. Run a formal tool to explore reachable space accurately. Formal reports will be generated after formal runs.

4. Generate constraints qualify reports. The review can find over-constraints from these reports quickly.

Unreachable code report. Formal can help to prove the reachability of constraint
expressions. These unreachable expressions are sources of over-constrained and under-
constrained stimuli.

Random space report. Unreachable spaces will be marked red, and reachable spaces will be
marked green. We develop a smart algorithm to divide random variables into 2 categories:
enum variables with all possible values, and continuous variables with a min~max range.
Reviewers can check variables’ random space with design spec requirements to find over-
constrained variables quickly.

Unreachable stimulus coverage report. User-defined stimulus coverpoints can be
optionally added as random state targets, these coverpoints can feed into formal, and
formal will report all its unreachable bins. Reviewers can judge whether those unreachable
bins are over-constrained cases or can be added in a waiver.

We proposed a new solution to over-constraints detection by leveraging the formal tool in
the simulation world. It creates a working model with a speed-of-light turnaround from
constraint directly to report. It is much more advanced than the original turnaround from
constraint writing to test creating, to coverage regression, and finally to coverage report
analysis to fix possible constraint issues.

We would like to thank your colleagues Liang Li, Mark Zhang, and Farmer Wang at NVIDIA for their valuable suggestions during this effort.

For any questions, please contact us through email at douyang@nvidia.com

Discover Over-Constraints by Leveraging
Formal Tool

Dongsheng Ouyang, Ray Zhang, Lucas Liu, Doris Yin, Wayne
Ding

NVIDIA Semiconductor Technology (Shanghai) Co., Ltd.

INTRODUCTION RANDOM SPACE

TECHNICAL SOLUTION

CONCLUSIONS

REFERENCES

[1] Systematic Constraint Relaxation (SCR): Hunting for Over-Constrained Stimulus, Debarshi Chatterjee, DVCon US 2022.
[2] Synopsys, VCS® Unified Command Line Interface User Guide R-2020.12, December 2020, https://www.synopsys.com/
[2] https://www.jenkins.io/

A random variable’s random space is the feasible region that satisfies all constraints on this
variable.

After we get the random space, we can check if this variable is over-constrained or not by
comparing the intended space against the random space. Once we get the list of over-
constrained variables, we can discover over-constraints by a simple analysis of constraint
expressions.

But when a set of complex constraints limit random variables, it is impossible to manually
figure out a variable’s random space. We should rely on a tool to exhaust a variable’s
random space.

random constraints SVA properties
v inside {5, 10}; v inside {5, 10};
x dist {100 := 1, 200 := 2, 300 := 5}; * x inside {100, 200, 300};
mode == little -> len < 10; mode == little |-> len < 10;
if (mode == little)

len < 10;

else if (mode == big)

len > 100;

if (mode == little)

len < 10;

else if (mode == big)

len > 100;
unique {a, b, c}; Unsupported
solve s before d; Ignored
soft length inside {32,1024}; Ignored

CONSTRAINT REPORTS – I

CONSTRAINT REPORTS – II

	Slide 1

