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Abstract- This paper leverages the advanced features of Portable Standard Stimulus (PSS) to verify performance of 

highly configurable heterogenous multicore systems for AI applications. The increased complexity of AI SoC and 
software required to efficiently control the HW resources, demand sufficient test software available from pre-RTL till 
post silicon validation. A key aspect of this work is addressing the dynamic nature of AI applications, where rapidly 

emerging applications, with diverse performance demands, require a highly configurable testing infrastructure. In this 
work, we demonstrate how the modelling capability of PSS can be utilized to map application algorithms ensuring 
optimal scheduling and HW resources utilization for performance verification and how test portability enable efficient 

verification reuse.  

 

I.   INTRODUCTION AND MOTIVATION 

The rapid evolution of AI applications for edge devices in various domains such as mobile, cameras, automotive, 

IoT, etc., has driven the development of increasingly complex SoCs, which integrate a diverse set of processing 

elements.  

These elements include general-purpose embedded cores for control logic, vector DSPs for signal processing tasks, 

and specialized hardware accelerators designed to speed up AI computations. The heterogeneous nature of these 

systems poses new challenges for performance verification, as each component may have different execution models, 

data flows, and memory hierarchies. 

Traditional verification approaches, such as UVM based testing or direct C tests, often fall short in capturing the 

real-world use-cases, while full software support may be available only at a later stage of the project. Moreover, the 

evolving nature of AI algorithms necessitates a more dynamic, adaptable and scalable verification approach. Portable 

stimuli, which can generate reusable, platform-agnostic test cases, provide valuable solutions for these challenges. By 

abstracting the specifics of the execution platform and properly modelling the available resources (memories, 

executors and HW other resources), portable stimuli enable end-to-end project lifecycle performance verification from 

architecture exploration to post-silicon and across different environment including virtual platforms, simulation, 

emulation and silicon. 

In the following sections, fundamental concepts of AI applications are introduced to establish a foundation for 

understanding the applied methodology. This is followed by an overview of the (DUT) and the mapping of 

applications. Subsequently, the use of Portable Stimulus Standard (PSS) for application modeling, scheduling 

optimization, and the importance of portability are discussed. Finally, results are presented alongside an examination 

of the challenges across different verification levels, with recommendations for extending the methodology to more 

complex applications and relevant software considerations. 

 

II. NEURAL NETWORK APPLICATIONS CONCEPT 

Before diving into the testing methodology, let's first introduce some basic concepts of Neural Network applications 

required to understand how tests are defined and optimized. 

Neural networks (NNs) are computational models consisting of interconnected layers that transform input data 

through successive operations to extract meaningful patterns. Taking as reference ResNet50, the network takes as 

input an image and processes it through a series of layers, identify patterns such as edges, shapes, textures and 

ultimately classify the image between object classes. A Neural Network Layer is a computational block that 

transforms input data, producing an output called a feature map, which captures specific patterns or characteristics in 

the data. Layers consist of operations such as convolutions, pooling, and activation functions, each designed to learn 

different aspects of the input. A Feature Map is an essential component in CNNs, representing the output of a layer 

after applying specific operations to the input data or previous layer’s output feature map. A feature map is represented 

as a three-dimensional tensor. A Tensor is a multidimensional array (3D), the dimensions are defined as 

• Channels – number of different features, where each channel represents a unique feature 

• Height – the vertical spatial dimension 

• Width – the horizontal spatial dimension 



 
Figure 1: system under test 

 

 

In the subsequent sections, the channel first notation will be adopted as follow Fmap(C, H, W) represents a tensor 

with C channels, H on the vertical dimension and W on the horizontal dimension E.G.: Fmap (64, 272, 480). 

The fundamental operation in CNNs like ResNet-50 is the convolution, a mathematical operation where a small 

matrix called a filter or kernel slides across the input tensor, performing element-wise multiplications and summing 

the results to generate the output. Each filter in a layer has associated weights, which are trainable parameters learned 

during training. The weight values determine the specific features each filter detects. The convolutional filter weight 

are represented with following notation W<nF × inC  × fH × fW> where 

• nF represent the number of filters applied to the input feature map 

• inC the number of channels of the input feature map 

• fH and fW represent the heigh and the weight of the filter and are typically 1x1, 3x3 or 7x7 in Resnet50 

Ignoring concept like padding, filter dilation or stride, not required for the purpose of this paper and  and applying 

a convolution with filter W <nF × C × H × W> to an  input feature map F_in(C, H, W), the results will be F_out(nF, 

H, W), witg number of channel equal to the num_filters, and spatial dimension equal to F_in.  

 

 

III. HETEROGENEOUS SOC ARCHITECTURE FOR AI APPLICATIONS 

SoCs for AI applications integrate multiple types of heterogenous processing elements in a single system to optimize 

performance, energy efficiency and flexibility. Unlike traditional homogeneous systems that rely solely on one type 

of processor, typically a CPU, heterogeneous computing systems combine different processing units each optimized 

for particular tasks. This combination allows the system to leverage the unique strengths of each processor type to 

handle a diverse range of workloads more effectively. Fig. 1 shows the architecture of the test-system (Synopsys ARC 

NPX) with the following processing units: 

• General-purpose processors, L1 and L2 cores, handle control and management tasks. These cores manage 

memory, and orchestrate data movement between different components 

• AI Accelerators, Convolution accelerator, Tensor Accelerator and Tensor FPU. These components are 

responsible for the compute load of the System 

• Cores 1 to 24 are homogeneous computing elements capable of executing the same algorithm on different data 

to leverage data-level parallelism. They can also run different algorithms, either independently or in 

coordination with other cores in a pipeline, or even combine these approaches. 

• DMAs and Streaming Transfer Unit, responsible for the data movement across the system. 

• L2 controllers are responsible for the management of the cluster (L2 memory, streaming transfer unit) and the 

synchronization of the different cores. 



• Vector DSPs, designed for high-throughput signal processing, and optimized for various generic tasks 

commonly found in neural networks.  

Another key aspect of the system under test is the memory hierarchy to balance speed and capacity, ranging from 

high-latency, large-capacity L3 memory to small, high-speed L1 and L2 memories closer to the processing units. L3 

(external memory) is used for bulk data storage due to its capacity but incurs high latency. In contrast, L1 memory is 

 
Figure 2: data flow and pipelining 

 

small, private to each core and can directly be accessed by the processing units. L2 memory offers a balance, being 

larger than L1 and shared across cores with moderate latency, providing buffering capability to overcome high DDR 

latency and facilitate efficient data transfer between the DDR and processor cores.    

All components are configurable to adapt to the area, performance and power requirement of the final chip – e.g.: 

memories size, Convolution Accelerator number of multiplier and accumulator 

 

IV. DATA FLOW AND SW PIPELINING 

In embedded hardware systems for AI applications, efficient data flow and software (SW) pipelining are essential 

for optimizing performance when mapping neural network computations. Considering a single-core application 

mapped into the system in Fig. 1. Core 1 subsystem includes two Direct Memory Access (DMA) engines, one input 

DMA used to fetch data from external (L2 or L3) memory into L1 memory in small chunks (tiles) and one output 

DMA used to store the results from L1 memory into external. In between these two data move operations the different 

TPUs (Tensor Processing Units such as convolution engine and generic tensors accelerator) perform a data 

elaboration. The DMAs and TPUs are controlled by the L1 controller.  

To support continuous processing without stalls, double buffering is applied by partitioning the L1 memory into 

four segments: two for input buffering (allowing one segment to load new data while the other is used in computation) 

and two for output buffering (allowing one segment to offload completed data to external memory while the other 

holds intermediate results from ongoing computations). This partitioned setup allows SW pipelining to operate 

smoothly, with input DMA, compute, and output DMA stages continuously overlapping. Consequently, the system 

minimizes idle cycles for each component, maintaining a streamlined data flow and enhancing overall processing 

efficiency.  

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 
Figure 3: PSS actions interfaces and runtime scheduling 

 

V. TEST IMPLEMENTATION APPROACH 

The Portable Stimulus Standard (PSS) model combining the HW configuration parameters of the system, along 

with external factors such as memory bandwidth, to facilitate the generation of tests and optimize the scheduling of 

various actions. As shown in Figure 2, the PSS model can be expressed using three types of actions with standardized 

interfaces across components (see Figure 3). These interfaces enable the buffer_s flow object to enforce dependencies 

between actions, ensuring correct execution for each solution. The key components of the model are: 

1. base_action: This is the primary action class for all atomic actions required for testing 

(e.g., idma_start, idma_wait, compute, and odma). In "_start" actions, the Level 1 (L1) controller sets the 

descriptor and sends it to the accelerators. In "_wait" actions, the L1 controller waits for an event response 

from the accelerator. “_wait” and “_start” action deferred for the random members and the body. 

2. base_compound_action: This action defines the data flow between start and wait actions for each component 

(i.e., idma, compute engine, and odma), managing dependencies within each individual component. 

3. Application Action: This action schedules and manages dependencies across all actions, enabling functional 

testing with a range of legal schedules. Figure 3 illustrates the runtime scheduling process, which can generate 

multiple valid test schedules, though only one will be optimal. 

To illustrate, consider a simplified scheduling problem involving four actions, 

idma_start, idma_wait, compute_start, and compute_wait, where idma and compute operate on independent data. 



Figure 4 displays three possible schedules. The L1 controller executes _start actions at predictable intervals to 

dispatch jobs to the accelerators, while _exec actions depend on the job duration on each accelerator 

(with comp_exec time typically longer than idma_exec). _wait actions occur as the accelerator completes each job 

and signals the controller. 

 
Figure 4: scheduling optimization 

 

• Solution 1: idma_start is scheduled first, followed by idma_wait, then comp_start, and finally comp_wait. 

This sequence is inefficient, as idma and compute tasks are executed sequentially, underutilizing parallelism. 

• Solution 2: In this case, comp_start follows idma_start, allowing both accelerators to operate in parallel, 

which improves efficiency compared to Solution 1. 

• Solution 3: This optimal solution schedules idma_start first, followed by idma_wait and comp_wait, fully 

exploiting parallelism between idma and compute. 

 

From this example we can extract three simple rules:  

1. Start functions should have scheduling priority over wait functions. 

2. Among start functions, those for accelerators with higher expected execution times, referred as cost 

functions, should be prioritized. 

3. For wait actions, prioritize those associated with accelerators with lower cost function. 

The first step to validate these rules is determining the cost function of a large number of compute kernel and 

determine in which cases the priority scheduling can be applied. Specifying action priority for PSS schedule activity 

operator is beyond the PSS standard and was done using an underlying tool mechanism 

 

 

  
Figure 5: .1 DMA throughput analysis – .2 execution time histogram  
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V. COST FUNCTIONS CALCULATION 

The process to determine the cost functions begins by assessing performance metrics at the module level isolating 

components such as DMA and the various compute components. Each module is tested independently under different 

operational conditions and parameter configurations, tests are generated with PSS reusing the same actions applied at 

system level to determine the individual contribution to the overall cost.  

This approach allows for a systematic evaluation of performance variability, contributing to an accurate definition 

of the cost function based on actual performance measurement of the single component in isolation. 

The cost function is defined as the estimated execution time correlated to a particular data transfer or kernel. It could 

be generally represented by C=K0+F(p0,p1,…,pn), where K0 is a constant representing fixed system overhead, 

and F is a function dependent on multiple parameters, p0,p1,…,pn, specific to each module. Fig. 5.1 illustrates the 

results of DMA module testing, displaying variations in performance as transfer size changes. These results establish 

baseline performance for each component and clarify parameter sensitivity. 

Following the cost calculation for all components in the application, an optimized scheduling algorithm is developed 

by incorporating these costs. This optimized schedule undergoes validation through post-execution analysis to verify 

alignment with the anticipated cost function values. Post-analysis includes generating histograms for each component 

to provide insights into their distributional characteristics, as well as identifying any interactions or conflicts that arise 

during simultaneous operation within the system. This analysis uncovers the influence of component interactions on 

the cost function, revealing potential areas for further optimization. 

The cost function is then refined by introducing an interaction factor that accounts for system conflicts or synergies, 

represented either as an additional constant or as a random variable as C=K0+F(p0,p1,…,pn)+ K1+ rand_dist(x). 

This interaction factor may be modeled using a uniform or normal distribution based on observed interaction patterns. 

Incorporating these refined interaction terms enhances the accuracy of the cost function, ensuring it better reflects the 

real-world behavior of the AI application, thereby providing a reliable framework for effective scheduling 

optimization across various scenarios. 

 

 

VI. RESULTS 

The performance verification based on the Portable Stimuli Standard (PSS) methodology has demonstrated 

substantial advantages for optimizing AI applications on both single-core and multi-core systems. The structured 

approach, beginning with single-core application optimization, established a robust foundation that was later extended 

to multi-core scenarios.  

A key advantage of this methodology is its portability, with cost functions determined at the module level. The 

module approach enabled us to explore a wide number of scenarios and parameters exploiting the quick turnaround 

and simulation time. The next step is applying those learning to single-core and multi-core use cases, enhancing 

flexibility across diverse processing configurations.  

PSS randomization random constrain resolution engine is a powerful tool to quickly adapt the use cases to the 

different configuration e.g.: the size of L1 tiles depends on the L1 memory size, the cost function of the DMA depends 

on the latency in combination with the tile size. 

The performance results for single-core applications were collected from over 146 different tests, each based on a 

different family of NN layer. The presented methodology was used to iteratively optimize scheduling and tiling size 

parameters. With modular cost functions, this phase sought to reduce execution times while maximizing resource 

utilization, systematically tuning each parameter to achieve optimal performance. Measurements taken after each 

iteration were compared against product-level KPIs to ensure alignment with performance goals. Results showed that 

over 95% of the NN layers met or exceeded KPI targets, demonstrating the methodology’s effectiveness. For the 

remaining layers, further manual analysis was needed to resolve specific bottlenecks, requiring waveform debugging 

and adjustments in both software and hardware. Software optimizations included resolving memory bank conflicts in 

Level 1 (L1) memory, implementing cache warm-ups, and inlining C functions. On the hardware side, improvements 

in Level 2 (L2) memory access and Network-on-Chip (NoC) configurations were essential to address constraints of 

certain memory access required for specific kernels.  

After establishing a successful single-core optimization framework, the methodology was extended to multi-core 

use cases. The modular cost function approach proved highly portable, allowing efficient scaling to multi-core 

architectures. Data-level parallelism was employed, where NN layers, particularly convolutional layers, were split 

across multiple cores by dividing the feature map into sub-feature maps, enabling concurrent processing across cores. 

Alternatively, independent NN layers could be distributed to different cores, increasing parallel throughput. Here, the 

modular cost functions could be refined using a histogram-based analysis to account for the bandwidth reduction for 

each core and shared resources conflict. 



Table 1: performance results 

 

Tab. 1 reports some of the results obtained through the testing and the relative results compared to the system KPIs 

for some of the single and multi-care test cases (the name of the kernels is defined using ONNX standard convention). 

The performance of all the tests is meeting or exceeding the system KPIs defined with a certain margin of error. 

The PSS methodology was instrumental not only in verifying performance at the hardware sign-off stage but also 

in defining an optimization strategy for production software. 

 

 

VII Conclusion 

In this work, the Portable Stimuli Standard (PSS) methodology is demonstrated to be a powerful framework to 

optimize, analyze and verify performance of AI applications. The portability of PSS enabling efficient and scalable 

testing from single to multicore systems exploiting the data-level parallelism and workload distribution. This 

structured approach established a clear and efficient path for performance sign-off, meeting the hardware performance 

criteria required for production readiness. Additionally, the results were used to improve the optimization strategy for 

production software, ensuring it was aligned with the hardware’s capabilities. 

The combined insights from this methodology provided a holistic view of performance optimization, effectively 

bridging hardware and software requirements guarantying a smooth transition from verification to deployment and a 

strong foundation for continuous performance improvements and efficient AI application deployment. 

 Beyond AI, this approach is also well-suited to other computationally intensive domains where data processing 

takes precedence over control logic, such as radar, image and audio processing.  
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Kernel name Fmap input number of 

cores 

(exec_time-

KPI)/KPI% 
Conv W<128×512×1×1> + Relu  (512, 135,240) 1 2.43% 

Conv W<256×256×3×3> + Relu  (256, 68, 120) 1 -4.83% 

Conv W<1024×256×1×1> + Add + Relu  (256, 66, 117) 1 -1.01% 

Conv W<64×3×7×7> + BatchNormalization + Relu + Maxpool  (3, 1920, 1080) 1 1.49% 

Matmul B<2048×1001> + Add + Identity + 2 * (Softmax + Identity) (2048, 1, 1) 1 -0.19% 

Conv W<192×32×1×1> + Clip + Conv W<192×1×3×3> + Clip (96, 14, 14) 1 0.26% 

SpaceToDepth + Conv W<32×128×3×3> + Relu +DepthToSpace (32, 128, 512) 1 -1.88% 

Conv W<64×64×3×3> + Relu (64, 180, 320) 2 -3.18% 

Conv W<128×128×1×1> + Relu (128, 535, 127) 8 2.12% 

Conv W<64×64×3×3> + Relu (64, 180, 320) 16 0.39% 
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