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Abstract-In today's large and complex System on a Chip (SoC), timely completion of functional verification is one of 

the most critical challenges and reducing the verification Turn-Around-Time (TAT) is very crucial for a successful SoC 

product development. This paper presents a new UVM code structure with three-level class inheritance. The first- and 

second-level class code can be completely reused without any changes and only the third level class code need to be 

modified according to the target SoC product, ensuring high code reusability. This paper provides an efficient flow for 

complex/composite scenario development that contains: i) scenario definition in the form of metadata; ii) development of 

an interpreter that reads metadata and automatically generates test scenarios. The proposed approach is able to shorten 

the scenario creation time by securing high reusability through test code structure optimization and reduces the 

verification TAT by achieving target coverage with a small number of test scenarios through efficient scenario generation.  

 

I.   INTRODUCTION 

The importance of SoC design verification increases with complex SoC designs. Functional verification 
consumes a great deal of time and manpower, resulting in contributing a major role in the overall Turn-Around Time 

(TAT) of SoC product development. Further, the highly competitive SoC product development in terms of time-to-

market poses a greater challenge in reducing TAT compared to the earlier products. To overcome this, two 

approaches, i) reducing simulation time for performing test scenarios and ii) shortening test scenario development 

period by increasing code reusability, have been researched. This paper focuses on the second approach.  

The Portable Test and Stimulus Standard (PSS) [1], a representative solution based on the second approach, has 

been developed and released by Accellera. PSS is a specification for expressing and creating test scenarios and 

stimulus for reuse in various verification platforms. Several studies [2][3] confirm the effect of code reusability in 
functional verification when using an EDA tool that supports PSS. However, implementing reusable code directly 

during SoC verification with only this kind of tools has the following limitations and they motivated the new 

approach which this paper proposes. 

PSS-EDA tools usually focus on generating test scenarios by combining IP-level data manipulation tasks (or 

sequences). However, in SoC verification, the system-level control operation scenarios are of greater importance 

than the data manipulation scenarios of each SoC component because the majority of the design bugs occur when 

implementing system control logic rather than integrating well-verified IPs. For instance, many EDA tools provide 

ARM architecture library such as cache, DVM, and low power scenarios; the standard interface IP such as PCIe 
library; and system modeling libraries including memories, processors, and more. The “solve” engine then generates 

multiple scenarios based on user-defined constraints like target memory region of the specific source IP or data path 

reachability. This approach enables for the scenario developer to create multiple scenarios and fast coverage closure. 

However, the system control tasks including power and reset control are not provided by default and need to be 

manual coded. As a result, covering combinations of system-control logic and data manipulation paths are tedious. 

In addition, PSS–EDA tools mainly emphasize code reusability across multiple execution platforms such as 

simulator, emulator, and post-silicon. It has the advantage to quickly secure the test scenarios for different platform 

after the scenarios are validated on one platform (typically simulation). On the other hand, it is more vital to secure 
simple test scenarios during the very early bring-up phase by reusing existing code (shift left) and extend them to 

complex/composite ones along with sophisticated system control operation in order to detect design errors at the 

early development stage and consequently shorten the verification TAT. Hence, this paper targets code/scenario 

reusability across multiple products which are built on similar hardware architectures within the same execution 

platform. 

Finally, C-code based tests, the basis for PSS, are time consuming in simulation since they run on real, bulky 

CPUs. For this reason, replacing a real CPU with a transactor is a very common technique in SoC verification. In 
addition, SoC verification is mainly performed using UVM-based SystemVerilog (SV) as it supports pre-defined 

verification components, well-structured code, and superior control interoperation with multiple external events that 

are frequently used in the system control operation scenario. Accordingly, UVM-based test scenario generation 

flows are more valuable than C-code based tests. Recently, many PSS-EDA tools are gradually expanding support 



for UVM-based test scenario generation, but cannot fully exploit the nature of UVM because they still focus more 

on C-based tests to reuse in multiple platforms such as emulation and silicon. 

For the above reasons, this paper proposes a new approach to maximize reusability of UVM test scenarios in SoC 

verification. To begin with, we structurally separate all the data manipulation code that performs IP-specific 
operation and the system-control code such as system resets, low-power control, and general purpose I/O pad 

control, because the former is likely to be reused. Based on this approach we develop a new process to effectively 

combine them and implement complex/composite scenarios. 

Section II describes the code structure that can separate data manipulation and system control based on reusability. 

Section III explains the process to automatically develop complex/composite scenarios based on the well-structured 

code. Finally, section IV and V shows achievements based on the experimental results of products across multiple 

generation and summarizes the proposed methods. 

 
II. PROPOSED CODE STRUCTURE FOR THE NEW APPROACH  

Typically test scenarios are made up of IP functional operation code and system level event/control code parts. 

The IP functional operation code could be the candidate for reusable portion assuming that the same IP could be 

integrated and retargeted to the different SoC products. However, if IP and system code is implemented within the 

same class, it is hard to identify and extract reusable portion of code. This paper proposes a new UVM code 

structure to easily separate IP specific operation part of code in the test sequence from the system control code for 

future reuse. 

SV uses extensive Object-Oriented Programming (OOP) techniques [4] and we have designed a class layering 
code structure based on the role by using inheritance and polymorphism concepts of OOP for code reuse [5]. Fig. 1 

depicts a three-level inheritance code structure by role definition. The first-level is a base class which is composed 

of all the functions of the IP, variables that can activate each function, and all the verification components required 

to activate the target IP (including VIP, interfaces, and so on). The second-level class inherits the first and is 

responsible for enabling the function of the base class. The third-level class inherits the second and connects the 

functions which are enabled in the second-level class to the implemented design and testbench information, e.g. 

target CPU, address map, register handle, and so on. This implies that the first- and second-level classes can be fully 

reused without any modification while the third-level class needs to be modified according to the target chip 
configuration. 
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Figure 1. A three-level inheritance code structure to maximize code reusability  

 

Fig. 2 shows implementation example code for the three-level inheritance structure. The target IP is a UART 

peripheral. It is assumed that the target SoC has four instances of UART and each UART has two functions like TX 



(transmit) and RX (receive). As shown in Fig. 2-(a), the first-level class code implements the SV variables and the 

SV tasks for UART operation. An SV variable maps to an SV function/task and it features a structure that controls 

the variables for the specific operation. For example, enabling m_uart_tx_func variable executes the task 

uart_tx_operation_test. In addition, this class includes all the handles required to stimulate and monitor the UART 
functions. In this example, Verification IP (VIP) which acts as a counter-part of UART, an interface to monitor the 

values to be checked, and register model to program the UART are included. Please note that the actual control of 

the variables is implemented in the second-level class while the handles are mapped in the third-level class. To add 

new functions or change existing functions, it works only in the first class, resulting in localization of code change.  

Fig. 2-(b) is the second-level class code. In this example, the classes corresponding to TX (ip_usi_uart_tx_seq_c) 

and RX (ip_usi_uart_rx_seq_c) UART functions are declared respectively. These classes are embodied into 

sequences to perform the TX/RX operation by enabling the variable declared in the first-level class. As a result, the 

purpose of the second-level class code is to build a sequence class library to be used to make complex and 
composite test scenarios. As shown in Fig. 2-(c), a third-level class code maps the sequence classes defined in the 

second-level code into the target product by using the macro method. As assumed, two function sequences are 

configured for four instances, resulting in eight operation sequences. In this class, the handles of interface, register 

model class, and VIP sequencer class defined in the first-level class are also connected according to the product 

configuration. Code changes that occur according to product configuration, such as the number of IP instances, 

register model, interface connected to hardware hierarchy, and so on, could be localized in the third-level class. By 

using this three-level inheritance code structure, the code changes for each target product can be minimized and the 

first- and second-level code can be fully reused without any modification. 
 

 
(a) The first-level class of UART 

 
(b) The second-level classes of UART 



 
(c) The third-level classes of UART 

Figure 2. Example of the three-level inheritance code structure 

 

As explained earlier, the SoC level test scenarios are implemented by mixing IP-specific and system-control 
operation. For example, the transmit and receive operation of UART should be combined with system reset in the 

middle of transmission and/or after the completion of the transmission. The easiest way to implement any system-

control operation is to directly insert the code into each IP-specific operation code. Although it is a very 

straightforward technique and has advantage to early bring up the test scenarios, it has fatal disadvantages: i) as the 

number of verification entities increases, the same code should be implemented into each target, resulting in code 

size increase, and ii) all the code cannot be reused because the system-control operation code is very product-

dependent. To overcome this limitation, the system-control code can be separated from the IP operation code and 

implemented as a form of standard library, called a “common task” as shown in Fig 3. Now, as each IP operation 
scenario calls system functions from the common task library, the system functions can be reused over different IP 

operation. However, this approach still has a limitation that they can be only reused for the same SoC product. They 

are still hardware implementation dependent and should be modified once they are used in a different product. To 

maximize reusability, we propose a method that uses an Application Programming Interface (API), a software 

programming technique [6]. By encapsulating the common tasks among different products and designing custom 

APIs for general-purpose system control functions, the hardware-dependent portion of code can be hiding and the 

same code can be reused by the different hardware platform. The scenario developers can maintain consistency 

when they use the system functions during implementation of complex test scenarios. 
Fig. 3 presents an example of reusing two system-control functions, system_reset1 and system_reset2 for N 

products which has M IPs. Initially, each system task, system_reset1 and system_reset2, are configured differently 

inside each test scenario. They can be converted in the form of common tasks for each product and can be reused 

within the same product. Finally, the two system reset common tasks are merged into a system reset API which has 

an argument for reset kind, system_reset(kind) for all N products. The API can be reused for all products. Of course, 

the real implementation of the APIs is product dependent and requires modification. Nevertheless, the system 

scenario developer can use the same API without specific information of the hardware implementation. 
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Figure 3. Code structure of system function API 

 
Table 1 shows an example for a part of the system-control function managed using an API. Each system function 

can be called with a pre-defined argument. Suppose that a target SoC is equipped with a Power-on-Reset (POR) and 

two Watchdog-Timer resets. The hardware reset control API can be used like control_hardware_reset (“POR”), 

control_hardware_reset (“WDT0”), and control_hardware_reset (“WDT1”).  

 

Table 1. Example of system function APIs 

 
 

Once the IP function sequences are implemented by using the proposed three-level classes and the APIs for 

system-control functions are ready, the complex system level test scenarios can be written easily by combining them 
together. At the same time, the major portion of test code can be reused without any modification. 

 

III.   INCREASING THE EFFICIENCY OF COMPLEX/COMPOSITE SCENARIO DEVELOPMENT 

Generating and performing complex/composite test scenarios can ensure better quality SoC verification and the 

high efficiency of developing test scenarios definitely shorten SoC verification TAT. This section describes how to 

increase the efficiency of scenario development. The test scenario is implemented after a set of unit sequences is 

ready. Unlike scenarios that consist of only one sequence, complex scenarios that consist of multiple sequences are 

usually developed using a framework [7]. Fig. 4-(a) shows an example of a framework of three sequences that 
operate in serial order. A scenario developer can freely compose these three sequences using various IP functions 

and system tasks depending on requirements. For instance, Test scenario n is composed of IP2 function2, IP5 

function1, and system task3 in Fig. 4-(a). Here, we cannot create scenarios that have more than four sequences or 

have more than two sequences operating at the same time. Additional scenario frameworks are required to develop a 

more complex test scenario and to meet the target coverage of function verification quickly. As the number of 

verification entities and system complexity increase, the number of scenarios also increases because a lot of 

combinations become possible. Or the number of test scenarios may not much increase if we can make a well-

organized scenario framework that can cover many sequence combinations at once. But still, it has a limitation to 
reach the target coverage quickly as we have to go through these steps of configuring test scenarios, creating 

frameworks, and then putting sequences in them.  



We propose a new scenario development flow to overcome it and further efficiently develop a diverse test 

scenario. The most important difference compared to a conventional flow is that scenario developers can abstract a 

test scenario. Once they describe a test scenario with a high level abstraction, then generating a framework and 

mapping a sequences happens at once. Scenario developers pick sequences from the respective repository containing 
IP function sequences and system APIs, and combine them depending on their requirements as shown in Fig. 4-(b). 

So far, they do not have to consider a form of framework at all. A framework including sequences can be generated 

using this scenario description they configured. In this flow, scenario development is much easier than before 

because even complex test scenario can be also generated if they just abstract the sequence flow what they want to 

cover. Furthermore, it is possible to create a much more complex/composite scenario which is composed of arbitrary 

sequence order.  
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(a) Current scenario development flow 
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(b) Proposed scenario development flow 

Figure 4. Scenario development flow 
 

To implement this, we define a metadata syntax and develop an interpreter. Writing a form of metadata 

containing the order of sequences, then the interpreter reads it and generates a framework accordingly. The metadata 

consists of the sequences which come from the third-level classes, system function APIs, and operators. The first 

and second are described in section II. Operators act as a symbol that describes the sequence order. For instance, 
new line means serial order, “&” is for parallel operation, and each sequence which is divided by “;” within “{}” 

operates sequentially. The left side of Fig. 5 shows an example of metadata to construct a complex scenario. The 

sequences seq_a, seq_b, seq_d and seq_e are selected from the third-level IP classes, and task_0 and task_2 are 

chosen from the system function APIs. Combining them, the scenario developer writes a form of metadata. The 

sequences seq_b, seq_c, and seq_d execute sequentially and seq_e and task_1 execute at the same time in the 

example. Like this, metadata makes it easy to generate a framework with an arbitrary sequence order.  



An interpreter that inputs the metadata automatically generates UVM test code. The interpreter creates a frame to 

follow the UVM syntax like a declaration of classes, tasks and variables, then generates a test scenario according to 

the sequence order described in metadata. The right side of Fig. 5 shows the automatically generated UVM test code 

by the interpreter. 
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Figure 5. Using the interpreter to generate a complex/composite scenario 

 

Fig. 6 shows an example of creating a test scenario using the third-level IP classes of UART and a set of system 

function APIs described in Section II. The purpose of the test is to guarantee the functionalities of i) parallel 

operation of all UART instances, ii) sequential operation of them, and iii) system-level and block-wise reset in the 

middle of UART operation. Based on the pre-defined metadata, the required functionalities and their order are easily 

implemented as shown in Fig. 6-(a). The interpreter automatically generates real UVM code after taking the 

metadata as an input. Fig. 6-(b) presents a generated UVM code. This example demonstrates that any complex test 

scenarios can be easily defined by using the metadata without any background knowledge on UVM language and it 
can be implemented automatically, resulting in fast bring-up without any error typically incurred by human coding. 

 

 
(a) Example of metadata 

 



 
(b) Example of automatically generated UVM test code 

Figure 6. Example of creating test scenario using the proposed method 

 
IV. EXPERIMENTAL RESULTS 

This section describes the results and effects of the proposed code structure and scenario generation flow in the 

previous sections. Two automotive SoC products which have been designed on the same architecture platform have 

been verified. The second generation product targets higher performance and is infused with increased complexity 

than the first generation one while having similar functionality. The first generation product was originally verified 

using the conventional method and the existing test scenarios have been re-organized into the proposed three-level 

code structure. The test scenarios of the second generation product are created by re-using the first- and second-level 

classes of the code. Table 2 shows the number of the UVM code lines for each level of classes constituting an 
example block, BLOCK1. The results demonstrated that about 86% of the code in average belong to the reusable 

first- and second class. The test scenarios can be implemented after modifying the remaining 14% of code according 

to the target SoC configuration. 

 

Table 2. Amount of test scenario code for five IPs in BLOCK1 



 
 

After the third-level classes for IP specific operation and the common APIs for various system tasks are ready, a 

set of complex/composite test scenarios have been automatically generated by using the proposed scenario 

generation flow. To check the efficiency of the proposed approach, we compared the number of test scenarios to 

cover the target blocks (BLOCK1~BLOCK4) which are integrated in two products as shown in Table 3. The test 
scenarios for the first generation product have been implemented based on the conventional pre-defined framework. 

Those for the second generation product have been generated after defining a set of arbitrary sequence framework 

using the meta-data. The results show that the same coverage can be reached with only 13% of total number of test 

scenarios and 87% of test scenarios can be reduced. 

 

Table 3. Number of scenarios to test four blocks of two generation products 

 
 

As a result, all UVM code making up the total test scenarios can be classified as three categories: i) reusable class 

of code (the first- and second-class of code); ii) non-reusable class of code (the third-class of code in the repository); 

and iii) the test scenario class which are automatically generated by the interpreter. Table 4 presents the portion of 

each code category. The results show that around 88% of total code can be fully reused without any modification 
and automatically generated. By editing the remaining 14% of code lines, all the test scenario writing step can be 

completed and this can dramatically increase the productivity and efficiency of the verification process. 

 

Table 4. Code amount of test scenarios for four blocks of the second generation product 

 
 

In conclusion, it is possible to secure many IP functional operation test scenarios at the very early SoC design 

phase and increase the maturity of the design within a short period of verification process. The diverse test scenarios 
combining lots of sequences/tasks also help to find any complex design bugs and complete the whole verification 

process within the given verification time budget. 

 

V. SUMMARY 

This paper intends to reduce verification time by optimizing the UVM test code structure and improving the 

composite/complex scenario efficiency. We propose a three-level inheritance code structure to maximize code 

reusability and a new scenario development flow that contains the scenario definition in the form of metadata and an 

interpreter to automatically generate test scenarios using the defined metadata. Experimental results demonstrate 
86% code reusability when applied to the two generation products and show a decrease in the total number of 



scenarios up to 87%, while maintaining the same verification quality compared to the product that did not use the 

proposed scenario development flow. 
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