
Strategies to Maximize Reusability of UVM

Test Scenarios in SoC Verification

Hyeonman Park, Namyoung Kim, Kyoungmin Lee, Hongkyu Kim, Jaein Hong, Kiseok Bae
Samsung Electronics Inc., 1-1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18488, Korea

Abstract-In today's large and complex System on a Chip (SoC), timely completion of functional verification is one of

the most critical challenges and reducing the verification Turn-Around-Time (TAT) is very crucial for a successful SoC

product development. This paper presents a new UVM code structure with three-level class inheritance. The first- and

second-level class code can be completely reused without any changes and only the third level class code need to be

modified according to the target SoC product, ensuring high code reusability. This paper provides an efficient flow for

complex/composite scenario development that contains: i) scenario definition in the form of metadata; ii) development of

an interpreter that reads metadata and automatically generates test scenarios. The proposed approach is able to shorten

the scenario creation time by securing high reusability through test code structure optimization and reduces the

verification TAT by achieving target coverage with a small number of test scenarios through efficient scenario generation.

I. INTRODUCTION

The importance of SoC design verification increases with complex SoC designs. Functional verification
consumes a great deal of time and manpower, resulting in contributing a major role in the overall Turn-Around Time

(TAT) of SoC product development. Further, the highly competitive SoC product development in terms of time-to-

market poses a greater challenge in reducing TAT compared to the earlier products. To overcome this, two

approaches, i) reducing simulation time for performing test scenarios and ii) shortening test scenario development

period by increasing code reusability, have been researched. This paper focuses on the second approach.

The Portable Test and Stimulus Standard (PSS) [1], a representative solution based on the second approach, has

been developed and released by Accellera. PSS is a specification for expressing and creating test scenarios and

stimulus for reuse in various verification platforms. Several studies [2][3] confirm the effect of code reusability in
functional verification when using an EDA tool that supports PSS. However, implementing reusable code directly

during SoC verification with only this kind of tools has the following limitations and they motivated the new

approach which this paper proposes.

PSS-EDA tools usually focus on generating test scenarios by combining IP-level data manipulation tasks (or

sequences). However, in SoC verification, the system-level control operation scenarios are of greater importance

than the data manipulation scenarios of each SoC component because the majority of the design bugs occur when

implementing system control logic rather than integrating well-verified IPs. For instance, many EDA tools provide

ARM architecture library such as cache, DVM, and low power scenarios; the standard interface IP such as PCIe
library; and system modeling libraries including memories, processors, and more. The “solve” engine then generates

multiple scenarios based on user-defined constraints like target memory region of the specific source IP or data path

reachability. This approach enables for the scenario developer to create multiple scenarios and fast coverage closure.

However, the system control tasks including power and reset control are not provided by default and need to be

manual coded. As a result, covering combinations of system-control logic and data manipulation paths are tedious.

In addition, PSS–EDA tools mainly emphasize code reusability across multiple execution platforms such as

simulator, emulator, and post-silicon. It has the advantage to quickly secure the test scenarios for different platform

after the scenarios are validated on one platform (typically simulation). On the other hand, it is more vital to secure
simple test scenarios during the very early bring-up phase by reusing existing code (shift left) and extend them to

complex/composite ones along with sophisticated system control operation in order to detect design errors at the

early development stage and consequently shorten the verification TAT. Hence, this paper targets code/scenario

reusability across multiple products which are built on similar hardware architectures within the same execution

platform.

Finally, C-code based tests, the basis for PSS, are time consuming in simulation since they run on real, bulky

CPUs. For this reason, replacing a real CPU with a transactor is a very common technique in SoC verification. In
addition, SoC verification is mainly performed using UVM-based SystemVerilog (SV) as it supports pre-defined

verification components, well-structured code, and superior control interoperation with multiple external events that

are frequently used in the system control operation scenario. Accordingly, UVM-based test scenario generation

flows are more valuable than C-code based tests. Recently, many PSS-EDA tools are gradually expanding support

for UVM-based test scenario generation, but cannot fully exploit the nature of UVM because they still focus more

on C-based tests to reuse in multiple platforms such as emulation and silicon.

For the above reasons, this paper proposes a new approach to maximize reusability of UVM test scenarios in SoC

verification. To begin with, we structurally separate all the data manipulation code that performs IP-specific
operation and the system-control code such as system resets, low-power control, and general purpose I/O pad

control, because the former is likely to be reused. Based on this approach we develop a new process to effectively

combine them and implement complex/composite scenarios.

Section II describes the code structure that can separate data manipulation and system control based on reusability.

Section III explains the process to automatically develop complex/composite scenarios based on the well-structured

code. Finally, section IV and V shows achievements based on the experimental results of products across multiple

generation and summarizes the proposed methods.

II. PROPOSED CODE STRUCTURE FOR THE NEW APPROACH

Typically test scenarios are made up of IP functional operation code and system level event/control code parts.

The IP functional operation code could be the candidate for reusable portion assuming that the same IP could be

integrated and retargeted to the different SoC products. However, if IP and system code is implemented within the

same class, it is hard to identify and extract reusable portion of code. This paper proposes a new UVM code

structure to easily separate IP specific operation part of code in the test sequence from the system control code for

future reuse.

SV uses extensive Object-Oriented Programming (OOP) techniques [4] and we have designed a class layering
code structure based on the role by using inheritance and polymorphism concepts of OOP for code reuse [5]. Fig. 1

depicts a three-level inheritance code structure by role definition. The first-level is a base class which is composed

of all the functions of the IP, variables that can activate each function, and all the verification components required

to activate the target IP (including VIP, interfaces, and so on). The second-level class inherits the first and is

responsible for enabling the function of the base class. The third-level class inherits the second and connects the

functions which are enabled in the second-level class to the implemented design and testbench information, e.g.

target CPU, address map, register handle, and so on. This implies that the first- and second-level classes can be fully

reused without any modification while the third-level class needs to be modified according to the target chip
configuration.

First level class

Second-level class

Set Variable_A

Third-level class

First-level class

Variable_A

Function_0 Function_1

Second-level class

Third-level class

. . .
Call Function_0

Connect handles to actual instance
(interface, sequencer, register model, etc)

Connect handles to actual instance
(interface, sequencer, register model, etc)

VIP sequencer class handle

IP interface handle

Variable_B Variable_C Variable_D

Function_2 Function_3

IP register model class handle

Set Variable_D Call Function_3

. . .

Figure 1. A three-level inheritance code structure to maximize code reusability

Fig. 2 shows implementation example code for the three-level inheritance structure. The target IP is a UART

peripheral. It is assumed that the target SoC has four instances of UART and each UART has two functions like TX

(transmit) and RX (receive). As shown in Fig. 2-(a), the first-level class code implements the SV variables and the

SV tasks for UART operation. An SV variable maps to an SV function/task and it features a structure that controls

the variables for the specific operation. For example, enabling m_uart_tx_func variable executes the task

uart_tx_operation_test. In addition, this class includes all the handles required to stimulate and monitor the UART
functions. In this example, Verification IP (VIP) which acts as a counter-part of UART, an interface to monitor the

values to be checked, and register model to program the UART are included. Please note that the actual control of

the variables is implemented in the second-level class while the handles are mapped in the third-level class. To add

new functions or change existing functions, it works only in the first class, resulting in localization of code change.

Fig. 2-(b) is the second-level class code. In this example, the classes corresponding to TX (ip_usi_uart_tx_seq_c)

and RX (ip_usi_uart_rx_seq_c) UART functions are declared respectively. These classes are embodied into

sequences to perform the TX/RX operation by enabling the variable declared in the first-level class. As a result, the

purpose of the second-level class code is to build a sequence class library to be used to make complex and
composite test scenarios. As shown in Fig. 2-(c), a third-level class code maps the sequence classes defined in the

second-level code into the target product by using the macro method. As assumed, two function sequences are

configured for four instances, resulting in eight operation sequences. In this class, the handles of interface, register

model class, and VIP sequencer class defined in the first-level class are also connected according to the product

configuration. Code changes that occur according to product configuration, such as the number of IP instances,

register model, interface connected to hardware hierarchy, and so on, could be localized in the third-level class. By

using this three-level inheritance code structure, the code changes for each target product can be minimized and the

first- and second-level code can be fully reused without any modification.

(a) The first-level class of UART

(b) The second-level classes of UART

(c) The third-level classes of UART

Figure 2. Example of the three-level inheritance code structure

As explained earlier, the SoC level test scenarios are implemented by mixing IP-specific and system-control
operation. For example, the transmit and receive operation of UART should be combined with system reset in the

middle of transmission and/or after the completion of the transmission. The easiest way to implement any system-

control operation is to directly insert the code into each IP-specific operation code. Although it is a very

straightforward technique and has advantage to early bring up the test scenarios, it has fatal disadvantages: i) as the

number of verification entities increases, the same code should be implemented into each target, resulting in code

size increase, and ii) all the code cannot be reused because the system-control operation code is very product-

dependent. To overcome this limitation, the system-control code can be separated from the IP operation code and

implemented as a form of standard library, called a “common task” as shown in Fig 3. Now, as each IP operation
scenario calls system functions from the common task library, the system functions can be reused over different IP

operation. However, this approach still has a limitation that they can be only reused for the same SoC product. They

are still hardware implementation dependent and should be modified once they are used in a different product. To

maximize reusability, we propose a method that uses an Application Programming Interface (API), a software

programming technique [6]. By encapsulating the common tasks among different products and designing custom

APIs for general-purpose system control functions, the hardware-dependent portion of code can be hiding and the

same code can be reused by the different hardware platform. The scenario developers can maintain consistency

when they use the system functions during implementation of complex test scenarios.
Fig. 3 presents an example of reusing two system-control functions, system_reset1 and system_reset2 for N

products which has M IPs. Initially, each system task, system_reset1 and system_reset2, are configured differently

inside each test scenario. They can be converted in the form of common tasks for each product and can be reused

within the same product. Finally, the two system reset common tasks are merged into a system reset API which has

an argument for reset kind, system_reset(kind) for all N products. The API can be reused for all products. Of course,

the real implementation of the APIs is product dependent and requires modification. Nevertheless, the system

scenario developer can use the same API without specific information of the hardware implementation.

IP1 Test Scenario

IP1:FUNC1

IP1:FUNCL

IP1:PROD1_system_reset1

IP1:PROD1_system_reset2

PRODUCT1

IPM Test Scenario

IPM:FUNC1

IPM:FUNCL

IPM:PROD1_system_reset1

IPM:PROD1_system_reset2

IP1 Test Scenario

IP1:FUNC1

IP1:FUNCL

IP1:PRODN_system_reset1

IP1:PRODN_system_reset2

PRODUCTN

IPM Test Scenario

IPM:FUNC1

IPM:FUNCL

IPM:PRODN_system_reset1

IPM:PRODN_system_reset2

PROD1_system_reset1

PROD1_system_reset2

PRODN_system_reset1

PRODN_system_reset2

system_reset(kind)

API
Common task Common task

...

...

...

...

...

...

...

System scenario
developer

Figure 3. Code structure of system function API

Table 1 shows an example for a part of the system-control function managed using an API. Each system function

can be called with a pre-defined argument. Suppose that a target SoC is equipped with a Power-on-Reset (POR) and

two Watchdog-Timer resets. The hardware reset control API can be used like control_hardware_reset (“POR”),

control_hardware_reset (“WDT0”), and control_hardware_reset (“WDT1”).

Table 1. Example of system function APIs

Once the IP function sequences are implemented by using the proposed three-level classes and the APIs for

system-control functions are ready, the complex system level test scenarios can be written easily by combining them
together. At the same time, the major portion of test code can be reused without any modification.

III. INCREASING THE EFFICIENCY OF COMPLEX/COMPOSITE SCENARIO DEVELOPMENT

Generating and performing complex/composite test scenarios can ensure better quality SoC verification and the

high efficiency of developing test scenarios definitely shorten SoC verification TAT. This section describes how to

increase the efficiency of scenario development. The test scenario is implemented after a set of unit sequences is

ready. Unlike scenarios that consist of only one sequence, complex scenarios that consist of multiple sequences are

usually developed using a framework [7]. Fig. 4-(a) shows an example of a framework of three sequences that
operate in serial order. A scenario developer can freely compose these three sequences using various IP functions

and system tasks depending on requirements. For instance, Test scenario n is composed of IP2 function2, IP5

function1, and system task3 in Fig. 4-(a). Here, we cannot create scenarios that have more than four sequences or

have more than two sequences operating at the same time. Additional scenario frameworks are required to develop a

more complex test scenario and to meet the target coverage of function verification quickly. As the number of

verification entities and system complexity increase, the number of scenarios also increases because a lot of

combinations become possible. Or the number of test scenarios may not much increase if we can make a well-

organized scenario framework that can cover many sequence combinations at once. But still, it has a limitation to
reach the target coverage quickly as we have to go through these steps of configuring test scenarios, creating

frameworks, and then putting sequences in them.

We propose a new scenario development flow to overcome it and further efficiently develop a diverse test

scenario. The most important difference compared to a conventional flow is that scenario developers can abstract a

test scenario. Once they describe a test scenario with a high level abstraction, then generating a framework and

mapping a sequences happens at once. Scenario developers pick sequences from the respective repository containing
IP function sequences and system APIs, and combine them depending on their requirements as shown in Fig. 4-(b).

So far, they do not have to consider a form of framework at all. A framework including sequences can be generated

using this scenario description they configured. In this flow, scenario development is much easier than before

because even complex test scenario can be also generated if they just abstract the sequence flow what they want to

cover. Furthermore, it is possible to create a much more complex/composite scenario which is composed of arbitrary

sequence order.

Test scenario 0

IP0 function0

System task0

IP0 function0

Test scenario 1

IP3 function4

IP3 function8

IP4 function2

Test scenario n

IP2 function2

IP5 function1

System task3

…

(a) Current scenario development flow

Repository of
IP(n) sequences

Repository of
…

Repository of
IP(0) sequences

IP0 function0

IP0 function1

Pick sequences/tasks
Compose scenario

IP0 function2

…

Test scenario

IP0 function0 IP1 function0 IP2 function2

…

Repository of
system tasks

System task0

System task1

System task2

System taskn

System task4

System task3 IP4 function3

IPn functionm

(b) Proposed scenario development flow

Figure 4. Scenario development flow

To implement this, we define a metadata syntax and develop an interpreter. Writing a form of metadata

containing the order of sequences, then the interpreter reads it and generates a framework accordingly. The metadata

consists of the sequences which come from the third-level classes, system function APIs, and operators. The first

and second are described in section II. Operators act as a symbol that describes the sequence order. For instance,
new line means serial order, “&” is for parallel operation, and each sequence which is divided by “;” within “{}”

operates sequentially. The left side of Fig. 5 shows an example of metadata to construct a complex scenario. The

sequences seq_a, seq_b, seq_d and seq_e are selected from the third-level IP classes, and task_0 and task_2 are

chosen from the system function APIs. Combining them, the scenario developer writes a form of metadata. The

sequences seq_b, seq_c, and seq_d execute sequentially and seq_e and task_1 execute at the same time in the

example. Like this, metadata makes it easy to generate a framework with an arbitrary sequence order.

An interpreter that inputs the metadata automatically generates UVM test code. The interpreter creates a frame to

follow the UVM syntax like a declaration of classes, tasks and variables, then generates a test scenario according to

the sequence order described in metadata. The right side of Fig. 5 shows the automatically generated UVM test code

by the interpreter.

Scenario file (Metadata)

seq_a
{seq_b; seq_c; seq_d} & task_0
seq_e & task_1
task_2

…

class complex_scenario_A
….
task body

seq_a.start()
fork

begin
seq_b.start()
seq_c.start()
seq_d.start()

end
begin

task_0()
end

join
…

task_2()
…
endtask
…
endclass

Complex/composite
Scenario Developer

Generated UVM CodeInterpreter

seq_a

seq_b

seq_c

seq_d

task_0

seq_e task_1

task_2

System function APIsThird-level IP classes

class seq_a
…..

endclass

class seq_a
…..

endclass

class seq_a
…..

endclass

class seq_a
…..

endclass

class seq_a
…..

endclass class seq_a
…..

endclass

class seq_a
…..

endclass

class seq_a
…..

endclass

class seq_a
…..

endclass

task task_0
…..

endtask

Figure 5. Using the interpreter to generate a complex/composite scenario

Fig. 6 shows an example of creating a test scenario using the third-level IP classes of UART and a set of system

function APIs described in Section II. The purpose of the test is to guarantee the functionalities of i) parallel

operation of all UART instances, ii) sequential operation of them, and iii) system-level and block-wise reset in the

middle of UART operation. Based on the pre-defined metadata, the required functionalities and their order are easily

implemented as shown in Fig. 6-(a). The interpreter automatically generates real UVM code after taking the

metadata as an input. Fig. 6-(b) presents a generated UVM code. This example demonstrates that any complex test

scenarios can be easily defined by using the metadata without any background knowledge on UVM language and it
can be implemented automatically, resulting in fast bring-up without any error typically incurred by human coding.

(a) Example of metadata

(b) Example of automatically generated UVM test code

Figure 6. Example of creating test scenario using the proposed method

IV. EXPERIMENTAL RESULTS

This section describes the results and effects of the proposed code structure and scenario generation flow in the

previous sections. Two automotive SoC products which have been designed on the same architecture platform have

been verified. The second generation product targets higher performance and is infused with increased complexity

than the first generation one while having similar functionality. The first generation product was originally verified

using the conventional method and the existing test scenarios have been re-organized into the proposed three-level

code structure. The test scenarios of the second generation product are created by re-using the first- and second-level

classes of the code. Table 2 shows the number of the UVM code lines for each level of classes constituting an
example block, BLOCK1. The results demonstrated that about 86% of the code in average belong to the reusable

first- and second class. The test scenarios can be implemented after modifying the remaining 14% of code according

to the target SoC configuration.

Table 2. Amount of test scenario code for five IPs in BLOCK1

After the third-level classes for IP specific operation and the common APIs for various system tasks are ready, a

set of complex/composite test scenarios have been automatically generated by using the proposed scenario

generation flow. To check the efficiency of the proposed approach, we compared the number of test scenarios to

cover the target blocks (BLOCK1~BLOCK4) which are integrated in two products as shown in Table 3. The test
scenarios for the first generation product have been implemented based on the conventional pre-defined framework.

Those for the second generation product have been generated after defining a set of arbitrary sequence framework

using the meta-data. The results show that the same coverage can be reached with only 13% of total number of test

scenarios and 87% of test scenarios can be reduced.

Table 3. Number of scenarios to test four blocks of two generation products

As a result, all UVM code making up the total test scenarios can be classified as three categories: i) reusable class

of code (the first- and second-class of code); ii) non-reusable class of code (the third-class of code in the repository);

and iii) the test scenario class which are automatically generated by the interpreter. Table 4 presents the portion of

each code category. The results show that around 88% of total code can be fully reused without any modification
and automatically generated. By editing the remaining 14% of code lines, all the test scenario writing step can be

completed and this can dramatically increase the productivity and efficiency of the verification process.

Table 4. Code amount of test scenarios for four blocks of the second generation product

In conclusion, it is possible to secure many IP functional operation test scenarios at the very early SoC design

phase and increase the maturity of the design within a short period of verification process. The diverse test scenarios
combining lots of sequences/tasks also help to find any complex design bugs and complete the whole verification

process within the given verification time budget.

V. SUMMARY

This paper intends to reduce verification time by optimizing the UVM test code structure and improving the

composite/complex scenario efficiency. We propose a three-level inheritance code structure to maximize code

reusability and a new scenario development flow that contains the scenario definition in the form of metadata and an

interpreter to automatically generate test scenarios using the defined metadata. Experimental results demonstrate
86% code reusability when applied to the two generation products and show a decrease in the total number of

scenarios up to 87%, while maintaining the same verification quality compared to the product that did not use the

proposed scenario development flow.

ACKNOWLEDGMENT
We would like to thank Mijung Noh, Corporate Vice-President, Samsung Electronics, for the support and

encouragement in publication of our result. We would also like to thank Conextt Inc., Silverchips Inc., and

Wizonetech Inc. for co-working with us for the implementation of IP scenarios based on the proposed three-level

code structure.

REFERENCES
[1] Accellera, Portable Test and Stimulus, Version 1.0, (June 2018); https://accellera.org/downloads/standards/portable-stimulus
[2] Dayoung Kim, Jaehun Lee, and Daeseo Cha, “Post-Silicon Performance Validation Using PSS”, DVCon US 2020.

[3] Suresh Vasu, Nithin Venkatesh, and Joydeep Maitra, “Media Performance Validation in Emulation and Post Silicon Using Portable Stimulus
Standard”, DVCon US 2021.

[4] SystemVerilog, https://en.wikipedia.org/wiki/SystemVerilog
[5] Inheritance (object-oriented programming), https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)

[6] API, https://en.wikipedia.org/wiki/API
[7] Framework, https://en.wikipedia.org/wiki/Software_framework

https://accellera.org/downloads/standards/portable-stimulus
https://en.wikipedia.org/wiki/SystemVerilog
https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Software_framework

