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Abstract— New functional verification models are introduced from the random stimulus, functional 

coverage, assertions, and UVM on the Analog to Digital Converter (ADC) and Digital to Analog Converter 

devices, to ensure that the modeled ADC/DAC devices are designed correctly according to the system 

specifications and requirements. 

 

I.   INTRODUCTION 

 

As waiting for the completion of the analog transistor level could extend the time to market for the digital 

verification engineers to ensure that both the analog and the digital systems will function properly when they are 

connected, the functional verification of the analog devices that are modeled using the Real Number Modeling 

(RNM) has become a crucial step of the mixed-signal SoC's validation. The use of the RNM has four benefits.  

▪ The first one is that the Real Number Models are faster than SPICE and VERILOG-AMS electrical models.  
▪ The second advantage is that the Real Number Models are more accurate than the purely digital model and 

there are a lot of modeling techniques that provide a higher accuracy, and the output could be much 

equivalent to the output from the transistor netlist [1], [2]. 

▪ The third advantage, the RNMs are Top-Down models where the verification starts without finishing the 

schematic. Furthermore, because they are reuse models, the only significant changes to the same model 

analog block are in its parameters.  

▪ The fourth advantage is in the top-level System-on-Chip (SoC) verification where the engineers can 

represent all the electrical signals as RNM equivalents and stay within the digital simulation environment 

[3],[4].  

The third and fourth advantages will be the main emphasis of the paper study, which will build on the work in 

[1], [2] that addresses the first and second advantages. The precision of the analog simulated signals in the digital 
environment is also increased by new techniques for modeling the analog devices, as explained in [1]. Therefore, the 

functional verification could start without finishing the analog schematics. There is no need to wait until finishing 

the analog devices transistor level, to verify the system design.  

 

 
 

  Figure 1. Pros of RNM 

 

The paper contributes with new functional verification models from random stimulus, functional coverage, 

assertions, and UVM on the Analog-Digital Converter (ADC)/Digital-Analog Converter (DAC) to ensure the 

functionality of the modeled ADC/DAC. Moreover, there are methods presented in each verification model that 
increase the verification accuracy according to the system specification and requirements. Therefore, the digital 

verification engineer will have precious RNM models for the analog devices and variety of the functional 

verification methods on these RNM models. All of these will be helpful when the mixed devices, the analog and 

digital devices, are get connected on the transistor level as the high accuracy of modeling and functional verification 

in the digital environment will reduce the existence of bugs regarding the functionality of both devices’ connection 

together and the data flow through the boundaries of mixed devices connectivity. 

• More accurate than a pure logic model (0,1) 

• RNM constructs to increase accuracy 

• Start verification without finished schematics 
• Reuse models Top-Down 

Speed 
• 10X – 1000X faster than SPICE 

• 10X – 100X faster than Verilog-AMS electrical 

Accuracy 

• Single Simulator 
• Leverage existing digital tools & flows 
 
 

Ease of use 
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II.   FUNCTIONAL VERIFICATION 

 

A. Randomization 

a. Randomization as modeling mismatch effects 

Devices like the Flash_analog_to_digital converter (ADC) can have a random mismatch in the resistive 

divider block.  This will result that the voltage at each node of the resistive divider will change. The change can 

be modeled using the randomization of the reference voltages. Or any device that divides the reference voltage 

or current through a string of components. Writing constraints can be set, in accordance with the limits of 

mismatches within the specified block which may be expected from the System-Level engineers to avoid 

exceeding these limits. Then analyze the outputs to ensure that the block functionality is working correctly, and 

the driven output values are those expected. Another one might have thought to write the constraints without 

any limits because the verification engineer was unable to determine the maximum amount of mismatch in the 

randomized signal. However, after debugging, the verification engineer was able to determine the maximum 

amount of the mismatch needed to maintain the proper output values. As an additional higher order of thought, 

the verification engineer may be able to determine the limit of mismatching in accordance with which the 

constraints are written; however, on occasion, the verification engineer may also harden the limit of mismatch to 
illustrate the potential consequences for the system and the extent to which it may be functionally flawed.  

 

Figure 2(a). illustrates a resistive divider that could have a voltage mismatch at each node due to its 

component mismatch. The constraint is written such that the input analog reference voltage will have the 

quantization noise added or subtracted from it as if the signal exceeds the quantization noise, the output of the 

ADC will give an error code as illustrated in Figure 2(b). The worst quantization noise is equal to (
∆

2
) where (∆) 

is equal to (
𝑉𝑟𝑒𝑓

2𝑛 ) and n is the number of levels of conversion [5].   

 

 
 

Figure 2. (a) The voltage node of a resistive divider (b) The transfer function of ADC 

 
class rand_vref #( 

      real AVDD = 2.5, // High Supply   

      int n = 3,       // Resolution (Accuracy) 

      int n_levels = $pow(2,n), // Number levels of conversion  

      real delta = AVDD / n_levels; 

       

      rand real VREF; 

      constraint c_VREF {VREF inside {[AVDD - (delta/2) : AVDD + (delta/2)]};}; 

endclass: rand_vref 

 

Listing 1. SV class provides randomization constraints on reference voltage 



Moreover, the randomization can model the voltage variation in the supply high voltage (AVDD) and the 

supply low voltage (AGND). The variations in the supply voltage are modelled to make the chips work after 

fabrication in all the possible conditions as there are a lot of reasons that could make the supply voltage to 

variate.  

 
class rand_supply #( 

       real P_TOL = 0.1, // Positive Tolerance 

       real N_TOL = 0.1, // Negative Tolerance 

       real T_AVDD = 1.0, // Typical AVDD 

       real T_AGND = 0.0); // Typical AGND 

 

       rand real AVDD; 

       rand real AGND; 

 

       constraint c_AVDD {AVDD inside {[ (T_AVDD-N_TOL) : (T_AVDD+P_TOL) ]}; }; 

       constraint c_AGND {AGND dist {T_AGND:/10, [P_TOL/100:P_TOL]:/100};}; 

endclass: rand_supply 

 

Listing 2. SV class provides randomization constraints on supply voltages tolerance 

 

a. Randomization of Input Real/logic signals 

 

The input real signal can have a form of DC value, sine/cosine wave, triangular, sawtooth, or noisy signal. 

All the previous signals can be modeled as their functionality. In verification, it’s preferred to generate the real 

input values as a range of the randomized real data and track the output to ensure the functionality of the system 

is observed. The input real voltage signal will act as an input to the ADC. 
 

rand real vin; 

 

constraint c_vin {vin inside {[-2.5:-0.1] , [0.1:2.5]}; } // Avoiding pure "zero" 

constraint c_vin {vin dist {0.0:/5 , [0.1:12]:/50, [-12:-0.1]:/50};}   

                                                   //Without Avoiding pure "zero" 

 

Listing 3. Randomization constraints on input real voltage 

 

The input logic signal can be randomized between any value of the start digital code (0) to the end digital 

code (2𝑛 − 1). Or can be randomized sequentially by starting from the first digital code (0) and increasing by 

the next digital code until reach the last digital code. (0 → 1 → 2 → 3 …. → 2𝑛 − 1). The input digital code 

will act as an input to the DAC. 

 
parameter n = 3;  

rand logic [n-1:0] q; 

 

constraint c_q {q inside {[0:((2**n)-1)]}; }  

                      // randomize the digital code within a range 

int count=0; 

constraint q_c { 

    if (count <= ((2**n)-1)) { 

        q == count ; 

    } else { 

        q == 0; 

    } 

 }                  // randomize the digital code with a defined step 

 

 function void post_randomize; 

   $display("count = %0d",count); 

   count++; 

 endfunction 

 

Listing 4. Randomization constraints on input digital code 



B. Functional Coverage 

Cover an interval of the electrical signal from its low to high amplitude value. The low amplitude could be zero, 

-ve real analog value, or the low supply value as the ADC input (or the randomized input to ADC), or any modeled 

electrical signal that its value covers a range of real amplitude datatype. The automatic number of the bins is defined 

according to the ‘real_interval’ that passed as a ‘type_option’ and divided according to the number of real values. 
Which means, once a bin is created for a value then not another bin is created for this value even if the value is 

repeated within a different range or declared as a separate value. 
 

        // COVERAGE VOLTAGE VALUES WITHIN A CERTAIN RANGE 

        real min_a = 0.1; // minimum amplitude  

        real max_a = 2.5; // maximum amplitude 

  

        covergroup V_COV @(vout_load); 

                option.per_instance = 1; 

                coverpoint vout_load { 

                        type_option.real_interval = 1E-1; 

                        bins v [] = {[min_a:max_a], min_a, max_a}; 

                } 

        endgroup: V_COV 

 

Listing 5. Cover an electrical signal 

 

Table 1. Bins creation 

type_option.real_interval = x  

bins  values Coverage status 

[min_a : min_a + x] covers values between min_a to 

(min_a + x) and the specific value 

min_a if it’s existed 

 

[min_a + x : min_a + 2x] covers values between min_a + x to 
min_a + 2x and the specific value 

min_a + x if it’s existed 

[min_a + 2x : min_a + 

3x] 

covers values between min_a + 2x to 

min_a + 3x and the specific value 

min_a + 2x if it’s existed 

… … 

[max_a – 2x : max_a – x] covers values between max_a – 2x to 

max_a – x and the specific value 

max_a – 2x if it’s existed 

[max_a – x : max_a] covers values between max_a – x to 

max_a and the specific value max_a – 

x if it’s existed 

[max_a] covers specific value max_a if it’s 

existed 

 

From Figure 3, the maximum value of the signal ‘vin’ is 2.49782. For that the bin ‘vin[2.5]’ is not hit. 

 

 
 

Figure 3. VIN values 



C. Assertions/Checkers 

a. Assertion on a relation between I/O ports 

Asserting a relation between the output and input signal, helps verifying the functionality of the whole 

system. For example, the ADC converts an analog input signal to a digital-level code corresponding to the ADC 
resolution (Accuracy). The accuracy of the conversion increases as the number of conversion levels increases. 

This can be implemented by declaring a delta variable which is the difference between two levels of conversion. 

As the number of levels increases, the smaller will be the delta and the more accuracy will be. The number of 

levels is defined by an (n)-parameter where the number of levels is equal to (2**n) and the delta is equal to the 

high supply voltage (vsup) divided by the number of levels (2**n). Therefore, the relation between the analog 

input and digital output could be simply expressed as the following equation [6].  

 

𝐿𝑜𝑔𝑖𝑐 (𝑜𝑢𝑡𝑝𝑢𝑡) =  ⌊
𝑅𝑒𝑎𝑙 (𝑖𝑛𝑝𝑢𝑡)

𝑑𝑒𝑙𝑡𝑎
⌋  Where, 𝑑𝑒𝑙𝑡𝑎 =

𝑣𝑠𝑢𝑝

2𝑛
. (1) 

 
// PARAMETERS  

        parameter n = 3;  // 

        parameter real nlevels = $pow(2,n); // number levels of conversion 

         

// VARIABLES  

        real vsuplow = 0; // low supply voltage  

        real delta;       // step of converter 

        reg [n-1:0] q;    // output code of ADC 

 

// ASSIGNATION 

  always @(VSUP) 

        delta = VSUP / nlevels; // vsup is supply voltage or full scale voltage 

                                // vsup is considered as an input to converter 

   

  always @(VIN) begin 

    if (VIN >= vsuplow && VIN < delta) q = '0; 

    else if (VIN >= ((nlevels-1)*delta) && VIN <= VSUP)  q = '1; 

    else if (VIN >= delta && VIN < ((nlevels-1)*delta))  q = $floor(VIN / delta); 

  end 

 

// ASSERTION 

    ADC: assert property (@(VIN) ((VIN >= vsuplow) && (VIN <= VSUP)) |-> Q == q); 

 

Listing 6. SV code for verifying the ADC functionality 

 
The above SV code can have a little bit of enhancement to model the mismatch within (vsup) using the 

constraint randomization. Moreover, most ADCs have a sample and hold circuit between the input and the ADC 

sub-block. Therefore, the assertion property will depend on the clock signal.  

 
// VARIABLES  

        real clk_period = 2; 

 

// ASSIGNATION   

    always @(VIN) begin 

        if (VIN >= vsuplow && VIN < delta) #(clk_period) q = '0; 

        else if (VIN >= ((nlevels-1)*delta) && VIN <= VSUP) #(clk_period) q = '1; 

        else if (VIN >= delta && VIN < ((nlevels-1)*delta)) #(clk_period)  

                                                         q = $floor(VIN / delta);                                                                

    end 

 

   ADC: assert property (@(posedge CLK) ((VIN >= vsuplow) && (VIN <= VSUP))  

                                                                    |-> Q == q); 

 
Listing 7. Modified SV code for verifying the ADC functionality 



The output logic signal Q[2:0] is modeled according to a specific ADC topology which is the 

FLASH_ADC as illustrated in Figure 4. While q[2:0] is a generic expression of the ADC functionality between 

the output and input signals. Therefore, the assertion (ADC_ASSERT) is verifying that the FLASH_ADC is 

passed (P) when the expected functionality of ADC is observed. 

 

 

 

Figure 4. FLASH ADC 
 

Figure 5. illustrates the randomization in the VIN (input real voltage to ADC) and VSUP (input real supply 

voltage to ADC). The delta value is changed according to the value of VSUP. The assertion (ADC_ASSERT) 

verifies that the FLASH_ADC is passed (P) when the expected functionality of ADC is observed.  

 

 

Figure 5. The assertion of ADC 

 

 Notice:  

▪ The ‘VIN’ and ‘VSUP’ signals, that are mentioned in Listing 6,7, and Figure 5, are declared in listing 1 

& 3 respectively. 

▪ The ‘vref’ and ‘VSUP’ signals, are the same. Both signals mean the supply voltage or full-scale 

voltage.  

▪ The ‘Q[2:0]’, is the digital output code that generated from the DUT itself. The DUT (FLASH_ADC) 

is mentioned in figure 4. or in [2]. 

▪ The ‘q[2:0]’, is the digital output code that generated from Listing 6. to asset on the functionality 

correctness of the DUT (FLASH_ADC).  
 

Similarly, the DAC converts the digital input level code to an analog output value corresponding to the 

DAC resolution (Accuracy). The relation between the digital input and analog output could be simply expressed 
as the following equation. 

 

𝑅𝑒𝑎𝑙 (𝑜𝑢𝑡𝑝𝑢𝑡) =  𝐿𝑜𝑔𝑖𝑐 (𝑖𝑛𝑝𝑢𝑡) ×  𝑑𝑒𝑙𝑡𝑎 (2) 

 

The output analog signal (VOUT_A) is modeled according to a specific DAC topology which is 

R_STRING_DAC as illustrated in Figure 6. While vout_a, the generated output from equation (2), is a generic 

expression of the DAC functionality between the output and input signals. 

 



 
 

Figure 6. R-String DAC 

// PARAMETERS 
        parameter n = 3; 

        parameter real nlevels = $pow(2,n); 

 

// VARIABLES  

        real delta; 

        real vout_a; 

 

//ASSIGNATION  

       always @(VSUP) 

         delta = VSUP / nlevels; 

 

        always @(Q) begin 

                if (Q > '0 && Q < '1) vout_a = Q * delta; 

                else if (Q == '1)  vout_a = ((nlevels-1)*delta); 

                else if (Q == '0)  vout_a = 0;   

        end 

 

   DAC: assert property (@(Q) ((Q >= '0) && (Q <= '1)) |-> VOUT_A == vout_a); 

 

Listing 8. SV code for verifying the DAC functionality 

 

Notice:  

▪ The ‘Q’ signal, that is mentioned in Listing 8., is declared in listing 4. 

▪ The ‘vref’ and ‘VSUP’ signals, are the same. Both signals mean the supply voltage or full-scale 

voltage.  

▪ The ‘VOUT_A’, is the analog output voltage that generated from the DUT itself. The DUT 

(R_STRING_DAC) is mentioned in figure 6. or in [2]. 
▪ The ‘vout_a’, is the analog output voltage that generated from Listing 8. to asset on the functionality 

correctness of the DUT (R_STRING_DAC).  

 

D. UVM 

 

The UVM is the most widely used verification standard for the modern digital circuits. However, it has been 

heavily utilized in the mixed-signal applications lately. The digital scenario uses the UVM elements including the 

constrained-random stimulus generation, verification planning, assertions, and coverage metrics production. The 

verification of the analog part of the mixed-signal systems, is usually achieved by hard approaches such as the 

directed testing, corner analysis, and Monte Carlo simulations. 

 
As a result, integrating the UVM and Real Number Modeling (RNM) is a crucial tactic for creating a fast and 

reliable verification environment for the mixed-signal devices. Just one environment enables the verification of the 

analog devices from the Constrained random Verification (sequence item through the virtual interface of the 

input/output ports), modeling the internal mismatches which in part ‘II.A.a’ (sequence items through the virtual 

interface of the internal signals ‘bind’), Assertions/Checkers (scoreboards), and Functional Coverage (subscribers). 

 

In this work, a full analog-mixed ADC/DAC modeled DUT is verified using the UVM. There are two agents, 

two subscribers, and a scoreboard in the UVM environment. The sequence items are received by the sequencer in 



the active agent, which forwards them to the driver. The interface then delivers the sequence items to the DUT. 

There is a monitor component in the passive agent. Using the virtual interface (Pin Wiggles), the monitor records the 

DUT signals and transforms them into sequence items (transactions) that are sent to the subscriber and scoreboard as 

illustrated in Figure 7.  

 

 
 

Figure 7. UVM testbench environment 

a. Interfaces 

▪ Interface – Input ports: Interface for accessing the DUT’s input ports 
 

ADC Interface_In DAC Interface_In 
interface ADC_IF_IN (input CLK); 

real VIN; 

real VREF;  

endinterface: ADC_IF_IN 

interface DAC_IF_IN (input CLK); 

    parameter int n = 3;  

logic [n-1 : 0] Q;  

endinterface: DAC_IF_IN 

 

Listing 9. Interface for Accessing DUT’s Input Ports 
 

▪ Interface – Output ports: Interface for recording the DUT’s output ports 

 
ADC Interface_Out DAC Interface_Out 

interface ADC_IF_OUT (input CLK); 

logic [2:0] Q; 

endinterface: ADC_IF_OUT 

interface DAC_IF_IN (input CLK); 

real VOUT_A;  

endinterface: DAC_IF_IN 

 

Listing 10. Interface for Recording DUT’s Output Ports 



▪ Interface – Internal signals: Interface for accessing or recording the internal signals of the DUT by 

binding it to the DUT. This is helpful to force an internal signal by a value or by the randomized value 

within a constraint random range.  

 
ADC Interface_Internal Binding Declaration of DUT to Internal Interface 

import volt_pkg::*; // pkg has 

a UDN  

interface ADC_IF_INT ( 

        input logic CLK, 

        input real vref1, 

// To access resistive  

// reference voltages 

        input real vref2, 

        input real vref3, 

        input real vref4, 

        input real vref5, 

        input real vref6, 

        input real vref7, 

        output volt D1,  

// UDN holds resolved voltage 

// To record comparator output 

        output volt D2, 

        output volt D3, 

        output volt D4, 

        output volt D5, 

        output volt D6, 

        output volt D7 

        ); 

endinterface 

module top ();  

… 

// Binding DUT to internal interface     

bind FLASH_ADC ADC_IF_INT int_if 

(.CLK(CLK), 

 .vref1(FLASH_ADC.RES_DIV.vref1), 

 .vref2(FLASH_ADC.RES_DIV.vref2), 

 .vref3(FLASH_ADC.RES_DIV.vref3), 

 .vref4(FLASH_ADC.RES_DIV.vref4), 

 .vref5(FLASH_ADC.RES_DIV.vref5), 

 .vref6(FLASH_ADC.RES_DIV.vref6), 

 .vref7(FLASH_ADC.RES_DIV.vref7), 

 .D1(FLASH_ADC.COMP.D1), 

 .D2(FLASH_ADC.COMP.D2), 

 .D3(FLASH_ADC.COMP.D3), 

 .D4(FLASH_ADC.COMP.D4), 

 .D5(FLASH_ADC.COMP.D5), 

 .D6(FLASH_ADC.COMP.D6), 

 .D7(FLASH_ADC.COMP.D7)); 

 

always @(CLK) begin 

        force FLASH_ADC.RES_DIV.vref1 = 

FLASH_ADC.int_if.vref1; 

        force FLASH_ADC.RES_DIV.vref2 = 

FLASH_ADC.int_if.vref2; 

        force FLASH_ADC.RES_DIV.vref3 = 

FLASH_ADC.int_if.vref3; 

        force FLASH_ADC.RES_DIV.vref4 = 

FLASH_ADC.int_if.vref4; 

        force FLASH_ADC.RES_DIV.vref5 = 

FLASH_ADC.int_if.vref5; 

        force FLASH_ADC.RES_DIV.vref6 = 

FLASH_ADC.int_if.vref6; 

        force FLASH_ADC.RES_DIV.vref7 = 

FLASH_ADC.int_if.vref7; 

 end 

 

 

// base pointer "virtual interface" in 

configuration database with a field name : 

"adc_vi_int" 

        uvm_config_db #(virtual 

ADC_IF_INT)::set(null, "uvm_test_top", 

"adc_vi_int", FLASH_ADC.int_if); 

…  

endmodule  

 

Listing 11. Interface for access/record internal signal and bind declaration of DUT to internal interface 

 

b. Sequence generation  

 

The sequence-item, sequence, sequencer, and driver are the four classes needed for the entire sequence 

generation process. The sequences are reusable, and the environment testbench build has no bearing on the 
stimulus generation. The data fields needed to generate the stimulus make up the sequence-item (transaction). It 

is necessary to randomize the sequence-item's variables in order to generate the stimulus. As a result, the 

sequence-item's data properties are declared as rand and subject to randomization constraints.  



 

 
 

Figure 8. Sequence Items Generation 

 

For the ADC device the reference voltage (VREF) constraint (c_VREF) will have the maximum 

quantization noise added or subtracted from it as if the signal exceeds the quantization noise, the output of the 

ADC will give an error code. The input voltage (VIN) to the ADC that will be converted to a digital code, 

which will be a randomized input from low voltage (VL) to high voltage (VH).   

 

ADC sequence_item DAC sequence_item 
class adc_transaction_in extends 

uvm_sequence_item;  

      … 

// Randomization of Input Signals 

   rand real VREF; 

 

   parameter real A_VDD = 2.5;  

         // Ideal High Supply   

   parameter int n = 3;        

         // Resolution (Accuracy) 

   int n_levels = $pow(2,n); 

         // Number levels of conversion  

   real delta = (A_VDD / n_levels); 

       

   constraint c_VREF {VREF inside 

         {[A_VDD - (delta/2) :  

           A_VDD + (delta/2)]};}; 

 

   rand real VIN; 

 

   real VL = 0.01;  

   real VH = 2.5;  

 

   constraint c_VIN 

{V_in dist {0.0:/5 , [VL:VH]:/50, [-

VH:-VL]:/50};} 

      … 

endclass: adc_transaction_in 

class dac_transaction_in extends 

uvm_sequence_item;  

      … 

      parameter int n = 3;        

         // Resolution (Accuracy) 

      int n_levels = $pow(2,n);  

         // Number levels of conversion 

 

      rand bit [n-1:0] Q; 

 

 

      constraint c_Q {Q inside  

                 {[0 :(n_levels-1)]};}; 

      … 

endclass: dac_transaction_in 

 

 

Listing 12. SV code for uvm_sequence_item of ADC/DAC (randomize of input ports) 

 

The ‘uvm_sequence_item’ class has also the randomization of the internal signals that model the random 

mismatch within the ADC components. 

 

ADC sequence_item (randomization of internal signals) 
class adc_transaction_in extends uvm_sequence_item;  

      … 

// Randomization of Internal Signals  

    rand real vref1; 

    constraint c_vref1 { vref1 inside {[(1*VREF)/n_levels - (delta/2) :  



(1*VREF)/n_levels + (delta/2)]}; }; 

 

    rand real vref2; 

    constraint c_vref2 { vref2 inside {[(2*VREF)/n_levels - (delta/2) : 

(2*VREF)/n_levels + (delta/2)]}; }; 

 

    rand real vref3; 

    constraint c_vref3 { vref3 inside {[(3*VREF)/n_levels - (delta/2) : 

(3*VREF)/n_levels + (delta/2)]}; }; 

 

    rand real vref4; 

    constraint c_vref4 { vref4 inside {[(4*VREF)/n_levels - (delta/2) : 

(4*VREF)/n_levels + (delta/2)]}; }; 

 

    rand real vref5; 

    constraint c_vref5 { vref5 inside {[(5*VREF)/n_levels - (delta/2) : 

(5*VREF)/n_levels + (delta/2)]}; }; 

 

    rand real vref6; 

    constraint c_vref6 { vref6 inside {[(6*VREF)/n_levels - (delta/2) : 

(6*VREF)/n_levels + (delta/2)]}; }; 

 

    rand real vref7; 

    constraint c_vref7 { vref7 inside {[(7*VREF)/n_levels - (delta/2) : 

(7*VREF)/n_levels + (delta/2)]}; };        

… 

endclass 

 

Listing 13. SV code for uvm_sequence_item of ADC (randomize of internal signals) 

c. Monitors 

 

The environment here has two UVM monitors: 

▪ The first one captures the input signals to the DUT through the virtual interface responsible for accessing 

the DUT’s input ports. Moreover, it captures the internal signals of the DUT through the virtual interface 
responsible for accessing the DUT’s internal signals that the verification engineer needs to force their 

values instead of defined values to these signals. This monitor is inside an active agent. 

▪ The second one captures the output signals to the DUT through the virtual interface responsible for 

recording the DUT’s output ports. Moreover, it captures the internal signals of the DUT through the 

virtual interface responsible for recording the DUT’s internal signals that the verification engineer needs 

to ensure their values are within the expected values range. This monitor is inside a passive agent. 

 

d. Coverage  

 

Since it is preferred to have functional cover points in four places for any verification environment.  

▪ The first one is placed close to the randomization to guarantee that the system is set to all expected 
randomized values within a given range. As a result, the sequence declares the cover points. (C1) 

▪ The second one is located close to the system's input to make sure that all expected values are present at 

the DUT's input ports. Since the entire system will be using these values, all expected test values will be 

passed through the design. The uvm_subcriber, which was designed to handle data that are tracked from 

the input interface, can accomplish this. (C2)   

▪ The third one is located within the DUT to guarantee that the internal signals contain the right values. 

(C3) 

▪ The final one is located close to the system's output ports to guarantee that it covers all anticipated output 

values. The verification engineer then ensures that the system's output values are being observed from 

this functional cover point. The uvm_subcriber, which is designed to cover the data monitored from the 

output interface, can accomplish this. (C4) 

adc_uvm_subscriber_in dac_uvm_subscriber_in 
class adc_subscriber_in extends 

uvm_subscriber #(adc_transaction_in); 

class dac_subscriber_in extends 

uvm_subscriber #(dac_transaction_in); 



   … 

   real VREF; 

   real VIN; 

     

   parameter real A_VDD = 2.5;  

       // High Supply   

   parameter int n = 3;        

       // Resolution (Accuracy) 

   int n_levels = $pow(2,n);  

       // Number levels of conversion  

   real delta = (A_VDD / n_levels); 

       

 covergroup cover_real; 

  option.per_instance = 1; 

  coverpoint VREF { 

   type_option.real_interval = 0.001; 

   bins vref [] = {[(A_VDD-(delta)) : 

                 (A_VDD +( delta))]};  

      } 

 

    coverpoint VIN { 

    type_option.real_interval = 0.1; 

        bins vin [] = {[0: A_VDD]}; 

      } 

    endgroup: cover_real 

 

 function void write 

              (adc_transaction_in t); 

  … 

     VREF = t.VREF; 

     VIN = t.VIN; 

     cover_real.sample(); 

 endfunction: write 

 … 

endclass: adc_subscriber_in 

    … 

    parameter int n = 3;        

       // Resolution (Accuracy) 

    int n_levels = $pow(2,n);  

       // Number levels of conversion 

 

    logic [n-1:0] Q; 

     

covergroup cover_logic; 

  option.per_instance = 1; 

  coverpoint Q { 

    bins q [] = {[0: (n-1)]}; 

      } 

endgroup: cover_logic 

 

 

 function void write 

               (dac_transaction_in 

t); 

     … 

     Q = t.Q; 

     cover_logic.sample(); 

 endfunction: write 

 … 

endclass: dac_subscriber_in 

adc_uvm_subscriber_out dac_uvm_subscriber_out 
class adc_subscriber_out extends 

uvm_subscriber 

#(adc_transaction_out); 

   … 

 

  parameter int n = 3;        

       // Resolution (Accuracy) 

  int n_levels = $pow(2,n);  

       // Number levels of conversion 

 

    logic [2:0] Q; 

 

    covergroup cover_bus; 

      option.per_instance = 1; 

      coverpoint Q { 

        bins q [] = {[0:(n-1)]}; 

      } 

    endgroup: cover_bus 

 

    function void write 

             (adc_transaction_out t); 

      … 

      Q = t.Q; 

      cover_bus.sample(); 

    endfunction: write 

 

endclass: adc_subscriber_out 

class dac_subscriber_out extends 

uvm_subscriber 

#(dac_transaction_out); 

    … 

   real VOUT_A; 

  

   parameter real A_VDD = 2.5;  

        // High Supply   

   parameter int n = 3;        

        // Resolution (Accuracy) 

   int n_levels = $pow(2,n);  

        // Number levels of 

conversion  

   real delta = (A_VDD / n_levels); 

 

 covergroup cover_real; 

   option.per_instance = 1; 

   coverpoint VREF { 

    type_option.real_interval = 

0.001; 

    bins vref [] = {[(A_VDD-(delta)) 

: 

                  (A_VDD +( 

delta))]}; 

      } 

 endgroup: cover_real 

 



 function void write 

              (adc_transaction_in t); 

     … 

     VOUT_A = t.VOUT_A; 

     cover_real.sample(); 

 endfunction: write 

 

endclass: dac_subscriber_out 

 

 

Listing 14. SV code for uvm_subscriber of ADC/DAC 

 

e. Scoreboards  

 

The UVM Scoreboard is a verification component that checks, ensures, and verifies the functionality of the 

DUT. It receives the transactions from the monitor that are captured from the interfaces of DUT for both input 

and output ports. After receiving the transactions from the DUT input and the ones that came from the DUT 

output. It performs, builds, or models simple calculations from the input transaction and provides the expected 

output transaction. This operation is carried out using a reference model. Where, the reference model is a simple 

representation to the functionality of the DUT that links the input data of the DUT with a simple relation 
between the expected output and the input received from the DUT. The output transaction from the reference 

model is then compared with the output transaction received by the DUT. 

 

ADC DAC 
class refmod extends uvm_component; 

    `uvm_component_utils(refmod);  

    … 

    int n = 3; 

    int nlevels = 2**n; 

//No_levels_of_conversion 

 

virtual task run_phase(uvm_phase phase); 

 super.run_phase(phase); 

 forever begin 

  in.get(tr_in); 

   if (tr_in.VIN >= vsuplow && VIN <  

               ((tr_in.VREF)/n_levels)) 

   begin tr_out.Q = '0; end 

 

   else if (tr_in.VIN >= ((n_levels-1) 

            && tr_in.VIN <= tr_in.VREF) 

   begin tr_out.Q = '1; end 

 

   else if ((tr_in.VIN >=  

             ((tr_in.VREF)/n_levels)) 

          && (tr_in.VIN < ((n_levels-1)  

           * ((tr_in.VREF)/n_levels)))) 

   begin 

    tr_out.Q = $floor(tr_in.VIN /  

              ((tr_in.VREF)/n_levels)); 

   end   

 out.put(tr_out);                

 end 

endtask: run_phase 

 

endclass: refmod 

class refmod extends uvm_component; 

    `uvm_component_utils(refmod);  

    … 

    int n = 3; 

    int nlevels = 2**n; 

//No_levels_of_conversion 

 

virtual task run_phase(uvm_phase phase); 

 super.run_phase(phase); 

 forever begin 

  in.get(tr_in); 

   if (tr_in.Q > '0 && tr_in.Q < '1)  

   begin  

    tr_out.vout_a = Q  

             *((tr_in.VREF)/nlevels);       

   end 

    

   else if (tr_in.Q == '1)  

   begin  

    tr_out.vout_a = ((nlevels-1) 

       * ((tr_in.VREF)/nlevels));   

    end 

                 

   else if (tr_in.Q == '0)   

   begin  

    tr_out.vout_a = 0;  

   end 

  out.put(tr_out); 

 end 

endtask: run_phase 

 

endclass: refmod 

 

Listing 15. SV code for reference model of ADC/DAC 



III.   CHECK LINEARITY OF CONVERTER 

 

The functional correctness of the converter is measured by the quantization error. The quantization error is the 

difference between the infinite resolution and the actual characteristics. It’s equal to 
1

2
 𝐿𝑆𝐵 =  ±

∆

2
=

𝑉𝐹𝑆

2𝑛+1 and 

considered as a noise added to the signal. The converter errors should be less than the quantization noise. The circuit 

errors are due to:  

▪ The Component random mismatch due to the fabrication tolerances.  

▪ The limitation in build block specification like gain, bandwidth, linearity, …  
 

Checking the effect of the quantization errors in the converter functionality, can be derived by measuring the 

ADC linearity. The ADC linearity means measuring the transition deviations of the converter from the ideal 

characteristics. This is known by finding the INL and DNL.  

A. Integral Non-Linearity (INL) 

Maximum deviation of the code transitions from their ideal values in LSB. A converter is guaranteed to be 

monotonic if the maximum INL is less than ±0.5 LSB. An Analog-to-Digital Converter (ADC) is monotonic if, 

for increasing analog voltage input, the digital output code increases and vice versa. Monotonic behavior does 

not guarantee that there will be no missing codes. 

𝐼𝑁𝐿 (𝑖𝑛 𝐿𝑆𝐵) =
𝑉𝑖_𝑟𝑒𝑎𝑙 − 𝑉𝑖_𝑖𝑑𝑒𝑎𝑙

∆
  

 

B. Differential Non-Linearity (DNL) 

Maximum deviation in the step width from the ideal values of ∆ in LSB. If |𝐷𝑁𝐿|  ≥  1 𝐿𝑆𝐵, this will 
result in a missing code.  

𝐷𝑁𝐿 (𝑖𝑛 𝐿𝑆𝐵) =
𝑉𝑖 − 𝑉𝑖−1

∆
− 1 

 
Figure 9. Non-Monotonic and Missing Code ADC 

 

 
 

Figure 10. INL & DNL 

 



Figure 10. illustrates the INL and DNL values without modeling the component mismatch, or without forcing the 

internal signals with the randomized values. If the sv code in listing 13. is applied with the content defined that the 

reference or supply voltage is randomized with the extent of the quantization noise and each voltage node at the 

resistive divider is reached also the extent of the quantization noise. Then the device could be non-monotonic or 

could have a missing code. Figure 11. the input voltage decreases from ‘1.75469’ to ‘1.494’, and the output code 
increases from ‘100’ to ‘110’. The linearity is not maintained as the input voltage decreases while the output code 

increases and provides non-monotonicity in the ADC device as illustrated the red region of the failure assertion in 

figure 11. From Figure 12. the input voltage is equal to ‘1.04839’ that should be coded to ‘100’ but the code is 

missed as the DNL exceeds 1 LSB.  

 

 
 

Figure 11. Non monotonic behavior 

 

  
 

Figure 12. Missing Code 
 

IV.   RESULTS 

 

Figure 13. illustrates the transactions that are received at the reference model from the ‘get_in(tr_in)’ function; the 

input transaction has the randomized input voltage (tr_in.VIN) and reference/supply voltage (tr_in.VREF). The 

output transaction has the output calculated code from the reference model ‘tr_out_refmod.Q’ then this output 

compared with the output code from dut. The ‘m_matches’ signal is the number of the equivalent values and 

‘m_mistmatches’ is the number of the non-equivalent values. If the extent of the quantization noise is applied on the 

reference/supply voltage and at each voltage node of the resistive divider, this will lead to make the ADC behave 

incorrectly and not as expected for that the number mismatches is increasing. The design engineer has to re-model 

the ADC and take into consider that the extent in the quantization noise for all the ADC components will make the 

ADC non-monotonic and could have missing codes.  
 

 
 

Figure 13. Scoreboard outputs due to max. limit model of quantization noise 

 

Figure 14. illustrates if the quantization noise is modeled by an acceptable range that does not change the ADC 

output code. The number of matches output code is increasing with the simulation time while there are no 

mismatches between the output code from dut (real model) and the output code from reference model (ideal model).  



 

Figure 14. Scoreboard outputs with an acceptable quantization model range 

The ‘coverpoints’ covered in the ‘uvm_subscriber’ can be debugged to know to what extent the values are 
covered. The ‘Coverage Summary’ window provides 95% are covered for three tests. The three errors are due to an 

assertion error in each test as illustrated in figure 16. 

The ‘Covergroups’ windows can be used more to understand what are not covered. For example, the ‘vin’ does 

not have a zero value. Therefore, the user can rewrite the constraint on ‘vin’ to have zero value if this value is really 

needed.  

 

 

Figure 15. Coverage Summary 

 

Figure 16. Assertion Coverage 

 

Figure 17. Covergroups 



The Simulator used in the paper, allows the randomization of the real type variables by default. The simulator 

has a switch to stop the randomization on the real datatype. The Debug environment enables debugging of the real 

signals and applies all the debug features without extra licenses.  

 

V.   CONCLUSION 
In the digital environment, there are a lot of verification techniques that can be used to find bugs within a 

system. This makes the digital verification is always preferred as its reliability, and usage. Only one environment 

and one event-driven simulator can provide these verification techniques in an automated way. The paper illustrates: 

• The constrained random verification. Such as randomizing the input components of ADC/DAC as 

modeling quantization mismatch in ADC/DAC. From this step, the digital verification engineer will be able 

to know the extent of the variation that each component can hold else the system will behave incorrectly.  

• The functional coverage ensures that the electrical voltage is covered under a certain amplitude range. 

• Assertions are built to check the functionality of the whole system if there is a simple relation between the 

output and input of a system.  

• The UVM-based verification is one testbench environment that provides classes to support the 

randomization of ports through ‘uvm_sequence’ class. Supports the functional coverage through 
‘uvm_subscriber’ class and assertions through ‘uvm_scoreboard’ class. 
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