
Functional Verification of Analog Devices modeled
using SV-RNM

Mariam Maurice

Siemens Industry Software Inc.

• Pros

• Increase Accuracy

• Design Contributions

Real Number Modelling

• Contributions

• Constrained Random Verification (CRV)
• Randomization as modeling mismatch effect

• Writing constraints for the mismatch effect

• Randomization of Input Real/logic signals

• Assertions/Checkers
• Relation between I/O ports

Functional Verification

Agenda

2

Agenda

• Interfaces

• Sequence Generation
• Randomization of Input ports

• Randomization of Internal Signals

• Monitors

• Subscribers

• Scoreboard

UVM

• INL/DNL

Check on Linearity

• Scoreboard

Results

3

Real Number Modeling – Why?
• Waiting for transistor level to be finished could consume a lot of time for digital

verification engineers, to ensure that both systems (the analog, and the digital)
will work functionality well when they are connected together.

Digital

Analog

4

Real Number Modeling – Pros
• Real Number Modelling (RNM) is the process of modelling the behavior of an

analog circuit as a discrete real data so it's a signal flow-based modelling
approach.

• 10X – 1000X faster than SPICE

• 10X – 100X faster than Verilog-AMS electrical
Speed

• More accurate than a pure logic model (0,1)

• RNM constructs to increase accuracyAccuracy

• Start verification without finished schematics

• Reuse model
Top Down

• Single Simulator

• Leverage existing digital tools & flows
Ease of use

5

Real Number Modeling – Increase Accuracy
• The previous research provides the increase in the modelling accuracy of analog

devices (especially for the ADC/DAC/PLL) with maintaining high simulation
performance as an event-driven simulator is used.

6

Real Number Modeling – Design Contributions
• SystemVerilog (SV) is chosen as it provides a lot of datatypes that helps in

constructing the Real Number Models and these RNM constructs increase the
modelling accuracy:

• Real datatype

• “Model Quantization noise effect”

• “Calculate INL/DNL of ADC/DAC”

• User-Defined nets

• “Model 2nd order Loop filter using PWL technique”

• User-Defined resolved nets

• “Model Load effect”

• Class datatypes (Object Oriented Programming ‘OOP’)

• “Calculate Phase noise”

• “Convert Phase noise to RMS Jitter to be contributed at the PLL output” 7

Design Contributions
ADC

Fractional – PLL

DAC
8

Real Number Modeling – Design Contributions

9

Functional Verification
• Functional verification could start

without finishing the analog
schematics. There is no need to wait
until finishing the analog devices
transistor level, to verify the system
design.

10

Verification Contributions
During verification of the design, SystemVerilog provides:

• Constrained Random Verification (CRV)

• Modelling mismatch within ADC quantization noise, and Supply Noise.

• Functional Coverage to cover certain real values

• Assertions/Checkers

• Relation between I/O ports of ADC/DAC

• UVM based verification, A testbench environment that maintained

• Interface – Internal signals: Interface to access/record the internal signals of the DUT by
binding it to the DUT. This is helpful to force an internal signal by a randomized value.

• CRV (Sequence Item)

• Functional Coverage (Subscriber)

• Assertions/checkers (Scoreboard)

11

CRV – Randomization as modeling mismatch effect
• ADC/DAC can have a random mismatch in the

resistive divider block (a).

• The voltage at each node of the resistive divider
will change. The change can be modeled by using
the randomization of the reference voltages.

• The constraint is written such that the analog
reference voltage will have the quantization noise
added or subtracted from it as if the signal exceeds
the quantization noise, the output of the ADC will
give an error code (b). The worst quantization
noise is equal to (∆/2)

• where (∆) is equal to (
𝑉𝑟𝑒𝑓

2𝑛) and n is the number of levels

of conversion

12

CRV – Writing constraints for the mismatch effect
Writing constraints can be set, in accordance with:

Limits of mismatches within the specified block that are expected from the System-
Level engineers to avoid exceeding these limits.

• The outputs are then analyzed to ensure that the block functionality is working correctly according to system
level specifications.

Without any limits because the verification engineer was unable to determine the
maximum amount of mismatch in the randomized signal.

• However, after debugging, the verification engineer was able to determine the maximum/minimum amount
of the mismatch needed to maintain the proper output values.

The verification engineer harden the limit of mismatch.

• Illustrates the potential consequences for the system and the extent to which it may be functionally flawed.
13

CRV – Randomization of Input Real/logic signals
ADC real Input:

Generate the real input values as a range of the randomized real data and track the
output to ensure the functionality of the system is observed.

DAC logic Input:

The input logic signal can be randomized between any value of the start digital code
(0) to the end digital code (2𝑛 − 1). Or can be randomized sequentially by starting
from the first digital code (0) and increasing by the next digital code until reach the
last digital code. (0 → 1 → 2 → 3 …. → 2𝑛 − 1).

14

Functional Coverage – cover real signal from low to high
The automatic number of the bins is defined according to the ‘real_interval’ that
passed as a ‘type_option’ and divided according to the number of real values. Which
means, once a bin is created for a value then not another bin is created for this value
even if the value is repeated within a different range or declared as a separate value.

// COVERAGE VOLTAGE VALUES WITHIN A CERTAIN RANGE

real min_a = 0.1; // minimum amplitude

real max_a = 2.5; // maximum amplitude

covergroup V_COV @(vout_load);

option.per_instance = 1;

coverpoint vout_load {

type_option.real_interval = 1E-1;

bins v [] = {[min_a:max_a], min_a, max_a};

}

endgroup: V_COV

15

The maximum value of the signal ‘vin’ is 2.49782. For that the bin ‘vin[2.5]’ is not hit

16

Assertions – Relation between I/O ports
ADC:

• Modeled DUT:

• Relation:

𝑙𝑜𝑔𝑖𝑐 𝑜𝑢𝑡𝑝𝑢𝑡 =
𝑅𝑒𝑎𝑙 (𝑖𝑛𝑝𝑢𝑡)

𝑑𝑒𝑙𝑡𝑎
𝑤ℎ𝑒𝑟𝑒, 𝑑𝑒𝑙𝑡𝑎 =

𝑉𝑠𝑢𝑝

2𝑛

DAC:

• Modeled DUT:

• Relation:
𝑅𝑒𝑎𝑙 (𝑜𝑢𝑡𝑝𝑢𝑡) = 𝐿𝑜𝑔𝑖𝑐 (𝑖𝑛𝑝𝑢𝑡) × 𝑑𝑒𝑙𝑡𝑎

17

Assertions – comparison
ADC: The assertion (ADC_ASSERT) verifies that the FLASH_ADC is passed (P)
when the expected functionality of ADC is observed.

Output from Modeled DUT

Output from Relation

18

UVM

Constrained Random
Verification on ports

(sequence item
through input/output

ports virtual interface)

Constrained Random
Verification on
internal signals

Modeling internal
mismatches (sequence
items through internal

signals virtual
interface ‘bind’)

Functional Coverage
(subscribers)

Assertions/Checkers
(scoreboards)

• The verification of the analog part of the mixed-
signal systems, is achieved by hard approaches

• Direct testing, Corner Analysis, and Monte Carlo
simulations

• While the UVM is the most widely used
verification standard for the digital circuits.

• As a result, integrating the UVM and RNM is a
crucial tactic for creating a fast and reliable
verification environment for the mixed-signal
devices.

• One environment enables the verification of the
analog devices from:

19

UVM Env.
• Full analog-mixed

ADC/DAC modeled
DUT is verified
using the UVM.

• There are two agents,
two subscribers, and
a scoreboard in the
UVM environment.

20

UVM – Interfaces
• Interface – Input ports: Interface for accessing the DUT’s input ports

• Interface – Output ports: Interface for recording the DUT’s output ports

• Interface – Internal signals: Interface for accessing or recording the internal
signals of the DUT by binding it to the DUT. This is helpful to force an internal
signal by a value or by the randomized value within a constraint random range.

import volt_pkg::*; // pkg has a UDN

interface ADC_IF_INT (

input logic CLK,

input real vref1, // To access reference voltages

input real vref2,

…

input real vref7,

output volt D1, // UDN holds resolved voltage

output volt D2, // To record output of comparator

…);

endinterface

module top ();

… // Binding DUT to internal interface

bind FLASH_ADC ADC_IF_INT int_if (.CLK(CLK),

.vref1(FLASH_ADC.RES_DIV.vref1),

.vref2(FLASH_ADC.RES_DIV.vref2),

…

.D1(FLASH_ADC.COMP.D1),

.D2(FLASH_ADC.COMP.D2),

…);

always @(CLK) begin

force FLASH_ADC.RES_DIV.vref1 = FLASH_ADC.int_if.vref1;

force FLASH_ADC.RES_DIV.vref2 = FLASH_ADC.int_if.vref2;

…

end

endmodule 21

UVM – Sequence Generation
The sequence-item, sequence, sequencer, and driver are the four classes needed for
the entire sequence generation process.

22

UVM – Sequence Generation – Input ports
For the ADC device, the reference voltage (VREF) constraint (c_VREF) will have
the maximum quantization noise added or subtracted from it as if the signal exceeds
the quantization noise, the output of the ADC will give an error code.

class adc_transaction_in extends uvm_sequence_item;

…

// Randomization of Input Signals

rand real VREF;

parameter real A_VDD = 2.5; // Ideal High Supply

parameter int n = 3; // Resolution (Accuracy)

int n_levels = $pow(2,n); // Number levels of conversion

real delta = (A_VDD / n_levels);

constraint c_VREF {VREF inside {[A_VDD - (delta/2) : A_VDD + (delta/2)]};};

rand real VIN;

real VL = 0.01;

real VH = 2.5;

constraint c_VIN {V_in dist {0.0:/5 , [VL:VH]:/50, [-VH:-VL]:/50};}

…

endclass: adc_transaction_in

The input voltage (VIN)
to the ADC will be a
randomized input from
low voltage (VL) to high
voltage (VH).

23

UVM – Sequence Generation – Internal signals
The ‘uvm_sequence_item’ class has also the randomization of the internal signals
that model the random mismatch within the ADC components.

class adc_transaction_in extends uvm_sequence_item;

…

// Randomization of Internal Signals

rand real vref1;

constraint c_vref1 { vref1 inside {[(1*VREF)/n_levels - (delta/2) : (1*VREF)/n_levels + (delta/2)]}; };

rand real vref2;

constraint c_vref2 { vref2 inside {[(2*VREF)/n_levels - (delta/2) : (2*VREF)/n_levels + (delta/2)]}; };

…

endmodule

24

UVM – Monitors
The environment here has two UVM monitors:

The first one captures:

• The input signals to the DUT through the virtual interface responsible for accessing the DUT’s input
ports.

• Moreover, the internal signals of the DUT through the virtual interface responsible for accessing the
DUT’s internal signals that the verification engineer needs to force their values.

• This monitor is inside an active agent.

The second one captures:

• The output signals to the DUT through the virtual interface responsible for recording the DUT’s output
ports.

• Moreover, the internal signals of the DUT through the virtual interface responsible for recording the
DUT’s internal signals that the verification engineer needs to ensure their values.

• This monitor is inside a passive agent.
25

UVM – Subscribers
Functional cover points are placed in four places:

Close to the randomization to guarantee that the system is set to all expected randomized values within a given range.

As a result, the sequence declares the cover points. (C1)

Close to the system's input to make sure that all expected values are present at the DUT's input ports.

‘uvm_subscriber’, which was designed to handle data that are tracked from the input interface, can accomplish this. (C2)

Located within the DUT to guarantee that the internal signals contain the right values. (C3)

Close to the system's output ports to guarantee that it covers all anticipated output values.

The verification engineer then ensures that the system's output values are being observed from this functional cover point.

‘uvm_subscriber’, which is designed to cover the data monitored from the output interface, can accomplish this. (C4) 26

UVM – Scoreboard
Reference model is a simple representation to the functionality of the DUT that links
the expected output and the input received from the DUT with a simple relation.

ADC:

𝑙𝑜𝑔𝑖𝑐 𝑜𝑢𝑡𝑝𝑢𝑡 =
𝑅𝑒𝑎𝑙 (𝑖𝑛𝑝𝑢𝑡)

𝑑𝑒𝑙𝑡𝑎
𝑤ℎ𝑒𝑟𝑒, 𝑑𝑒𝑙𝑡𝑎 =

𝑉𝑠𝑢𝑝

2𝑛

DAC:
𝑅𝑒𝑎𝑙 (𝑜𝑢𝑡𝑝𝑢𝑡) = 𝐿𝑜𝑔𝑖𝑐 (𝑖𝑛𝑝𝑢𝑡) × 𝑑𝑒𝑙𝑡𝑎

The output transaction from the reference model is then compared with the output
transaction received by the DUT.

27

UVM – Scoreboard – Code
ADC DAC

class refmod extends uvm_component;

`uvm_component_utils(refmod);

…

int n = 3;

int nlevels = 2**n; //No_levels_of_conversion

virtual task run_phase(uvm_phase phase);

super.run_phase(phase);

forever begin

in.get(tr_in);

if (tr_in.VIN >= vsuplow && VIN < ((tr_in.VREF)/n_levels)) begin

tr_out.Q = ‘0;

end

else if (tr_in.VIN >= ((n_levels-1) && tr_in.VIN <= tr_in.VREF)

begin

tr_out.Q = ‘1;

end

else if ((tr_in.VIN >= ((tr_in.VREF)/n_levels))

&& (tr_in.VIN < ((n_levels-1) * ((tr_in.VREF)/n_levels))))

begin

tr_out.Q = $floor(tr_in.VIN ((tr_in.VREF)/n_levels));

end

out.put(tr_out);

end

endtask: run_phase

endclass: refmod

class refmod extends uvm_component;

`uvm_component_utils(refmod);

…

int n = 3;

int nlevels = 2**n; //No_levels_of_conversion

virtual task run_phase(uvm_phase phase);

super.run_phase(phase);

forever begin

in.get(tr_in);

if (tr_in.Q > '0 && tr_in.Q < ‘1) begin

tr_out.vout_a = Q *((tr_in.VREF)/nlevels);

end

else if (tr_in.Q == '1)

begin

tr_out.vout_a = ((nlevels-1) * ((tr_in.VREF)/nlevels));

end

else if (tr_in.Q == '0)

begin

tr_out.vout_a = 0;

end

out.put(tr_out);

end

endtask: run_phase

endclass: refmod 28

Check on ADC/DAC Linearity
• The functional correctness of the converter is measured by the quantization error.

• The quantization error is the difference between the infinite resolution and the

actual characteristics. It’s equal to
1

2
𝐿𝑆𝐵 = ±

∆

2
=

𝑉𝐹𝑆

2𝑛+1 and considered as a noise

added to the signal.

• The converter errors should be less than the quantization noise. The circuit errors
are due to:

• The Component random mismatch due to the fabrication tolerances.

• The limitation in build block specification like gain, bandwidth, linearity, …

29

Check on Linearity – INL/DNL
Checking the quantization errors effect in the converter functionality, can be derived by measuring the ADC

linearity. Which means measuring the transition deviations of the converter from the ideal characteristics.

This is known by finding the Integral Non-Linearity (INL) and Differential Non-Linearity (DNL).

• INL: Maximum deviation of code transitions from their ideal values

in LSB. A converter is guaranteed to be monotonic if the maximum

INL is less than ±0.5 LSB.

𝐼𝑁𝐿 𝑖𝑛 𝐿𝑆𝐵 =
𝑉𝑖_𝑟𝑒𝑎𝑙 − 𝑉𝑖_𝑖𝑑𝑒𝑎𝑙

∆

• DNL: Maximum deviation in the step width from the ideal values

of ∆ in LSB. If 𝐷𝑁𝐿 ≥ 1 𝐿𝑆𝐵, this will result in a missing code.

𝐷𝑁𝐿 𝑖𝑛 𝐿𝑆𝐵 =
𝑉𝑖 − 𝑉𝑖−1

∆
− 1 30

INL/DNL
Monotonic/Non-Missing Code

Non monotonic behavior

Missing Code

INL and DNL values with acceptable modeling component mismatch.

Apply extent quantization noise on reference voltage and voltage nodes of resistive divider. Converter could be non-monotonic

Apply extent quantization noise on reference voltage and voltage node of resistive divider. Converter could have missing-code 31

Results - Scoreboard

32

m_mismatches, mismatch between output of DUT and reference model, increase with simulation time

DUT Output

Reference Model Output

m_mismatches, mismatch between output of DUT and reference model, equal to 0

Scoreboard Outputs due to max. limit model of quantization noise

Scoreboard Outputs with an acceptable quantization noise

Summary
In the digital environment, there are a lot of verification techniques that can be used
to find bugs within a system. This makes the digital verification is always preferred
as its reliability, and usage. Only one environment and one event-driven simulator
can provide these verification techniques in an automated way. The paper illustrates:
• The constrained random verification. Such as randomizing the input components of ADC/DAC as

modeling quantization mismatch in ADC/DAC. From this step, the digital verification engineer
will be able to know the extent of the variation that each component can hold else the system will
behave incorrectly.

• The functional coverage ensures that the electrical voltage is covered under a certain amplitude
range.

• Assertions are built to check the functionality of the whole system if there is a simple relation
between the output and input of a system.

• The UVM-based verification is one testbench environment that provides classes to support the
randomization of ports through ‘uvm_sequence’ class. Supports the functional coverage through
‘uvm_subscriber’ class and assertions through ‘uvm_scoreboard’ class.

33

Questions

Thanks for listening. Appreciated.

Do you have any Question to ask ? ☺ …

Contact: mariam.maurice@siemens.com

34

mailto:mariam.maurice@siemens.com

Thank You

	Slide 1: Functional Verification of Analog Devices modeled using SV-RNM
	Slide 2: Agenda
	Slide 3: Agenda
	Slide 4: Real Number Modeling – Why?
	Slide 5: Real Number Modeling – Pros
	Slide 6: Real Number Modeling – Increase Accuracy
	Slide 7: Real Number Modeling – Design Contributions
	Slide 8: Design Contributions
	Slide 9: Real Number Modeling – Design Contributions
	Slide 10: Functional Verification
	Slide 11: Verification Contributions
	Slide 12: CRV – Randomization as modeling mismatch effect
	Slide 13: CRV – Writing constraints for the mismatch effect
	Slide 14: CRV – Randomization of Input Real/logic signals
	Slide 15: Functional Coverage – cover real signal from low to high
	Slide 16
	Slide 17: Assertions – Relation between I/O ports
	Slide 18: Assertions – comparison
	Slide 19: UVM
	Slide 20: UVM Env.
	Slide 21: UVM – Interfaces
	Slide 22: UVM – Sequence Generation
	Slide 23: UVM – Sequence Generation – Input ports
	Slide 24: UVM – Sequence Generation – Internal signals
	Slide 25: UVM – Monitors
	Slide 26: UVM – Subscribers
	Slide 27: UVM – Scoreboard
	Slide 28: UVM – Scoreboard – Code
	Slide 29: Check on ADC/DAC Linearity
	Slide 30: Check on Linearity – INL/DNL
	Slide 31: INL/DNL
	Slide 32: Results - Scoreboard
	Slide 33: Summary
	Slide 34: Questions
	Slide 35: Thank You

