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Real Number Modeling — Why?

« Waiting for transistor level to be finished could consume a lot of time for digital
verification engineers, to ensure that both systems (the analog, and the digital)
will work functionality well when they are connected together.
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Real Number Modeling — Pros

« Real Number Modelling (RNM) is the process of modelling the behavior of an
analog circuit as a discrete real data so it's a signal flow-based modelling
approach.

10X — 1000X faster than SPICE
10X — 100X faster than Verilog-AMS electrical

More accurate than a pure logic model (0,1)
RNM constructs to increase accuracy

Start verification without finished schematics
e Reuse model

Single Simulator
Leverage existing digital tools & flows
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Real Number Modeling — Increase Accuracy

* The previous research provides the increase in the modelling accuracy of analog
devices (especially for the ADC/DAC/PLL) with maintaining high simulation

performance as an event-driven simulator is used.

Modelling Tradeoffs
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Real Number Modeling — Design Contributions

« SystemVerilog (SV) Is chosen as it provides a lot of datatypes that helps in
constructing the Real Number Models and these RNM constructs increase the
modelling accuracy:

* Real datatype
*  “Model Quantization noise effect”
* “Calculate INL/DNL of ADC/DAC”

« User-Defined nets
«  “Model 2" order Loop filter using PWL technique”
« User-Defined resolved nets
 “Model Load effect”
 Class datatypes (Object Oriented Programming ‘OOP’)
» “Calculate Phase noise”
* “Convert Phase noise to RMS Jitter to be contributed at the PLL output” .
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Real Number Modeling — Design Contributions
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Analog System Level Digital System Level

Design Specification Design Specification
|

Functional Verification p—— — ]

Functional Verification
: e i
» Functional verification could start { I
without  finishing  the  analog ——— |
schematics. There is no need to wait | P Logic Synthesis/GLs
until finishing the analog devices )
transistor level, to verify the system —— “Wsiesn
design . o Physmalll-amy:Ij:'lentlon l
Floor Planning -
l Placement and route
Physical Verification l
LVS,DRC,PEX Physical Verification
LVS,DRC,PEX
l 1
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l l
Fabrication Fabrication
Analog IC DESIGN Digital IC DESIGN 10
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Verification Contributions

During verification of the design, SystemVerilog provides:
« Constrained Random Verification (CRV)
* Modelling mismatch within ADC quantization noise, and Supply Noise.
* Functional Coverage to cover certain real values
« Assertions/Checkers
* Relation between 1/O ports of ADC/DAC

« UVM based verification, A testbench environment that maintained

» Interface — Internal signals: Interface to access/record the internal signals of the DUT by
binding it to the DUT. This is helpful to force an internal signal by a randomized value.

 CRV (Sequence Item)
» Functional Coverage (Subscriber)

» Assertions/checkers (Scoreboard)
11
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CRV — Randomization as modeling mismatch effect

« ADC/DAC can have a random mismatch in the
resistive divider block (a).

* The voltage at each node of the resistive divider
will change. The change can be modeled by using
the randomization of the reference voltages.

« The constraint is written such that the analog
reference voltage will have the quantization noise
added or subtracted from it as if the signal exceeds
the quantization noise, the output of the ADC will
give an error code (b). The worst gquantization
noise Is equal to (A/Z)

IS the number of levels

of conversion

Code

111 ¢

110 ¢

101 ¢

100 +

011 ¢

010+

0014 -q4—rd Ifthe error within
: exceeds guantization n
L}

000
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CRV — Writing constraints for the mismatch effect

Writing constraints can be set, in accordance with:
Limits of mismatches within the specified block that are expected from the System-

Level engineers to avoid exceeding these limits.

 The outputs are then analyzed to ensure that the block functionality is working correctly according to system
level specifications.

Without any limits because the verification engineer was unable to determine the
maximum amount of mismatch in the randomized signal.

« However, after debugging, the verification engineer was able to determine the maximum/minimum amount
of the mismatch needed to maintain the proper output values.

The verification engineer harden the limit of mismatch.

« Illustrates the potential consequences for the system and the extent to which it may be functionally flawed. .

acce/lem DESIGN AND VERIEICATIOMN™
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CRV — Randomization of Input Real/logic signals

ADC real Input:

Generate the real input values as a range of the randomized real data and track the
output to ensure the functionality of the system is observed.

DAC logic Input:

The input logic signal can be randomized between any value of the start digital code
(0) to the end digital code (2™ — 1). Or can be randomized sequentially by starting
from the first digital code (0) and increasing by the next digital code until reach the
last digital code. 0 > 1 —>2—>3.... > 2" —1).

14



Functional Coverage — cover real signal from low to high

The automatic number of the bins is defined according to the ‘real interval’ that
passed as a ‘type_option’ and divided according to the number of real values. Which
means, once a bin Is created for a value then not another bin is created for this value
even If the value is repeated within a different range or declared as a separate value.

// COVERAGE VOLTAGE VALUES WITHIN A CERTAIN RANGE
real min a = 0.1; // minimum amplitude
2.5; // maximum amplitude

real max a

covergroup V_ COV @ (vout load);
option.per instance = 1;
coverpoint vout load {
type option.real interval = 1lE-1;
bins v [] = {[min a:max al], min a, max a};

}
endgroup: V_COV

15
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Assertions — Relation between I/O ports

ADC FLASH_ADC (FLASH - Analog to Digital Converter)
VIN vin
S&H
* Modeled DUT: } Qfn-1:0]
Vrel g VSUP resis_div| e comparator —|BE:R/L|— encoder i
* Relation:
Real (input) Vsu
] p
logic (output) = where, delta = ——
gic (output) delta 21
DAC R_STRING_DAC (Resistor String - Digital to Analog Converter)
vref VSsup . : i
« Modeled DUT: fesis_aiv] el
Q[n-1:0] - VOUT_A
decoder m|55=L/R|— switch(buffer)
» Relation:

Real (output) = Logic (input) X delta
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Assertions — comparison

ADC: The assertion (ADC_ASSERT) verifies that the FLASH_ADC is passed (P)
when the expected functionality of ADC is observed.
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UVM

» The verification of the analog part of the mixed- 4 ) /Corstre_ag_ne(:_Random\
- - - : eritication on
signal systems, Is achieved by hard approaches e o internal signals
 Direct testing, Corner Analysis, and Monte Carlo (sequence item Modeling internal

mismatches (sequence
items through internal
signals virtual

 While the UVM is the most widely used interface “bind’)
verification standard for the digital circuits. N\ AN /

« As a result, integrating the UVM and RNM is a
crucial tactic for creating a fast and reliable | |
. - - - - Functional Coverage Assertions/Checkers
verification environment for the mixed-signal (subscribers) (scoreboards)
devices.

e One environment enables the verification of the \_ A\ J
analog devices from:

simulations through input/output
ports virtual interface)

19
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Top

UVM Env.

* Fu” analog-mlxed Reference Model ]7 :;_“[ Comparator
ADC/DAC modeled . ! ‘
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UVM — Interfaces

* Interface — Input ports: Interface for accessing the DUT’s input ports
* Interface — Output ports: Interface for recording the DUT’s output ports

 Interface — Internal signals: Interface for accessing or recording the internal
signals of the DUT by binding it to the DUT. This is helpful to force an internal
signal by a value or by the randomized value within a constraint random range.

module top ()
.. // Binding DUT to internal interface

import volt pkg::*; // pkg has a UDN bind FLASH ADC ADC IF INT int if (.CLK(CLK),
interface ADC IF INT ( .vrefl (FLASH ADC.RES DIV.vrefl),

input logic CLK, .vref2 (FLASH ADC.RES DIV.vref2),

input real vrefl, // To access reference voltages -

input real vref2, .D1 (FLASH ADC.COMP.D1),

.D2 (FLASH_ADC.COMP.D2),
input real vref7, )7

output volt D1, // UDN holds resolved voltage always @ (CLK) begin
output volt D2, // To record output of comparator force FLASH ADC.RES DIV.vrefl = FLASH ADC.int if.vrefl;
) force FLASH ADC.RES DIV.vref2 = FLASH ADC.int if.vref2;
endinterface .
end
endmodule 21
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UVM — Sequence Generation

The sequence-item, sequence, sequencer, and driver are the four classes needed for
the entire sequence generation process.

SYSTEMS INITIATIVE




UVM - Sequence Generation — Input ports

For the ADC device, the reference voltage (VREF) constraint (c_VREF) will have
the maximum quantization noise added or subtracted from it as if the signal exceeds
the quantization noise, the output of the ADC will give an error code.

class adc_transaction in extends uvm sequence item;

The input VOItage (VIN) // Ran&omization of Input Signals

rand real VREF;

tO the ADC WI” be a. parameter real A VDD = 2.5; // Ideal High Supply

I I parameter int n = 3; // Resolution (Accuracy)
randomlzed InpUt from int n levels = $pow(2,n); // Number levels of conversion
IOW VOItage (VL) to hlgh real delta = (A VDD / n levels);
VOItage (VH) constraint c VREF {VREF inside {[A VDD - (delta/2) : A VDD + (delta/2)]1};};

rand real VIN;

real VL = 0.01;

real VH = 2.5;

constraint ¢ VIN {V in dist {0.0:/5 , [VL:VH]:/50, [-VH:-VL]:/50};}

endclass: adc transaction in 23
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UVM — Sequence Generation — Internal signals

The ‘uvm_sequence_item’ class has also the randomization of the internal signals
that model the random mismatch within the ADC components.

class adc_transaction in extends uvm_ sequence item;
// Randomization of Internal Signals
rand real vrefl;

constraint c vrefl { vrefl inside {[(1*VREF)/n levels - (delta/2) : (L*VREF) /n_levels + (delta/2)]1}; };

rand real vref2;
constraint c vref2 { vref2 inside {[(2*VREF)/n levels - (delta/2) : (2*VREF)/n levels + (delta/2)1}; };

endmodule

24
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UVM — Monitors

The environment here has two UVM monitors:

* The input signals to the DUT through the virtual interface responsible for accessing the DUT’s input
ports.

« Moreover, the internal signals of the DUT through the virtual interface responsible for accessing the
DUT’s internal signals that the verification engineer needs to force their values.

 This monitor is inside an active agent.

* The output signals to the DUT through the virtual interface responsible for recording the DUT’s output
ports.

« Moreover, the internal signals of the DUT through the virtual interface responsible for recording the
DUT’s internal signals that the verification engineer needs to ensure their values.

« This monitor is inside a passive agent.

25
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UVM — Subscribers

Functional cover points are placed in four places:

Close to the randomization to guarantee that the system is set to all expected randomized values within a given range.

= = As a result, the sequence declares the cover points. (C1)
1
c2
Close to the system's input to make sure that all expected values are present at the DUT's input ports. 3
‘uvm_subscriber’, which was designed to handle data that are tracked from the input interface, can accomplish this. (C2) g
il
c3 Located within the DUT to guarantee that the internal signals contain the right values. (C3)
Close to the system's output ports to guarantee that it covers all anticipated output values. :
The verification engineer then ensures that the system's output values are being observed from this functional cover point. %
‘uvm_subscriber’, which is designed to cover the data monitored from the output interface, can accomplish this. (C4) . % 26
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UVM — Scoreboard

Reference model is a simple representation to the functionality of the DUT that links
the expected output and the input received from the DUT with a simple relation.

ADC:
Vsup

Real (input
(input) Where,delta=7

delta

logic (output) = {

DAC:
Real (output) = Logic (input) X delta

The output transaction from the reference model is then compared with the output
transaction received by the DUT.

l - D-‘:[ Comparator

| Reference Model

) ]

27
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UVM — Scoreboard — Code

ADC DAC
class refmod extends uvm component; class refmod extends uvm component;
‘uvm_component_utils(refmod); ‘uvm_component_utils(refmod);
int n = 3; int n = 3;
int nlevels = 2**n; //No_ levels of conversion int nlevels = 2**n; //No_ levels of conversion
virtual task run phase (uvm phase phase); virtual task run phase (uvm phase phase);
super.run phase (phase) ; super.run phase (phase) ;
forever begin forever begin
in.get (tr in); in.get (tr in);
if (tr in.VIN >= vsuplow && VIN < ((tr in.VREF)/n levels)) begin if (tr in.Q > '0 && tr in.Q < ‘1) begin
tr_ouE.Q = 10; a a tr out.vout a = Q *((tr_in.VREF)/nlevels);
end end
else if (tr in.VIN >= ((n_levels-1) && tr in.VIN <= tr in.VREF) else if (tr_in.Q == '1)
begin begin
tr out.Q = ‘1; tr out.vout a = ((nlevels-1) * ((tr_ in.VREF)/nlevels));
end end
else if ((tr in.VIN >= ((tr in.VREF)/n levels)) else if (tr_in.Q == '0)
&& (tr in.VIN < ((n_levels-1) * ((tr in.VREF)/n levels)))) begin
begin tr out.vout a = 0;
tr out.Q = S$floor(tr in.VIN ((tr in.VREF)/n levels)); end
end B B B out.put (tr out);
out.put (tr out); end
end endtask: run phase

endtask: run_ phase

endclass: refmod endclass: refmod 28
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Check on ADC/DAC Linearity

 The functional correctness of the converter is measured by the quantization error.

« The quantization error is the difference between the infinite resolution and the
actual characteristics. It’s equal to % LSB = i% = 2]:”1 and considered as a noise
added to the signal.

« The converter errors should be less than the quantization noise. The circuit errors
are due to:

« The Component random mismatch due to the fabrication tolerances.
« The limitation in build block specification like gain, bandwidth, linearity, ...

29
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Check on Linearity — INL/DNL

Checking the quantization errors effect in the converter functionality, can be derived by measuring the ADC
linearity. Which means measuring the transition deviations of the converter from the ideal characteristics.

This is known by finding the Integral Non-Linearity (INL) and Differential Non-Linearity (DNL).

 INL: Maximum deviation of code transitions from their ideal values 111 —
in LSB. A converter is guaranteed to be monotonic if the maximum 110 —
&—Missing Code ws
INL is less than +0.5 LSB. o 10177
Q.
, _ Vi_real B Vi_ideal 8
INL (in LSB) = n E 011 —
e
* DNL: Maximum deviation in the step width from the ideal values © 010 — —t b—J <« Non-monotonic
of Ain LSB. If IDNL| = 1 LSB, this will result in a missing code. 001 —
v, —V,_, 000 >
DNL (in LSB) = = n 1 Analog Input 30
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<%  Signal Name Values C1

top. ADCL. COMP.INL -0, 0454149 AL NI ety DO AL RITY L L LA SRR T [T Ly g e i g B0 LA Y L SN AL S L S TR0 R

INL/DNL |

Monotonic/Non-Missing Cocie top. ADCL. COMP DL ‘l ‘ll”|h|||ull|1wlr|l HHMM |‘"[ ||T|i’||t|H| il |.|\‘ || | \l,ﬁ, | ,,i|||,|, ,,||.t’4\||.|l_.|, .|| ‘n I'”'”"""IH | H \ hlu

INL and DNL values with acceptable modeling component mismatch.

P Signal Name Values C1 Values C2 0.09 0.1
top. FLASH_ADC . COMP . monotonic op. FLASH_ADC . COMP..monotonic

4 top.FLASH_ADC.CLK 1bil 1 PP AP P A PP PP PP TR PL L LA LT
Non monotonlc behaVIor top.FLASH_ADC.COMP.INL .5681 -0.666371

top.FLASH_ADC.COMP.monotonic

0.16 0.17 0.18

4] top.FLASH_ADC.VIN

B top.FLASH_ADC.Q[2:0]

tnp FLASH_ADC.COMP.missing_code top.FLASH_ADC.COMP.missing_code

4 top.FLASH_ADC.CLK 1'b1 8 N N A AR RN RN AR N NN NN R R R RN N R R R RN RN REAR RN

top.FLASH_ADC.COMP.DNL

top.FLASH_ADC.COMP.missing code

top.adc_if_in.VIN

[# top.FLASH_ADC.Q[2:0]
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Summary

In the digital environment, there are a lot of verification techniques that can be used
to find bugs within a system. This makes the digital verification is always preferred
as its reliability, and usage. Only one environment and one event-driven simulator

can provide these verification techniques in an automated way. The paper illustrates:

« The constrained random verification. Such as randomizing the input components of ADC/DAC as
modeling quantization mismatch in ADC/DAC. From this step, the digital verification engineer
will be able to know the extent of the variation that each component can hold else the system will
behave incorrectly.

« The functional coverage ensures that the electrical voltage is covered under a certain amplitude
range.

 Assertions are built to check the functionality of the whole system if there is a simple relation
between the output and input of a system.

 The UVM-based verification is one testbench environment that provides classes to support the
randomization of ports through ‘uvm_sequence’ class. Supports the functional coverage through

‘uvm_subscriber’ class and assertions through ‘uvm_scoreboard’ class. .
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Questions

Thanks for listening. Appreciated.
Do you have any Question to ask ? © ...

Contact: mariam.maurice@siemens.com
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