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Abstract

Recently, Devin has made a significant buzz in the Artificial Intelligence (AI) community as the world’s first fully
autonomous AI software engineer, capable of independently developing software code [1] [2]. Devin uses the concept of
agentic workflow in Generative AI (GenAI), which empowers AI agents to engage in a more dynamic, iterative, and self-
reflective process. In this paper, we present a similar fully autonomous AI formal verification engineer, Saarthi1, capable
of verifying a given RTL design end-to-end using an agentic workflow. With Saarthi, verification engineers can focus on
more complex problems, and verification teams can strive for more ambitious goals. The domain-agnostic implementation
of Saarthi makes it scalable for use across various domains such as RTL design, UVM-based verification, and others.
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I. INTRODUCTION

Hardware design verification, especially formal verification, entails a methodical and disciplined approach to the planning,
development, execution, and sign-off of functionally correct hardware designs. Formal verification uses mathematical methods
to prove the correctness of hardware designs against their specifications, ensuring that all possible states and inputs are
considered, which complements traditional simulation-based verification techniques that might only cover a subset of possible
scenarios due to practical constraints. [3]. The formal verification process encompasses several key roles, such as organizational
coordination, task allocation, code development, property proving, analyzing Counter Examples (CEXs), debugging, coverage
closure, and documentation preparation. These roles are crucial for managing the complexity and ensuring the thoroughness of
the verification process. For instance, analyzing counterexamples involves identifying specific scenarios where the design might
fail to meet its specifications, which is critical for debugging and refining the design. This highly intricate activity demands
meticulous attention to detail, given its long development cycles and the critical nature of ensuring hardware functionality and
reliability [4].

The field of Natural Language Processing (NLP) has undergone a significant transformation with the advent of Large
Language Models (LLMs). These powerful models, often referred to as GenAI, have revolutionized how machines understand
and generate human language, enabling unprecedented advancements in a wide array of applications [5]. Through extensive
training on large datasets using the “next word prediction” approach, LLMs have demonstrated remarkable capabilities in various
downstream tasks such as context-sensitive question answering, machine translation, and code generation [6]. Interestingly, the
primary components of formal verification – specifically code (assertions as properties) and specification documents – can be
considered as forms of “language” or sequences of characters [7]. Various surveys [8] have discussed techniques for improving
conventional formal verification; however, we aim to enhance it further using AI. This paper introduces an end-to-end formal
verification process driven by LLMs. This process encompasses design specification analysis, code development, verification,
and document generation, aiming to establish a unified, efficient, and cost-effective paradigm for hardware design verification.
By leveraging the advanced capabilities of LLMs, it is possible to streamline the formal verification process, enhancing both
accuracy and productivity.

Like every other semiconductor company, we wanted to investigate the possibilities of using GenAI for dedicated use cases.
However, there are known challenges that prevent precise use case definitions [9]. GenAI operates as a stochastic process,
meaning it generates non-deterministic output with each regeneration. This is in contrast to the requirements of hardware design
verification, which demands precise, deterministic answers, particularly in formal verification where engineers need to make
clear pass/fail decisions based on exact criteria. Due to this fundamental mismatch, the non-deterministic output of LLMs is not
always suitable for hardware design verification. Additionally, LLMs can suffer from artificial Attention Deficit Hyperactivity
Disorder (ADHD), characterized by a tendency to lose focus on the task at hand, and hallucination, where the model generates
incorrect or nonsensical information confidently [10]. These issues are very prominent and can lead Generative Pre-trained
Transformer (GPT) users to get stuck in iterative loops, repeatedly seeking accurate results without success. Given these
challenges, the current state of GenAI may not be well-suited for applications that require the high precision and determinism
essential in hardware design verification.

1Saarthi is a Sanskrit word that means someone who guides and leads you to your destination.



To overcome the aforementioned challenges and use GenAI for problem-solving, we introduce a fully autonomous AI formal
verification engineer, Saarthi, capable of verifying a given RTL design end-to-end using an agentic workflow. Saarthi stands for
ScalAble ARTificial and Human Intelligence that uses agentic AI based reasoning patterns and human intelligence to produce
sensible results. Saarthi can run formal verification on several complex IPs with coverage closure and find bugs similar to a
human verification engineer. Our contributions to this work are summarized below:

• We propose Saarthi, an agentic AI-based formal verification engineer. By providing the design specification, Saarthi
sequentially handles verification planning, generating SystemVerilog Assertions (SVAs), proving the properties, analyzing
CEXs, and analyzing the formal coverage for sign-off.

• To address the issue of ADHD and code hallucination, we use the approach of agentic (few-shot) workflow as opposed
to the non-agentic (zero-shot) workflow.

• To further alleviate potential challenges related to LLMs getting stuck in iterative loops, we use the concept of “human-
in-the-loop” AI to ensure uninterrupted end-to-end formal verification.

Section II summarises the related work and introduces agentic workflow design patterns. Section III discusses the details
about the framework of AI agents and how they interact with each other to perform formal verification. Section IV presents
our results from evaluating formal verification of different RTL designs with varied complexity. Section V concludes the paper
with an outlook on possible future research opportunities.

II. BACKGROUND

Recent work in [10] found that LLMs tend to generate incorrect designs and are vulnerable to security flaws as the authors
observed around 60% failure rate for the generated RTL designs. Our findings indicated that the expectations of authors from AI
were too high in terms of achieving first-time-right designs. Additionally, their approach of benchmarking the LLM-generated
designs may have been overly pessimistic, possibly not accounting for the iterative improvement potential of these models.
Moving forward, we want to focus on using GenAI as a problem-solving tool and to use the existing capabilities of LLMs to
generate better results. There are two types of AI-based workflows:

• Non-agentic workflow (zero-shot)
• Agentic workflow (few-shot)

A. Non-Agentic Workflow

Start

Finish

Fig. 1: Non-agentic workflow

The first productive uses of LLMs involved non-agentic workflows, where we type a
prompt and the model generates an answer in one go. This is akin to asking a person to
write an essay on a topic and saying “please sit down to the keyboard and type the essay
from start to finish without ever using backspace”. Despite how hard this is, LLMs do it
remarkably well; however, the quality of the generated content is often relatively lower
due to the lack of iterative refinement. This approach is termed a zero-shot or non-agentic
workflow. In a zero-shot scenario, the model attempts to generate a response without any
prior specific examples or iterations tailored to the task at hand.

In the ReFormAI dataset paper [10], the authors used a similar non-agentic workflow and
benchmarked the LLM generated RTL codes that resulted in a relatively higher failure rate. The results suggested that the
failure rate was significant due to the one-pass, zero-shot nature of the generation process. The results would likely have been
better if a feedback loop had been added to the generation part. A feedback loop would allow for iterative refinement, where
the model could receive feedback on its initial outputs and make adjustments to improve accuracy and quality. This approach
would enable the LLM to correct errors, incorporate additional context, and ultimately produce higher-quality RTL designs.

B. Agentic Workflow

Thinking/
Research

Revise

Fig. 2: Agentic workflow

In contrast to the zero-shot workflow, the agentic or few-shot workflow uses iterative loops
and feedback to produce better results. This approach is very similar to how humans think
and approach a given task. For the task of writing an essay, a human would typically start by
outlining the essay on topic X, conducting web research, preparing a first draft, considering
what parts of the essay need revision, revising the draft, and finally producing the final
version. Similarly, if LLMs employ this iterative approach to address a prompt, they deliver
remarkably better results. In a few-shot workflow, the model is initially provided with a few
examples to guide its responses. As it generates outputs, it receives feedback, which it uses
to refine and improve its responses iteratively. This process allows for error correction and
the incorporation of additional context, leading to higher quality and more accurate results compared to the zero-shot approach.

Based on open-source benchmarks, researchers found that using GPT-3.5 with zero-shot prompting, the LLM yields 48%
correct results. With GPT-4, this accuracy improves to 67%. However, when using an agentic workflow and wrapping it around



GPT-3.5, it outperformed GPT-4, demonstrating the significant impact of iterative feedback and refinement [11]. Certainly, an
agentic workflow wrapped around GPT-4 produced even better results, further enhancing accuracy and performance. We also
tried a similar approach to formally verify a synchronous FIFO and achieved a 100% pass rate using the few-shot approach
within minutes. Table I summarizes the result.

TABLE I: Zero-shot and few-shot prompting for formal verification of a synchronous FIFO design

Workflow Proved Assertions CEX Unreachable Covers Covered Covers

Zero-shot 42.85% 57.15% 12.5% 87.5%

Few-shot 100% 0% 0% 100%

Researchers have recently put a lot of effort into defining agentic reasoning design patterns. The most significant ones that
facilitate agentic AI-based workflows are:

• Reflection [12] [13]
• Tool use [14] [15]
• Planning [16] [17]
• Multi-agent collaboration [6] [18]

C. Reflection

Reflection uses the concept of a coder agent and a critic agent. For any given task, there would be a coder agent that generates
code—in our case, SystemVerilog Assertion (SVA) – and a critic agent that critically analyzes and reviews the output of the
coder agent, providing feedback. This feedback loop is iterative, allowing the coder agent to refine its code based on the critic
agent’s insights, leading to progressively better results.

Human

Please write me SVA code for
task{assertion}

property fifo_not_full_and_empty v1...

property fifo_not_full_and_empty v2...

There's a bug on line 2. Fix it by...

It failed to compile in tool. Fix it by...

Coder Agent
(LLM)

Critic Agent
(LLM)

Here's the code for intended task{assertion}

property fifo_not_full_and_empty;
  1 |-> $onehotzero(full,empty);
endproperty
assert property (fifo_not_full_and_empty);

Check the code for correctness and give feedback
0

1

23

45

Fig. 3: Coder and critic AI agents for self-reflection (adapted from [11])

Fig. 3 shows a case where a human asked the coder AI agent to write SVA code for a given specification. Once the SVA is
generated, the critic agent analyzes the code and provides feedback, identifying a bug in line X. The coder agent then uses this
feedback to fix the code and generate version 1 (v1) of the SVA. Next, the critic agent attempts to compile the generated code
using a formal verification tool and reports a compilation issue, including the error message from the tool, to the coder agent.
The coder agent analyzes this feedback and produces a corrected SVA as version 2 (v2). Using this iterative approach, the
human is able to obtain a significantly better SVA by leveraging the capabilities of existing LLMs. The human’s role includes
initiating the process, reviewing the iterations, and making use of the final, refined SVA code.

LLM agents are increasingly being used to interact with external environments as goal-driven agents. However, these language
agents face difficulties in rapidly and effectively learning through trial-and-error, since conventional reinforcement learning
techniques necessitate a large number of training samples and expensive model fine-tuning. The authors in [13] propose a
novel framework, Reflexion, that uses verbal reinforcement to help agents learn from previous failures. Creating valuable
reflective feedback is difficult because it involves accurately identifying where the model went wrong (known as the credit
assignment problem [19]) and being able to produce a summary that offers actionable recommendations for improvement.
The authors also propose several mitigation techniques such as simple binary environment feedback, pre-defined heuristics for



common failure cases, and self-evaluation such as binary classification using LLMs (decision-making) or self-written unit tests
(programming).

Model (M)

Feedback Refine

Input

0

1 2

Fig. 4: Iterative feedback with self-
refinement [12]

Write constraint for unique values in
an array
foreach(array[i]) {
  foreach(array[j]) {

    if (i != j) {

      array[i] != array[j];}}}

The code is slow as it
uses brute force. A better
approach is to use the
SystemVerilog keyword
"unique"

Code (refined)

constraint array_c {

  unique{array};
}

Code Feedback Refine

Fig. 5: Example of self-refinement: an initial output is generated by the base
LLM and then passed back to the same LLM to receive feedback and sent
to the same LLM to refine the output.

The authors in [12] introduce iterative self-refinement, a fundamental characteristic of human problem-solving that involves
creating an initial draft and subsequently refining it based on self-provided feedback. A similar approach can be applied to
LLM agents as shown in Fig. 4. Given an input (0), self-refinement starts by generating an output and passing it back to the
same model M to get feedback (1). Feedback is passed back to M, which refines the previously generated output (2). Steps
(1) and (2) iterate until a stopping condition is met. An example of such a self-refinement is highlighted in Fig. 5. Using
self-feedback, the LLM agent could modify the previously generated code for a constraint in SystemVerilog to generate unique
values in a random array to an optimized version.

D. Tool Use

Tool use is another agentic reasoning design pattern that leverages AI-based tools to generate meaningful results. Web search
tools such as Copilot, which assists with coding by providing intelligent code suggestions, and code execution tools such as
[20] and [15], which help automate and streamline the coding process, significantly increase productivity gains. These tools
enable users to accomplish tasks more efficiently by harnessing the power of AI to provide relevant information, automate
repetitive processes, and enhance overall workflow. Some examples of areas of application for tool use are mentioned in Table
II.

TABLE II: Tool use in agentic workflow [11]

Analysis Research Productivity Images

Code Execution Search engine Email Imager generation (e.g., Dall-E)
Wolfram Alpha Web browsing Calendar Image captioning
Bearly Code Interpreter Wikipedia Cloud Storage Object detection

The authors in [21] used GPT tools to analyze inductive-step failure CEXs in formal verification to generate helper assertions.
A similar approach could be employed to analyze the CEXs and request an explanation of the failure. Based on this analysis,
the user can decide whether the RTL design needs a fix or if the property should be adjusted in the case of a false-positive. An
example of such a conversation between a human and the LLM is highlighted in Fig. 6, demonstrating how the LLM provides
insights that aid the user in making these decisions.

Input Prompt

You are a helpful AI assistant that can help analyze the Counter
Examples (CEXs) from formal verification runs. Please analyze and
explain the failure in the given CEX.

Model Output

As a helpful AI assistant, I will first analyze the uploaded CEX
image...

After analyzing the CEX, it appears that the opcode for ALU is an
addition operation and the inputs are 3 and 2. The addition of 3 and
2 should be 5 but the output is 1 which is wrong. The design is likely
doing a subtraction instead of an addition.

Fig. 6: Using GenAI tool to analyze a CEX



E. Planning

Planning is one of the key workflows to generate quality output from LLMs using agentic reasoning. Even though LLMs are
quite good at generating responses for a given prompt, they are often criticized for their lack of commonsense reasoning. This
deficiency can impact the accuracy and reliability of the generated responses. Fig. 7 illustrates this issue through a standard
prompting example where the model’s output is incorrect for a simple reasoning question. By incorporating planning into the
workflow, LLMs can be guided to consider broader context and logical steps, which helps mitigate the lack of commonsense
reasoning and leads to higher quality outputs.

Model Input (Standard Prompting)

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls.
Each can have 3 tennis balls. How many tennis balls does he have
now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and
bought 6 more, how many apples do they have?

Model Input (Chain-of-Thought Prompting)

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls.
Each can have 3 tennis balls. How many tennis balls does he have
now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis
balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and
bought 6 more, how many apples do they have?

Model Output

A: The answer is 27. ✖

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make
lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they
have 3 + 6 = 9. The answer is 9. ✔

Fig. 7: Standard prompting vs. chain-of-thought prompting. Chain-of-thought reasoning processes are highlighted [16].

The authors in [16] explore generating a Chain-of-Thought (CoT) – a series of intermediate reasoning steps that enable LLMs
to tackle complex arithmetic, commonsense, and symbolic reasoning tasks. CoT, in principle, allows models to decompose
multi-step problems into intermediate steps, which means that additional computation can be allocated to problems that require
more reasoning steps. For many reasoning tasks where standard prompting has a flat scaling curve, CoT prompting leads to
dramatically increasing scaling curves. An example of CoT prompting is shown in Fig. 7 that elicits reasoning in LLMs.

Although CoT emulates the thought process of human reasoners, this does not necessarily indicate that the neural network
is actually “reasoning”. CoT typically involves few-shot prompting, where the model is provided with a few examples to
guide its responses. This approach can be expensive, especially when using paid LLMs. In contrast, using zero-shot prompting
with a more generalized prompt could be more cost-effective. Furthermore, there is no guarantee that CoT will follow correct
reasoning paths, which can lead to both correct and incorrect answers. The variability and uncertainty in the reasoning process
mean that while CoT can help generate more logically structured responses, it can also propagate errors if the initial reasoning
path is flawed.

F. Multi-Agent Collaboration

AI agents can collaborate to solve tasks given by a human. These agents can leverage several LLMs to handle different
responsibilities within a complex task. The authors in [6] introduce communicative agents for software development, which are
designed to interact and share information to improve task-solving efficiency, and present an open-source alternative to Devin
[1]. Research done in [22] supports the notion that a multi-agent system performs better than a single agent when solving
complex tasks. Table III summarizes the results of a multi-agent debate for different tasks, such as the Massive Multitask
Language Understanding (MMLU) benchmark and chess moves, demonstrating the improved performance of multi-agent
systems in these diverse scenarios.

TABLE III: Multi-agent debate [22]

Task Single Agent Multi-Agent

Biographies 66.0% 73.8%

MMLU 63.9% 71.1%

Chess move 29.3% 45.2%

A classic example of multi-agent collaboration is depicted in Fig. 3, where the coder and critic agents work together to
solve a given task that includes reasoning and feedback. In this scenario, the coder agent generates the code, while the critic



agent reviews the output and provides feedback to improve accuracy. To compensate for problems such as code hallucination
– where an AI generates plausible but incorrect code – it is usually better to divide a complex task into simpler tasks and have
one agent solve each of them [23]. This approach not only reduces the risk of hallucination but also mitigates the risk of an
agent getting stuck in an iterative loop while attempting to solve a complex task. By breaking down the task, each agent can
focus on a specific aspect, leading to more efficient and accurate problem-solving.

LLM Agent Answer

Prompt
Query

Majority
Voting

...

Sampling Voting

Fig. 8: Sampling-and-voting method [23]

The authors in [23] suggest the so-called “sampling-and-voting” method to improve results from multiple LLM agents. This
approach involves generating results from multiple LLM agents for the same prompt (sampling) and then voting on the majority
result to obtain the best possible outcome. This method leverages the diversity of responses to enhance accuracy and reliability.
The performance of LLMs scales with the number of agents instantiated, meaning that as more agents are used, the overall
accuracy and quality of the results improve. This scaling effect is highlighted in Fig. 8, which demonstrates how increasing
the number of agents leads to better performance metrics such as accuracy, consistency, and robustness of the outputs.

III. SAARTHI: AGENTIC AI-BASED FORMAL VERIFICATION

Formal Verification
Lead

Design Specification

Task Dispatcher

Generate SVA

Update SVA

Compile SVA and
Design in Formal Tool

Prove Properties

Analyze CEX

Sign-Off with Formal
Coverage

Planning Generation Execution

End

Fig. 9: Saarthi: Agentic AI based formal verification using multi-agent collaboration

To realize our contributions and conduct our experiments, we prepared a flow as illustrated in Fig. 9 where AI agents are in
the driver’s seat as soon as a task is given to solve. Saarthi is designed to facilitate formal verification through a sophisticated
agentic AI-based approach that leverages multi-agent collaboration. Saarthi integrates several design patterns, including agentic
reasoning and techniques to mitigate issues such as attention deficits, hallucinations, and repetitive looping. It is built using



three open-source frameworks – CrewAI, AutoGen, and LangGraph – enabling the user to select any of them for formal
verification. The architecture implements a configurable agent orchestration system that can be adapted to varying verification
requirements while maintaining consistency and reliability in the verification process.

A. Flow Architecture

Framework
and LLM
selection

Frameworks LLMs
CrewAI Autogen Langgraph GPT-4o GPT-4-

Turbo
Llama3-

70b

Agent
config

Agent Customization Agent Configuration

Sequential
Hierarchial

Processformal_verification_lead:
  name: "formal_verification_lead"
  system_message: >
                  <Agent task>

name=agent_info['name'],
system_message=agent_info['system_message'],
llm_config=llm,
max_consecutive_auto_reply = 5,
is_termination_msg = "FAIL",
human_input_mode = "NEVER",
code_execution_config = {"executor":executor},

Agent
Selection

Conversable Agent Assistant
Agent

UserProxy
Agent

Agent
orchestration

Register Agents and LLMs

Formal
Verification
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Formal
Verification
Engineer 1

Properties in Natural
English language
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Custom Utility
Functions

create_agent() get_yy()
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Agent config
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Context

Initiate Conversations

Conversation driven Control Flow

Carryover

Human
Feedback
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Formal
proofs

Code Executor Agent

Program Execution and Conversation centric Computation

name=name,
system_message=f"'{script_path}'",
human_input_mode="NEVER",
function_map={"execute_script"},
code_execution_config={"config"},
llm_config=llm_config

Message

Context

Formal Tools

Python TCL

Automation flow

Jasper
Formal

CEX

Coverage

Fig. 10: Example usage of Saarthi for formal verification using multi-agent conversation

The system’s entry point is the main function, which implements an argument parsing system supporting multiple configura-
tion domains, including framework selection mechanisms and LLM model specifications. The framework selection encompasses
implementations such as CrewAI, AutoGen, and LangGraph, while the LLM configuration supports models including GPT-
4o, GPT-4-Turbo, and Llama3-70B. This modular architecture enables seamless switching between different implementation
frameworks while maintaining consistent verification workflows. This main function also processes input files, which consist
of a specification file for the input design. Each framework has an agent configuration file that defines the agents, including
their roles and descriptions. The collaborative formal verification process is realized through a structured crew of agents, each
specializing in a distinct aspect of verification.

The AutoGen implementation features a sequential processing pipeline that manages inter-agent communication through
structured message-passing protocols. The system implements comprehensive logging mechanisms that capture detailed inter-
actions and logs. The CrewAI implementation utilizes decorator patterns for task definition, implementing a structured approach
to workflow management. The system incorporates file-based tool integration mechanisms and implements a comprehensive
logging system that captures execution details at multiple granularity levels.



The framework also implements an error management system incorporating multiple feedback loops for continuous im-
provement. The system utilizes critic agents that perform property evaluations, providing detailed feedback for assertion
improvement. The iteration control system uses threshold-based monitoring to prevent infinite loops, automatically triggering
human intervention when resolution cannot be achieved autonomously. The error-handling system implements structured
exception management through try-catch hierarchies. Saarthi also generates verification artifacts through template engines and
formatting systems. The logging system implements timestamp-based organization and multi-level capture, ensuring complete
traceability of the verification process. Fig. 10 shows an example usage of Saarthi to accomplish a task using multi-agent
collaboration.

Fig. 9 is the high-level overview of the flow we have defined for formal verification where AI agents are in the driver’s
seat as soon as a task is given to solve. Every block in the flow chart is executed by an LLM, except the first, the design
specification that a human provides. The first LLM agent is the so-called “formal verification lead” who is responsible for
generating a Verification Plan (vPlan) (i.e., a list of the properties necessary to verify the given design written in the natural
English language) based on the given specification. The verification lead divides the follow-up tasks to other LLM agents.
An example of such an agent in the AutoGen framework with its role, goal and backstory is highlighted in Listing 1. The
subsequent steps in the flow involve several LLMs acting as formal verification engineers to analyze the vPlan and generate
SVA for each corresponding element. An example of the tasks defined in the AutoGen framework for vPlan generation and
SVA generation is highlighted in Listing 2. The generated properties are evaluated for correctness by the critic agents and
feedback is provided to improve SVA. This iterative process continues until a threshold is reached without a conclusion on the
SVA. This is when human intervention is required to decide the correct SVA and continue the overall process. The generated
properties are then proven in a formal tool, and the CEXs are analyzed if any and fixed by the LLM agents. Once all properties
are proven, another LLM agent takes over to analyze the formal coverage, an important verification sign-off criteria. Based on
missing coverage, feedback is provided to the formal verification lead to add missing properties.

Listing 1: Formal verification lead agent example

formal_verification_lead:
role: >
Formal Verification Lead

goal: >
Gather all the necessary information regarding the given Register Transfer Level (RTL) design and
its specification to define a set of formal properties to verify its functionality.

backstory: >
An expert formal verification engineer, who spends all day and night thinking about how to verify
the given Design Under Verification (DUV) based on its specification. It analyzes the design
specification and defines the set of SystemVerilog Assertion (SVA) properties required to verify
the functionality of the given design. The properties are described in the natural English
language.

allow_delegation: false
verbose: true
max_iter: 5

Listing 2: Example of tasks defined for formal verification lead and the SVA generation responsible engineer

vplan_gen :
description: >

Analyze the specification of the Register Transfer Level (RTL) design to come up with a set of
properties written in the natural English language that would be used to verify the functionality
of the design using formal verification.

expected_output: >
SystemVerilog Assertion (SVA) properties defined in the natural English language that will be used
to verify the functionality of the given design using formal verification.

property_gen :
description: >

Analyze the given property description and write the SystemVerilog Assertion (SVA) property.
expected_output: >
Correct SystemVerilog Assertion (SVA) for each of the properties.

Since ADHD, hallucination and being stuck in iterative loops are the usual downsides of LLMs, we circumvent these issues
by dividing complete verification into smaller tasks. We also make sure that if there is a feedback loop between two agents, say,
to generate and update the SVA, and the loop cannot decide on the correct SVA, we have set a threshold of 5 iterations, after
which the human would be asked to intervene and provide the correct SVA to move forward. We call this approach “human-in-
the-loop AI” that uses human feedback to ensure the entire flow is exercised and does not get stuck at any point. It plays a key



role in making the models more truthful and reducing hallucination errors and allows human feedback to steer agents in the
right direction, specify goals, and others. The human-in-the-loop component sits in front of the auto-reply components. It can
intercept the incoming messages and decide whether to pass them to the auto-reply components or to provide human feedback
based on customization in the agentic AI frameworks. Fig. 11 illustrates such a design. The algorithm for human-in-the-loop
AI is highlighted in algorithm 1.

Algorithm 1 Human-in-the-loop message processing in Saarthi

Require: M : Messages, mode ∈ {NEV ER, TERMINATE}, max replies ∈ N+

1: Initialize counter ← 0, conversation active← true
2: while conversation active do
3: mt ← ReceiveMessage()
4: if IsTerminationMessage(mt) then
5: conversation active ← false
6: else if mode = NEVER then
7: ProcessAutoReply(mt)
8: else if mode = TERMINATE then
9: if counter ≥ max replies then

10: hc ← RequestHumanInput(mt)
11: if hc = TERMINATE then
12: conversation active ← false
13: else if hc = SKIP then
14: ProcessAutoReply(mt)
15: else if hc = INTERCEPT then
16: ProcessHumanReply(mt)
17: counter ← 0
18: end if
19: else
20: ProcessAutoReply(mt)
21: counter ← counter + 1
22: end if
23: end if
24: end while
Ensure: Counter resets on INTERCEPT; One reply per message

Saarthi

Human-in-
the-loop

Auto-reply
components
(LLM, Code,

Executor, etc.,)

Terminate

Skip
Messages

Human Reply

Auto Reply

Fig. 11: Allowing human feedback in agents
[18]

The algorithm starts by setting the conversation to active and the counter to 0. When the mode is set to NEVER, it doesn’t
wait for human input and terminates automatically. However, when the mode is set to TERMINATE, it requests humans to give
some input hc. If hc is terminated, then the human-in-the-loop process terminates. If hc is skipped, then the human-in-the-loop
process proceeds forward (e.g., to other agents) without terminating the process. If hc is intercepted, the algorithm considers
and processes the human input.

B. Agent Orchestration

Once the agents are configured, they are passed as keys to an orchestration setup. This orchestration mechanism is capable
of managing agents in both a sequential and hierarchical manner. For this formal verification process, the agents are arranged
in a sequential order. After orchestration, the selected framework’s main module initiates the verification process, invoking the
agents sequentially.

During this process, the agents generate key artifacts such as vPlan and properties, logging their interactions and collaborations
as they proceed. The generated properties are also subjected to evaluation by critic agents, who provide feedback to improve the
quality and correctness of SVAs. This iterative process continues until a stable threshold is achieved. If the agents are unable to
finalize the SVAs within a predefined maximum number of iterations, human intervention is triggered for further assessment.
Once the SVAs are finalized, they undergo formal verification, with any CEXs identified and resolved by the agents.

IV. BENCHMARKING AND RESULTS

To evaluate the performance and benchmark its capabilities, we used Saarthi to verify RTL designs of varied complexity.
Tables IV, V and VI underline the performance of Saarthi on basic, intermediate, and advanced design complexity levels. We
chose three Key Performance Indicators (KPIs) to benchmark the results with different LLMs. The first is “success rate” which
determines the number of successful runs (i.e., end-to-end formal verification) out of the total runs. The second KPI is the
coverage rate (formal coverage after end-to-end formal verification). The third KPI indicates the pass rate of the assertions
generated from Saarthi with each LLM. The results are highlighted in Fig. 12.



TABLE IV: Performance of Saarthi on basic difficulty level designs

Design Metric Pass@1 Pass@2 Pass@3

GPT-4o GPT-4-Turbo Llama3 GPT-4o GPT-4-Turbo Llama3 GPT-4o GPT-4-Turbo Llama3

Accumulator
# Properties 11 4 9 13 10 0 12 6 0
% Proven 45.45% 50% 44.44% 53.85% 70% 0% 33.33% 16.67% 0%

% Coverage 81.82% 80.95% 77.78% 80% 84% 0% 80.77% 83.58% 0%

8-bit ALU
# Properties 10 5 18 13 13 0 16 14 0
% Proven 20% 20% 27.78% 7.69% 92.31% 0% 37.50% 14.29% 0%

% Coverage 93.29% 94.33% 90.53% 95.54% 87.59% 0% 92.68% 93.13% 0%

Edge detector
# Properties 6 8 7 5 7 8 7 9 10
% Proven 33.33% 62.50% 14.29% 40% 71.43% 75% 28.57% 44.44% 40%

% Coverage 60% 60% 53.85% 50% 72.73% 75% 50% 73.33% 70.59%

4-state FSM
# Properties 6 5 9 9 9 7 9 8 8
% Proven 100% 100% 88.89% 100% 77.78% 57.14% 100% 100% 75%

% Coverage 82.22% 80.95% 65.23% 52.94% 83.33% 78.74% 75% 75.59% 71.25%

Up-down counter
# Properties 6 8 8 9 8 8 9 0 8
% Proven 33% 75% 88% 33% 25% 25% 26% 0% 75%

% Coverage 56% 69% 0% 53% 71% 79% 81% 0% 7%

TABLE V: Performance of Saarthi on intermediate difficulty level designs

Design Metric Pass@1 Pass@2 Pass@3

GPT-4o GPT-4-Turbo Llama3 GPT-4o GPT-4-Turbo Llama3 GPT-4o GPT-4-Turbo Llama3

Sync. FIFO
# Properties 14 12 12 15 13 7 6 9 13
% Proven 7.14% 41.67% 8.33% 33.33% 23.08% 28.57% 50% 33.33% 30.77%

% Coverage 90.48% 58.71% 91.66% 50% 73.08% 71.43% 50% 87.50% 84.62%

FSM controller
# Properties 29 4 0 30 6 0 31 10 0
% Proven 48.28% 75% 0% 43.33% 33.33% 0% 52.38% 20% 0%

% Coverage 72.41% 42.86% 0% 68.97% 84.62% 0% 70% 73.68% 0%

Priority encoder
# Properties 11 11 12 7 12 16 4 10 11
% Proven 18% 55% 17% 71% 33% 38% 50% 40% 18%

% Coverage 82% 82% 83% 25% 82% 87% 50% 70% 78%

16-bit LFSR
# Properties 6 5 6 6 5 6 5 5 8
% Proven 83% 20% 67% 50% 40% 33% 40% 40% 40%

% Coverage 0% 0% 44% 40% 43% 67% 40% 71% 78%

CRC generator
# Properties 8 6 9 4 7 5 8 6 10
% Proven 25% 33% 100% 50% 43% 40% 38% 50% 60%

% Coverage 80% 67% 0% 50% 57% 63% 67% 67% 75%

Saarthi performs the best with the GPT-4o model and the worst with the Llama3-70B model. GPT-4o has a consistent proof
rate and the most consistent coverage metrics. Even though the proven rate of the assertions is lower for GPT-4o, it yields
a higher overall coverage. GPT-4-Turbo has the highest proven rate variability (i.e., less consistent results with varied design
complexity). It has a higher average assertion proven rate but lower overall coverage. Llama3-70B has consistently lower
success rates with the highest number of attempts needed to complete the overall end-to-end formal verification. It is worth
noting that this model often generates more assertions per run compared to the other two.

LLMs have context length and input token restrictions that can lead to truncated critical information in large RTL designs,
resulting in inaccurate assertions. The quality of LLM-generated outputs depends on the prompts, yet models may still deviate
from guidelines, producing incorrect assertions. Selecting the optimal temperature parameter for assertions varies across designs;
incorrect settings cause overly deterministic or random outputs. Robust models like GPT-4o can err by introducing implicit
clocks and resets in smaller circuits. LLMs often misinterpret intricate RTL constructs, generate syntactically incorrect or



TABLE VI: Performance of Saarthi on advanced difficulty level designs

Design Metric Pass@1 Pass@2 Pass@3

GPT-4o GPT-4-Turbo Llama3 GPT-4o GPT-4-Turbo Llama3 GPT-4o GPT-4-Turbo Llama3

Booth multiplier
# Properties 0 9 9 0 4 10 0 6 9
% Proven 0% 44.44% 22.22% 0% 50% 50% 0% 33.33% 22.22%

% Coverage 0% 77.78% 77.78% 0% 42.86% 90% 0% 66.67% 88.89%

Pipelined adder
# Properties 0 7 7 0 10 0 0 7 0
% Proven 0% 42.86% 28.57% 0% 40% 0% 0% 85.71% 0%

% Coverage 0% 57.14% 83.33% 0% 70% 0% 0% 13.33% 0%

RV32I core
# Properties 12 14 10 14 14 12 14 14 10
% Proven 50% 44.43% 30.02% 55% 54.24% 35% 70% 75% 44.32%

% Coverage 80% 82% 50% 82% 82% 51% 82% 82% 53%

PID Controller
# Properties 5 2 0 1 4 0 5 2 0
% Proven 80.30% 50% 0% 100% 25% 0% 20% 50% 0%

% Coverage 46.77% 13.60% 0% 9.40% 17.69% 0% 44.53% 42.97% 0%

Round robin arbiter
# Properties 0 7 7 0 6 0 0 4 0
% Proven 0% 57% 29% 0% 33% 0% 0% 25% 0%

% Coverage 0% 50% 67% 0% 89% 0% 0% 78% 0%
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Fig. 12: KPIs for Saarthi benchmarking

semantically irrelevant assertions, and produce vacuous passes in formal properties. GPT-4o can create overly complex assertions
with redundant conditions, while Llama models frequently have syntax errors. Additionally, GPT-4 models may introduce
unnecessary assertions and signals not present in the original RTL specification.



V. CONCLUSION

The paper outlines a fully autonomous AI-based formal verification engineer, Saarthi. Saarthi understands design specifica-
tions, creates a verification plan, assigns tasks to several AI verification engineers, and communicates with formal verification
tools such as Cadence Jasper to prove properties. It also analyzes CEXs, assesses formal coverage, and reacts to improve it by
adding missing properties for the final sign-off. Although the results for end-to-end formal verification do not yield a 100%
guarantee with every run, Saarthi performs significantly well most of the time, with an overall efficacy of around 40%. The
quality of the results also depends on the LLM used, with GPT-4o outperforming other models. As predicted in [24] and [25],
achieving Artificial General Intelligence (AGI) by 2027 is strikingly plausible, and we believe that Saarthi could be pivotal in
reaching that milestone within the hardware design verification domain. Saarthi is based on the agentic workflow, which makes
it highly scalable and adaptable to other domains such as RTL design, UVM testbench generation, and more. To expand its
capabilities, we need to define the agents and their responsibilities to ensure they work together to solve given tasks. In the
future, we will continue our experiments to extend Saarthi’s applications beyond formal verification, exploring its potential in
additional usecases.
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