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Abstract: The race to autonomous mobility among the automobile manufacturers is driving the evolution of the 

underlying semiconductors. As a result, semiconductor technologies are moving towards higher densities and lower 

operating voltages, and this migration is introducing increasing sensitivity to random hardware failures — the 

failures which occur unpredictably over a semiconductor’s lifetime. Modern cars deploying ADAS and AV features 

rely on these digital and analog systems to perform critical real-time applications. This reliance has led to a 

concern over validation of these systems, and the question: are they safe? 

One practice to achieve or maintain a safe state is running an exhaustive fault campaign to test the effectiveness 

of a safety architecture’s ability to detect faults or control failures. While traditional approaches may have been 

satisfactory in the past, the increased size and complexity of automotive designs with the large number of faults 

that need to be tested make performing safety verification using a single technology impractical. 

Developing an optimized safety methodology with specific fault lists automatically targeted for simulation, 

emulation and formal is challenging. Another challenge is consolidating fault resolution results from various fault 

injection runs for final metric computation. Figure 1 shows some of the optimization techniques in a safety flow. 

 

Figure 1: Fault List Optimization Techniques 

 

 

 In this paper we will discuss the details of the functional safety methodology we used for this application using an 

SoC level automotive test case, and we will show how our methodology produces a scalable, efficient safety 

workflow using optimization techniques for fault injection using formal, simulation, and emulation verification 

engines. 
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I. Introduction 

There are several approaches to achieving or maintaining a safe state for safety architectures. A traditional 

approach to achieve a safe design is by running an exhaustive fault campaign to test the effectiveness of a safety 

architecture’s ability to detect faults or control failures. While an exhaustive approach may have been satisfactory 

in the past, the increased size and complexity of automotive designs, along with the large number of faults that 

need to be analyzed, make it impractical to perform exhaustive, safety verification using a single technology. We 

will address this challenge by describing optimizations used today in the analysis and validation phases of the 

safety workflow for safety architectures. 

 

II. Safety Analysis 

 

Achieving safety for semiconductors and systems is defined by the ISO 26262 standard, which addresses the needs 

of electrical and electronic systems within road vehicles. Part 5 of the standard, which focuses on product 

development at the hardware level, states how hardware architectures need to be evaluated against the 

requirements for fault handling by ensuring the probabilities of random hardware failures are rigorously analyzed 

and quantified via a set of objective metrics [1].  

 

The standard uses the automotive safety integrity level (ASIL) as the risk classification system to define the level 

of safety for road vehicles. ASIL is used to measure safety for systems and semiconductors, and ASIL metrics are 

assigned to components and subcomponents that are safety related in a semiconductor design. ASIL uses several 

metrics to analyze, quantify, and qualify the safeness of a design, such as failures in time (FIT), diagnostic 

coverage (DC), single point failure metric (SPFM), latent fault metric (LFM), and probabilistic metric for random 

hardware failures (PMHF). See Table 1 for metric definitions. 

 

 

 

Table 1: Definition of ASIL metrics 

 

Determining the level of a designs safety comes down to validating the effectiveness of the safety mechanisms in 

the safety critical system by determining the coverage achieved for the SPFM. ASIL determines the highest level 

of coverage is an SPFM of greater than or equal to 99% defined as ASIL D. See Table 2 for ASIL targets for 

SPFM. 

 

 ASIL B ASIL C ASIL D 

SPFM >= 90% >= 97% >= 99% 

 

Table 2: ASIL derivation of the target SPFM value 

 

Metric Acronym Definition 

Probabilistic 

Metric for 

Random 

Hardware  

Failures 

PMHF PMHF is the determination of the target value which describes a measurement for the 

probability regarding the random hardware failure (summary of all possible failures 

(single point and latent)) 

 

Failures in 

Time 

FIT The FIT rate of a device is the number of failures that can be expected in one billion 

(109) device-hours of operation 

Diagnostic 

Coverage 

DC DC is the measurement of the effectiveness of the diagnostics or safety mechanisms in 

the system. It expresses the systematic capability of the safety mechanisms and is 

measured by dividing the failures detected/controlled by the safety mechanisms by the 

total failures in the system 

Single Point 

Fault Metric 

SPFM The SPFM reflects if the coverage provided by safety mechanisms for single-point 

faults and residual faults in the hardware architecture is sufficient 

Latent Fault 

Metric 

LFM The LFM reveals whether the coverage by the safety mechanisms for latent faults in 

the hardware architecture is sufficient  
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III. Optimizing the Safety Workflow 

 

Optimizing the safety workflow is challenging. One approach to optimization is using an EDA analysis tool during 

the analysis phase to validate expert judgement and compute ASIL metrics through structural analysis that provide 

accurate metrics. By using an analysis tool on RTL blocks as soon as they are available, verification and safety 

engineers can get an indication of issues in the safety architecture early in the safety workflow. Getting as much 

safety testing done early at the RTL reduces the time spent in fault simulation (which is resource intensive, time 

consuming, and relies on good stimulus) and optimizes the entire safety workflow by lowering overall project 

cost and accelerating time-to-certification. 

 

An exhaustive fault campaign — or determining the percentage of faults that will turn into failures for all nodes 

in the design — is a daunting task. This means injecting tens of thousands to millions of faults into hundreds of 

tests, simulating them to their outputs, and comparing the results for thousands to millions of nodes in the design. 

Fault list optimization techniques can help address this challenge. Fault list optimization can include adoption of 

techniques such as safety mechanism aware faults, fault collapsing, identifying faults that won’t propagate, 

statistical random sampling, and architecture vulnerability factors. Formal techniques are a powerful method for 

determining the testability of faults by verifying, for example: 

• If there is a physical connection between the fault location and the observation points 

• If the signals that drive the fault node allow activation of the fault 

• If the fault could be observable in at least one strobe of the design [2] 

 

Fault lists can be further optimized for the specific engine used for fault injection. Fault injection engines used in 

the safety workflow can include formal, simulation, and emulation. Each engine has specific benefits and can 

reduce overall fault injection time when used together in a safety workflow. Table 3 is a high-level guide to the 

benefits of formal, simulation, and emulation for fault injection. 

 

Formal  • Exhaustive, smart 

• No test bench required 

• Optimized for fault classification of safety mechanisms 

Simulation • Concurrent, parallel fault injection 

• Best for blocks and smaller IP 

• Optimized for hardware and software test libraries 

Emulation • Fast 

• Large SoCs, software driven designs 

• Optimized for end-to-end hardware safety mechanisms 

 

Table 3: Benefits of formal, simulation and emulation for fault injection 

 

 

IV. Automated Fault Injection Flow 

 

ISO 26262, Chapter 11 explains that fault classification at the semiconductor component level can be achieved by 

combining formal, simulation, and emulation techniques. One of the biggest challenges is to make this 

methodology efficient and automated with respect to fault generation, choosing the classification technique (fault 

injection and formal), and combining the final metric results. 

 

Figure 2 shows our execution methodology as a three-step flow for overall efficiency, resulting in reduced time 

to final metrics. 
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Figure 2: Three step workflow for efficient fault injection 

 

Step 1: Generate the optimized fault list 

Using fault optimization methods, such as fault collapsing for redundant faults, helps create an optimum 

fault list. Fault list optimization analysis should be done on each node with respect to all the safety 

mechanisms protecting the design. A failure modes and effects analysis (FMEA) can help create an 

optimized fault list for each failure mode (FM) of the design while excluding all the faults that are non-

safety critical and do not violate the safety goal. This approach of bucketing fault lists for FMs helps 

automate the next step, which is fault injection.  

 

Step 2: Fault injection and classification 

The goal of fault injection is to exercise the random injection of faults and validate the effectiveness of 

the safety mechanisms. After faults are injected, they may propagate and can violate the safety goal. If 

the safety goal is violated, then the system should verify whether this violation was detected by a safety 

mechanism or not. ISO 26262 defines the fault classifications following fault injection as follows: single 

point fault (SPF), residual fault (RF), multi point fault latent (MPFL), multi point fault detected (MPFD), 

and safe fault (SF). 

 

Faults which are safety related but do not have any protection from safety mechanisms are directly 

deemed as SPFs. For the remaining faults and their categorization, we will be using common formal, 

simulation, and emulation techniques. 

 

Using Formal Analysis 

Formal technology can be used before and after fault simulation to quickly identify and eliminate non-

propagatable faults with the intent of reducing simulation and debug time. Formal tools use proof 

problems to assess if one or more signals in the corrupted design — typically referred to as observation 

points or safety-critical signals — have a different functional behavior compared to the original fault-

free design. Formal analysis is equivalent to examining all input sequences to provide rigorous evidence 

that a certain fault is safe. Fault detection analysis (FDA) requires as inputs a list of observation points, 

a fault list, and a an RTL or gate-level design. It automatically selects the appropriate proof methods and 

strategies to find most of the safe faults, while aborting the analysis of hard-to-prove faults, thus 

minimizing effort spent on inconclusive results and debugging. Runtimes for FDA range from minutes 

to several hours, with overnight runs being acceptable for complex designs. 

 

Using Fault Simulation  

Analysis of fault injection by simulation is widely used and is a traditional method of fault classification. 

The KaleidoScope fault simulator analyzes RTL or gate level designs based on the given test inputs and 

injects faults to simulate a fault’s behavior. The effect that a fault causes in the design is determined by 

comparing the behavior of the design with and without faults. It creates a “good simulation” that captures 

a fault-free behavior of the design. The values from the good simulation are stored for reference.  

 

For fault injection with alarms and observation points as inputs, faults are injected with stimulus and the 

fault simulator records both if the fault fires the alarm and if the fault is observed. For each fault in the 

fault list, where the faulty behavior is simulated, the observation points are compared against the 

reference values generated during the good simulation. The fault simulator classifies and updates the 

results in the fault database with attributes.  
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Using Emulation  

Fault emulation with the Veloce Fault App is required under conditions where safety mechanism 

complexity makes runtimes too lengthy for fault simulation. Software safety mechanisms that require 

full chip SoC and full software stacks to effectively achieve fault campaign closure are key targets for 

emulation. During synthesis, the emulator maintains a 1-to-1 gate mapping of the RTL and netlists with 

simulation. This step allows for net and memory element name reference consistency between the various 

backend execution engines. Stimulus vectors are also mapped and executed in the same 1-to-1 fashion, 

providing efficient cross engine debug.  

 

 

 
 

Figure 2: Fault resolution update after fault injection 

 

Step 3: Generating the metrics report 

The final step of this methodology is to consolidate the results from formal, fault simulation, and fault 

emulation to produce the overall safety metrics. The fault classification and the bucketing of faults are 

used for calculating the ASIL metrics — such SPFM, LFM. and PMHF — needed for the failure modes 

and effects diagnostics analysis (FMEDA). 

 

 

 
 

 

Figure 3: Efficient three step workflow with a common database 

 

While these three steps are independent in execution, they need to be integrated to reduce the overall execution 

time. We achieved this integration and efficiency through a highly configurable common database. The common 

database supports directly reading the specific fault nodes per failure mode, using an optimal technique for fault 

injection, and then updating the fault resolution to calculate the FMEDA metrics. 

 

V. Experiment on Automotive SoC 

 

In the experimental work we did for this paper, we used a SoC Design with approximately three million gates, 

and we used both simulation and emulation fault injection engines to efficiently complete the fault campaigns for 

final metrics. Doing formal analysis is our next step as a part of finishing the overall fault injection on this 

automotive SoC. Figure 4 is a high-level block representation of the automotive SoC. The highlighted block, 

safety island, is the focus for this section of the paper. 
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Figure 4: Automotive SoC top-level block diagram 

 

Figure 5 is a representation of the safety island block from figure 4. The color-coded areas show where simulation, 

emulation, and formal engines were used for fault injection and fault classification.  

 

Fault injection using simulation was too time and resource consuming for the CPU core and cache memory blocks. 

Those blocks were targeted for fault injection with an emulation engine for efficiency. The CPU core is protected 

by a software test library (STL) and the cache memory is protected by ECC, as shown in Figure 5. The bus 

interface requires end-to-end protection where fault injection with simulation was determined to be efficient. The 

fault management unit was not part of this experiment. Fault injection for the fault management unit will be 

completed using formal technology as a next step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Detailed block diagram 

 

 

 

 

 

Figure 5: Detailed block diagram 
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Table 4 shows the register count for the blocks in the safety island. The fault lists generated for each of these 

blocks were optimized to focus on the safety critical nodes which have safety mechanisms/protection.  

 

Block name Register Count  Gate Count 

Safety Island 890K 46.5 M 

CPU Core + Cache mem 215K 7.1 M 

Bus  470K - 

Fault Management unit + 

Glue logic  

33K - 

 

Table 4: Block register count 

 

SafetyScope, a safety analysis tool, was run to create the fault lists for the FMs for both the Veloce Fault App 

(fault emulator) and the fault simulator and wrote the fault lists to the functional safety (FuSa) database.  

 

For the CPU and cache memory blocks, the emulator inputs the synthesized blocks and fault injection/fault 

detection nets (FIN/FDN). Next it executed the stimulus and captured the states of all the FDNs. The states were 

saved and used as a “gold” reference for comparison against fault inject runs. For each fault listed in the optimized 

fault list, the faulty behavior was emulated, and the FDNs were compared against the reference values generated 

during the golden run, and the results were classified and updated in the fault database with attributes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: CPU Cluster   

(*Source from https://developer.arm.com/Processors/Cortex-R52) 

 

 

For each of the sub parts shown in the block diagram, we generated an optimized fault list using the analysis 

engine. The fault lists are saved into individual session in the FuSa database. We used the statistical random 

sampling on the overall faults to generate the random sample from the FuSa database. In the next section we will 

discuss in detail of taking 1 such random sample all the way through the fault injection using emulation. However, 

for this particular to completely close on the fault injection, we processed N samples. 

Sub_block5 

Sub_block6 

sub_block1 

Sub_block13 

Sub_block9 

Sub_block11 

Sub_block7 

Sub_block4 

Sub_block12 

Sub_block3 

Sub_block2 

Sub_block10 

Sub_block8 



 

8 

 

 

Table 5: Detected Faults by Safety Mechanisms  

 

 

 

Table 6: Results of Fault Injection in CPU and Cache Memory  

 

Above table shows that the overall fault distribution for total faults is in line with the fault distribution of the 

random sampled faults. The table further captures the total detected faults of 3125 out of 4782 total fault. We were 

also able model the detected faults per sub part and also provide an overall detected fault ratio of 65.35%. Based 

on the faults in the random sample and our coverage goal of 90%, we calculated that the Margin of Error (MOE) 

is ±1.19%. 

 

 

The total detected (observed + unobserved) 3125 faults provide a clear fault classification. The Undetected 

Observed also provide a clear classification for Residual faults. We did further analysis of Undetected Unobserved 

and Not Injected faults. 

 

 

 

 

 

 

 

 

Safety Mechanisms  

 

Detected Fault Distribution (%) 

 

ECC Correctable (SM 2) 16.86  
ECC UnCorrectable (SM 2) 0.74  

STL (SM 1)  80.64  
WDT (SM 3) 1.76  

Sub total 100.00  

CPU Core + 

Cache Ram 

Total 

Faults 

(SA0 + 

SA1)  

Total Fault 

Distribution 

(%) 

 

Sampled 

faults 

(SA0 + 

SA1) 

Sampled 

Fault 

Distribution 

(%) 

Test 1: Detected 

fault 

(%) 

Detected 

fault 

Ratio (%) 

sub_block1 85,860 13.50  604 12.63  315 52.15  

sub_block2 4,738 0.74  40 0.84  0 0.00  

sub_block3 46,194 7.26  332 6.94  162 48.80  

sub_block4 22,828 3.59  202 4.22  135 66.83  

sub_block5 315,982 49.68  2,350 49.14  1,719 73.15  

sub_block6 6,664 1.05  48 1.00  0 0.00  

sub_block7 19,202 3.02  144 3.01  97 67.36  

sub_block8 8,084 1.27  58 1.21  17 29.31  

sub_block9 8,100 1.27  66 1.38  39 59.09  

sub_block10 49,292 7.75  426 8.91  305 71.60  

sub_block11 9,306 1.46  46 0.96  31 67.39  

sub_block12 34,832 5.48  286 5.98  218 76.22  

sub_block13 24,964 3.92  180 3.76  87 48.33  

       

 636,046 100 4,782 100.00 3,125 65.35 
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Table 7: Fault Classification after Fault Injection 

 

 

 

We used many debug techniques to analyze the 616 Undetected Unobserved faults. First, we used formal analysis 

to check the Cone of Influence (COI) of these UU faults. The faults which were outside the COI were deemed 

safe and also there were 5 faults which were further dropped from analysis. For the faults which were inside the 

COI, we used engineering judgment with justification of various configurations like, ECC, timer, flash mem 

related etc. Finally using formal and engineering judgment we were able to further classify 616 UU faults into 

Safe faults and remaining UU faults into conservatively Residual faults. We also reviewed the 79 residual faults 

and were able to classify 10 faults into Safe faults. The Not injected faults were also tested against the simulation 

model to check if any further stimulus is able to inject those faults. Since no stimulus was able to inject these 

faults, we decided to drop these faults from our consideration and against the Margin of Error accordingly. With 

this change our new MOE is ±1.293%. 

 

 

 

Table 8: Final fault classification post analysis 

 

In parallel, the fault simulator pulled the optimized fault lists for the failure modes of the bus block and ran fault 

simulations using stimulus from functional verification. The initial set of stimuli didn’t provide enough coverage, 

so higher quality stimuli (test vectors) were prepared, and additional fault campaigns were run on the new stimuli. 

All the fault classifications were written into the FuSa database. All runs were parallel and concurrent for overall 

efficiency and high performance. 

Fault Classification Total Faults (SA0 + SA1)  

Total Fault 

Distribution (%) 

 

Detected Observed  3125 63.35  

Detected Unobserved 0 0.00  

Undetected Observed 79 1.65  

Undetected Unobserved 616 12.88  

Safe Fault  

Dead Logic 
234 4.89  

Not Injected  728 15.22 

sub total 4782 100.00  

Final Result Total Faults (SA0 + SA1)  

 

Total Fault Distribution (%) 

 

Detected Observed  3125 77.18  
Detected Unobserved 0 0.00  
Undetected Observed 

(Residual) 

  10 fault moved to SAFE Fault 

69 1.70  

Undetected Unobserved  

(conservatively Residual) 
280 6.92  

Safe Fault 

Dead Logic 
234 5.78  

Safe Fault 

  Formal COI analysis 

  Signal Back Propagation 

  Safe Fault Configuration  

  Engineer's justification 

341 8.42  

sub total  

4782 – 733 (Not Injected)   
4049 100.00  
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BUS 

Related 

Logic 

Total 

Faults 

(SA0 + 

SA1) % 

Test 1: 

Detected 

fault 

(%) 

Test 2: 

Detected 

fault 

(%) 

Test 3: 

Detected 

fault 

(%) 

Test 4: 

Detected fault 

(%) 

NOC in 

Safety 

Island 

100% 3.27% 5.50% 9.80% 
TBD 

(Future work) 

 

Table 9: Percentage of Detected Faults for BUS Block by E2E SM 

 

Safety analysis using SafetyScope helped to provide more accuracy and reduce the iteration of fault simulation. 

CPU and cache mem after emulation on various tests resulted an overall SPFM of over 90% as shown in Table 5. 

At this time not all the tests for BUS block (End to End protection) doing the fault simulation have been completed. 

Table 6 shows the first initial test was able to resolve the 9.8% faults very quickly. We are integrating more tests 

which have high traffic on the BUS to mimic the runtime operation state of the SoC. The results of these 

independent fault injections (simulation and emulation) were combined for calculating the final metrics on the 

above blocks, with the results shown in Table 7. Execution and closer of the faults using Simulation is our future 

work.  

 

Design 

Cpu + Cache mem 

Final SPFM 

% 

DCPerm 91.3805878  

MOE ±1.293% 

 

Table 10: Overall results  

 

 

VI. Conclusion 

An exhaustive approach to achieving and validating an optimal safety architecture is inefficient for large designs 

with complicated safety mechanisms. In addition, the large number of faults that need to be analyzed make 

performing safety verification using a single technology impractical. Using this SoC level test case, we 

demonstrated how interoperability of fault injection engines, optimization techniques, and an automated flow can 

effectively reduce overall execution time to quickly close-the-loop from safety analysis to safety certification. 

Close engagement between product teams, methodology teams and EDA vendors is equally critical as tools, 

methods and technique are evolving at a rapid pace. Advanced methodologies such as safety Analysis for 

optimization and fault pruning, concurrent fault simulation, fault emulation, and formal based analysis are 

deployed in this project to validate the safety requirements for the Automotive SoC. Performing safety analysis 

prior to running the fault injection is very critical and time saving. Therefore, as demonstrated in the paper the 

interoperability for using multiple engines and reading the results from a common FuSa database is necessary for 

a project of this scale.  
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