
Complex Safety Mechanisms Require Interoperability and
Automation For Validation And Metric Closure

Daeseo Cha
Principal Engineer

Vedant Garg
Principal Architect

Agenda
• Problem Statement

• Proposed Solution

• Safety Analysis

• Safety Verification

• Experiments of Automotive SOC

• Conclusion

Problem Statement (1/2)

• Increasing sensitivity to random hardware failures as semiconductor technologies are moving towards
higher densities and lower operating voltages

• Modern cars deploying ADAS and AV features rely on these digital and analog systems to perform
critical real-time applications

• This reliance has led to a concern over validation of these systems, and the question: are they safe?

Problem Statement (2/2)

• Safety Metrics

• Pre RTL, RTL analysis
• SM choice /data

• RTL & GLS fault injection
• Structural proofing & checks

CPU

Memory

GPU NPU

Miscellaneous

blocks

I/O’s

Clock Manager

Config Block

File

System

Power

Manager

ISP

Codec

Audio

Display

VideoDSP

Typical SOC representation

Proposed Solution

Fault List

Safety
Analysis

Fault
Injection

Safety
Verification

Final Report

Safety
Metrics

• Safety Metrics
• Final Automated FMEDA

• Pre RTL, RTL analysis
• What-if exploration and Gap analysis
• Assessment of Existing SM
• Accurate Early Metric Estimation

• RTL & GLS fault injection
• Structural proofing & checks
• Reduced Iteration

CPU

Memory

GPU NPU

Miscellaneous

blocks

I/O’s

Clock Manager

Config Block

File

System

Power

Manager

ISP

Codec

Audio

Display

VideoDSP

Typical SOC representation

Fault List

Fault Sim

Simulation

Fault
Emulation

Emulation

Generate

Functional
Safety

Database

Fault Classifications
Functional

Safety
Database

Final Metrics

FMEDA & HW
Metrics

Campaign Debug

Inject Report

Automotive
SoC

Safety Verification Platform
Analysis & Fault

List

SM-Aware
Optimization

Fault Collapsing

Fault Sampling

Fault Propagation

Fault List
Generation

Safety Mech
Analysis

Fault Sim

Formal

• Optimizes functional verification methodology

• Automates fault injection using formal, simulation and emulation

• Annotates results with common database

Safety Workflow

Optimizing the Safety Workflow

• Early RTL analysis (structural)

• Fault lists can be further optimized for the specific engine used for fault injection

• Fault list optimization
• Safety mechanism aware faults

• Fault collapsing

• Identifying faults that won’t propagate

• Statistical random sampling

• Architecture vulnerability factors

• Formal techniques determining the testability of faults

Automated Fault Injection Flow

• ISO26262 Chapter 11 explains fault classification at the semiconductor

• Three-step flow
• Step-1: Generated optimized fault lists

• Step-2: Fault injection and classification

• Step-3: Generating the metrics report

Safety Analysis : SafetyScope
• Pre RTL, RTL analysis
• What-if exploration and Gap analysis
• Assessment of Existing SM
• Accurate Early Metric Estimation
• FMEDA Generation

Automated
FMEDA

Safety
ExploreEarly Exploration / FMEDA

• Pre RTL and Architectural

• Exploration of SM

• Modelling different FM

Fault List Generation
• Tops Down Methodology

• Integration to Validation tools

• Fault List generation

Targeted
Fault List

Safety Verification : KaleidoScope Manager

High Performance
• Concurrent & Distributed

• RTL and Gate Level

• Intelligent Injection

Optimized Simulation
• Stimulus Grading

• Statistical Random Sampling

• Adv. Fault Models

K
al

ei
d

o
Sc

o
p

e
M

an
ag

er

Fault List

Server 1

Core

Core

Core

Core

Core

CoreJo
b

 1
Jo

b
 2

Jo
b

 …
.

Jo
b

 N

Server N

Core

Core

Core

Core

Core

Core

Parallel Multi threaded

Fault Management
• Optimized Fault List

• Fault Classification

Debug
• Fault Propagation support

• Wave Compare

Safety Verification : Veloce Fault App

• Perform Mission Mode Safety circuit
verification

• Analyze effectiveness of safety mechanisms in
the design

• Mimic the effects of soft and hard faults on the
design

• Targeting safety critical industries (automotive,
aerospace, military)

Experiments of Automotive SOC

Safety Island

Block Register(K) Gates(M)

Safety Island 890 46.5

CPU/Cache 215 7.1

Bus 470 -

FMU 33 -

• Safety Mechanism
- SM1 (STL) – CPU Core
- SM2 (ECC) - SRAM
- SM3 (WDT) - Timer
- SM4 (BUS) – E2E Protection

CPU
• ASIL-B

• Consisted of 13 blocks

• SM
• Software Test Library

• ECC

• WDT

• Fault List Generation
• Safetyscope

• Fault Injection
• Veloce Fault App

Sub_block 5

Sub_block 6

Sub_block8

Sub_block 1

Sub_block13

Sub_block9

Sub_block11

Sub_block7

Sub_block4

Sub_block12

Sub_block3

Sub_block 2

Sub_block10

(*Source: https://developer.arm.com/Processors/Cortex-R52)

CPU: Fault Distribution

CPU Core +
Cache

Total
Faults
(SA0 +
SA1)

Total Fault
Distribution

(%)

Sampled
faults
(SA0 +
SA1)

Sampled
Fault

Distribution
(%)

Detecte
d fault

Detected
fault Ratio

(%)

sub_block1 85,860 13.50 604 12.63 315 52.15
sub_block2 4,738 0.74 40 0.84 0 0.00
sub_block3 46,194 7.26 332 6.94 162 48.80
sub_block4 22,828 3.59 202 4.22 135 66.83
sub_block5 315,982 49.68 2,350 49.14 1,719 73.15
sub_block6 6,664 1.05 48 1.00 0 0.00
sub_block7 19,202 3.02 144 3.01 97 67.36
sub_block8 8,084 1.27 58 1.21 17 29.31
sub_block9 8,100 1.27 66 1.38 39 59.09

sub_block10 49,292 7.75 426 8.91 305 71.60

sub_block11 9,306 1.46 46 0.96 31 67.39

sub_block12 34,832 5.48 286 5.98 218 76.22

sub_block13 24,964 3.92 180 3.76 87 48.33

Total 636,046 100 4,782 100.00 3,125 65.35

Safety Mechanisms

Detected Fault
Distribution (%)

ECC Correctable (SM 2) 16.86
ECC UnCorrectable (SM 2) 0.74
STL (SM 1) 80.64
WDT (SM 3) 1.76
Sub total 100.00

Sub_block 5

Sub_block 6

Sub_block8

Sub_block 1

Sub_block13

Sub_block9

Sub_block11

Sub_block7

Sub_block4

Sub_block12

Sub_block3

Sub_block 2

Sub_block10

Result: Fault classification

• Detected fault ratio of 65.35% with Margin of Error (MOE), ±1.19% using Veloce

• Performed stimulus grading to identify “Not Injected” faults

Fault Classification: Total Faults (SA0 + SA1)
Total Fault

Distribution (%)
Detected Observed 3,125 65.35
Detected Unobserved 0 0.00
Undetected Observed 79 1.65
Undetected Unobserved 616 12.88

Safe Fault -Dead Logic 234 4.89

Not Injected 728 15.22
Sub Total 4,782 100.00

Final Result
Faults

(SA0 + SA1)
Fault

Distribution(%)
Detected Observed 3125 77.18
Detected Unobserved 0 0.00
Undetected Observed (Residual)
10 fault moved to SAFE Fault

69 1.70

Undetected Unobserved
(conservatively Residual)

280 6.92

Safe Fault - Dead Logic 234 5.78

Safe Fault
Formal COI analysis
Signal Back Propagation
Safe Fault Configuration
(Engineer's justification)

341 8.42

Sub Total
4782 – 733 (Not Injected)

4049 100.00

Result: Post Analysis

• Analysis of UU faults
• COI Analysis

• Signal Back Propagation

• Safe Fault Configuration

• Justification

BUS Related
Logic

Total Faults
(SA0 + SA1)

Scenario 1:
Detected

Scenario 2:
Detected

Scenario 3:
Detected

Scenario 4:
Detected

Scenario 5:
Detected

Fault (%) 100% 3.27% 5.50% 9.80% 42.81% (TBD)

Result: BUS

• Fault List Generation
• SafetyScope

• Fault Injection
• Kaleidoscope

(Concurrent engine)

Improving Scenario Quality

Result: Final Metrics

• Achieved SPFM over 90% on CPU core using emulation

• Fault injection on BUS is in progress using simulation, FMU will be applied by formal

• Proposed three-step flow consisted of 1) faults optimization, 2) combining injection engine with
automation, 3) report with common database successfully worked on our SOC

CPU + Cache mem Final SPFM (%)

DCPerm 91.3805878

MOE ±1.293%

Conclusion
1. A comprehensive approach to designing and verifying a safe architecture may not be practical for

large and complex systems with multiple safety mechanisms.

2. By using a system-on-chip level test case, we have shown how combining fault injection engines,
optimization techniques, and automation can significantly reduce the overall time needed to
complete safety analysis and certification.

3. Collaboration between product teams, methodology teams, and EDA vendors is crucial as tools,
methods, and techniques are constantly evolving. This project utilized advanced methodologies such
as safety analysis for optimization and fault pruning, concurrent fault simulation, fault emulation, and
formal-based analysis to validate the safety requirements for the automotive system-on-chip.

4. Conducting safety analysis before running fault injection tests is essential and saves time.

5. Therefore, as demonstrated in this paper, the ability to use multiple engines and access results from a
shared FuSa database is crucial for a project of this scale.

Questions

Thank You

Daeseo Cha

Principal Engineer

Vedant Garg

Principal Architect

