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Problem Statement (1/2)

• Increasing sensitivity to random hardware failures as semiconductor technologies are moving towards 
higher densities and lower operating voltages 

• Modern cars deploying ADAS and AV features rely on these digital and analog systems to perform 
critical real-time applications 

• This reliance has led to a concern over validation of these systems, and the question: are they safe? 



Problem Statement (2/2) 

• Safety Metrics

• Pre RTL, RTL analysis 
• SM choice /data

• RTL & GLS fault injection 
• Structural proofing & checks 
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Proposed Solution
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• Safety Metrics
• Final Automated FMEDA

• Pre RTL, RTL analysis 
• What-if exploration and Gap analysis
• Assessment of Existing SM
• Accurate Early Metric Estimation

• RTL & GLS fault injection 
• Structural proofing & checks
• Reduced Iteration  
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• Optimizes functional verification methodology

• Automates fault injection using formal, simulation and emulation 

• Annotates results with common database  

Safety Workflow 



Optimizing the Safety Workflow 

• Early RTL analysis (structural) 

• Fault lists can be further optimized for the specific engine used for fault injection 

• Fault list optimization 
• Safety mechanism aware faults

• Fault collapsing

• Identifying faults that won’t propagate

• Statistical random sampling

• Architecture vulnerability factors

• Formal techniques determining the testability of faults 



Automated Fault Injection Flow

• ISO26262 Chapter 11 explains fault classification at the semiconductor 

• Three-step flow 
• Step-1: Generated optimized fault lists 

• Step-2: Fault injection and classification 

• Step-3: Generating the metrics report 



Safety Analysis : SafetyScope
• Pre RTL, RTL analysis 
• What-if exploration and Gap analysis
• Assessment of Existing SM
• Accurate Early Metric Estimation
• FMEDA Generation

Automated 
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Safety
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• Pre RTL and Architectural 

• Exploration of SM

• Modelling different FM

Fault List Generation 
• Tops Down Methodology 

• Integration to Validation tools

• Fault List generation 

Targeted 
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Safety Verification : KaleidoScope Manager

High Performance
• Concurrent & Distributed

• RTL and Gate Level

• Intelligent Injection

Optimized Simulation
• Stimulus Grading

• Statistical Random Sampling

• Adv. Fault Models
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Fault Management
• Optimized Fault List

• Fault Classification

Debug
• Fault Propagation support 

• Wave Compare



Safety Verification : Veloce Fault App

• Perform Mission Mode Safety circuit 
verification

• Analyze effectiveness of safety mechanisms in 
the design

• Mimic the effects of soft and hard faults on the 
design

• Targeting safety critical industries (automotive, 
aerospace, military)



Experiments of Automotive SOC 



Safety Island

Block Register(K) Gates(M)

Safety Island 890 46.5 

CPU/Cache 215 7.1 

Bus 470 -

FMU 33 -

• Safety Mechanism
- SM1 (STL) – CPU Core
- SM2 (ECC) - SRAM 
- SM3 (WDT) - Timer
- SM4 (BUS) – E2E Protection 



CPU 
• ASIL-B

• Consisted of 13 blocks

• SM
• Software Test Library

• ECC

• WDT

• Fault List Generation
• Safetyscope

• Fault Injection
• Veloce Fault App
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(*Source: https://developer.arm.com/Processors/Cortex-R52) 



CPU: Fault Distribution 

CPU Core + 
Cache

Total 
Faults 
(SA0 + 
SA1) 

Total Fault 
Distribution 

(%)

Sampled 
faults 
(SA0 + 
SA1)

Sampled 
Fault 

Distribution 
(%)

Detecte
d fault

Detected 
fault Ratio 

(%)

sub_block1 85,860 13.50 604 12.63 315 52.15 
sub_block2 4,738 0.74 40 0.84 0 0.00 
sub_block3 46,194 7.26 332 6.94 162 48.80 
sub_block4 22,828 3.59 202 4.22 135 66.83 
sub_block5 315,982 49.68 2,350 49.14 1,719 73.15 
sub_block6 6,664 1.05 48 1.00 0 0.00 
sub_block7 19,202 3.02 144 3.01 97 67.36 
sub_block8 8,084 1.27 58 1.21 17 29.31 
sub_block9 8,100 1.27 66 1.38 39 59.09 

sub_block10 49,292 7.75 426 8.91 305 71.60 

sub_block11 9,306 1.46 46 0.96 31 67.39 

sub_block12 34,832 5.48 286 5.98 218 76.22 

sub_block13 24,964 3.92 180 3.76 87 48.33 

Total 636,046 100 4,782 100.00 3,125 65.35 

Safety Mechanisms 

Detected Fault 
Distribution (%)

ECC Correctable (SM 2) 16.86 
ECC UnCorrectable (SM 2) 0.74 
STL (SM 1) 80.64 
WDT (SM 3) 1.76 
Sub total 100.00 
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Result: Fault classification 

• Detected fault ratio of 65.35% with Margin of Error (MOE), ±1.19% using Veloce 

• Performed stimulus grading to identify “Not Injected” faults

Fault Classification: Total Faults (SA0 + SA1) 
Total Fault 

Distribution (%)
Detected Observed 3,125 65.35 
Detected Unobserved 0 0.00 
Undetected Observed 79 1.65 
Undetected Unobserved 616 12.88 

Safe Fault -Dead Logic 234 4.89 

Not Injected 728 15.22
Sub Total 4,782 100.00 



Final Result
Faults 

(SA0 + SA1) 
Fault 

Distribution(%)
Detected Observed 3125 77.18 
Detected Unobserved 0 0.00 
Undetected Observed (Residual)
10 fault moved to SAFE Fault

69 1.70 

Undetected Unobserved 
(conservatively Residual)

280 6.92 

Safe Fault - Dead Logic 234 5.78 

Safe Fault
Formal COI analysis
Signal Back Propagation
Safe Fault Configuration 
(Engineer's justification)

341 8.42 

Sub Total 
4782 – 733 (Not Injected) 

4049 100.00 

Result: Post Analysis

• Analysis of UU faults
• COI Analysis 

• Signal Back Propagation

• Safe Fault Configuration

• Justification



BUS Related 
Logic

Total Faults 
(SA0 + SA1) 

Scenario 1: 
Detected

Scenario 2: 
Detected

Scenario 3: 
Detected

Scenario 4: 
Detected

Scenario 5: 
Detected

Fault (%) 100% 3.27% 5.50% 9.80% 42.81% (TBD) 

Result: BUS

• Fault List Generation
• SafetyScope

• Fault Injection
• Kaleidoscope

(Concurrent engine)

Improving Scenario Quality



Result: Final Metrics

• Achieved SPFM over 90%  on CPU core using emulation 

• Fault injection on BUS is in progress using simulation, FMU will be applied by formal 

• Proposed three-step flow consisted of 1) faults optimization, 2) combining injection engine with 
automation, 3) report with common database  successfully worked on our SOC

CPU + Cache mem Final SPFM (%)

DCPerm 91.3805878 

MOE ±1.293%



Conclusion
1. A comprehensive approach to designing and verifying a safe architecture may not be practical for

large and complex systems with multiple safety mechanisms.

2. By using a system-on-chip level test case, we have shown how combining fault injection engines,
optimization techniques, and automation can significantly reduce the overall time needed to
complete safety analysis and certification.

3. Collaboration between product teams, methodology teams, and EDA vendors is crucial as tools,
methods, and techniques are constantly evolving. This project utilized advanced methodologies such
as safety analysis for optimization and fault pruning, concurrent fault simulation, fault emulation, and
formal-based analysis to validate the safety requirements for the automotive system-on-chip.

4. Conducting safety analysis before running fault injection tests is essential and saves time.

5. Therefore, as demonstrated in this paper, the ability to use multiple engines and access results from a
shared FuSa database is crucial for a project of this scale.
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